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Abstract

A main purpose of this paper is to prove that the class of finite dimen-

sional algebras which verify Han’s conjecture is closed under split bounded

extensions.
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1 Introduction

Given a finite dimensional algebra A over an algebraically closed field k, Han’s con-
jecture relates two homological invariants associated to A: its global dimension and
its Hochschild homology. In the commutative case – non necessarily finite dimen-
sional but finitely generated – the finiteness of the global dimension is equivalent
to the fact that A is geometrically regular [3, 30]. In general we are going to say
that an algebra with finite global dimension is smooth.

On the other hand, we consider Hochschild homology of A. Let Ae = A⊗Aop be
the enveloping algebra. Let us recall that given an A-bimodule X – or equivalently
a left or right Ae-module –, the Hochschild homology of A with coefficients in X
is H∗(A,X) = TorA

e

∗ (A,X); it is functorial in both variables.
Han’s conjecture [20] states that for A finite dimensional, A is smooth if and

only if Hn(A,A) = 0 for n >> 0. The direct implication is true.
Next we recall some previous results. Well before being formulated, Han’s con-

jecture has been proved for commutative algebras which are finitely generated,
which encompasses finite dimensional commutative algebras, see [8, 4]. Y. Han
proved the conjecture for monomial algebras in [20]. P.A. Bergh and D. Madsen
have shown that it holds in characteristic zero for graded finite dimensional local
algebras, Koszul algebras and graded cellular algebras [6]. They have also obtained
a confirmation of Han’s conjecture in [7] for trivial extensions of several sorts of
algebras, by proving that their Hochschild homology is non zero in large enough
degrees. P.A. Bergh and K. Erdmann proved in [5] that quantum complete inter-
sections - at a non-root of unity - satisfy Han’s conjecture, as well as A. Solotar
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and M. Vigué-Poirrier [32] for a generalisation of quantum complete intersections
and for a family of algebras which are in some sense opposite to these last ones.
Later, A. Solotar, M. Suárez-Alvarez and Q. Vivas proved in [31] Han’s conjecture
for quantum generalized Weyl algebras (out of a few exceptional cases). In [13]
null-square projective algebras extensions were considered, the present paper goes
further in this direction.

Concerning the commutative case, it is worth to mention that in characteristic
zero, in positive degrees HHn(A) has a decomposition, called Hodge decomposi-
tion, as a direct sum of subspaces, see for example [18, 28, 33]. One of them is the
n-th exterior power of the A-module of Kähler differentials, Ωn

A|k and another one

is Dn(A|k), the André-Quillen homology of the commutative k-algebra A. When
A is smooth, in positive degrees HHn(A) = Ωn

A|k and the other summands anni-

hilate. In fact, the main condition for smoothness is that Dn(A|k) = 0 for positive
n [23], and the Jacobi-Zariski long exact sequence for André-Quillen homology re-
lating Dn(A|k), Dn(A|B) and Dn(B|k) for any extension of algebras k ⊆ B ⊆ A
plays an important role.

In the non commutative setting André-Quillen homology does not exist, but
A. Kaygun has proved recently in [24, 25] the existence of a Jacobi-Zariski long
exact sequence starting in degree one for Hochschild homology for any extension
of k-algebras B ⊆ A, such that A is B-flat. It relates the ordinary Hochschild
homologies of A and B with the relative Hochschild homology of A with respect
to B. In this paper, with different hypotheses we also obtain a long exact sequence
of Jacobi-Zariski type for large enough degrees.

We consider split extension algebras in relation with Han’s conjecture. By defi-
nition, a split extension algebra over a field k is a k-algebra of the form A = B⊕M ,
where B is a subalgebra of A and M is a two-sided ideal of A. As a consequence of
our work, we prove that in some cases, adding or deleting arrows to a quiver – even
adding or deleting certain relations – does not change the situation with respect to
Han’s conjecture, see also [14]. Indeed, these processes are special cases of split
extension algebras, see Example 2.2.3. In a subsequent work, conditions will be
given for these operations to fit within the framework of the theory we provide in
this paper.

Next we describe the contents of this article. In Section 2, in order to com-
pute the relative Hochschild (co)homology introduced by G. Hochschild in [22], we
construct a reduced relative bar resolution of a split extension algebra. We use
it particularly when M is B-tensor nilpotent, that is if there exists n such that
M⊗Bn = 0.

In Section 3 we obtain a Jacobi-Zariski long exact sequence in the following
situation. A B-bimodule M is called bounded if M is B-tensor nilpotent, of finite
projective dimension as B-bimodule and projective either as left or as right B-
module. A split bounded extension algebra is a split extension A = B ⊕M where
M is bounded. For these algebras we obtain a Jacobi-Zariski long exact sequence
in large enough degrees. We set up techniques based on nearly exact sequences of
complexes, see Definition 3.1. Actually the relative resolution of Section 2 provides
a nearly exact sequence, which in turn gives the required Jacobi-Zariski long exact
sequence in large enough degrees.

In Section 4 we prove our main result: the class H of finite dimensional alge-
bras which verify Han’s conjecture is closed under split bounded extensions. More
precisely if A = B⊕M is such an extension, then A ∈ H if and only if B ∈ H. We
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point out that this result does not depend on the associative structure of M , but
on properties of its B-bimodule structure, see Definitions 3.4 and 3.6.The proofs
make use of the Jacobi-Zariski long exact sequence, and of the reduced relative bar
resolution.

2 A reduced relative bar resolution for split extension al-

gebras

Let B ⊂ A be an extension of algebras over a field k. In this context G. Hochschild
introduced in [22] relative homological algebra, which corresponds to consider the
exact category of A-modules with respect to B-split short exact sequences, see
[27, 9]. More precisely, an induced module is an A-module of the form A ⊗B M ,
where M is a left B-module. An A-module P is relative projective if any A-
morphism X → P which has a B-section has an A-section. Equivalently, P is
relative projective if it is an A-direct summand of an induced module. There are
enough relative projectives since for any A-module X the canonical A-map A ⊗B

X → X has a B-section. Of course if B = k we recover the ordinary definition,
and if B = A all modules are relative projective.

A relative projective resolution of an A-module X is a sequence

· · ·
d
→ P2

d
→ P1

d
→ P0 → X → 0

where each Pi is a relative projective A-module, the d’s are A-morphisms, d2 = 0
and there exists a B-contracting homotopy, see [22, p. 250].

Two relative projective resolutions of X are homotopic and the functor A⊗B −
is exact, so that for X and Y respectively right and left A-modules, the func-
tor TorA|B

∗ (X,Y ) is well defined. For X and Y left A-modules, the functor
Ext∗A|B(X,Y ) is well defined.

Consider the extension of enveloping algebras Be ⊂ Ae. For X an A-bimodule,
the relative Hochschild homology and cohomology vector spaces are defined in [22]
respectively as follows:

H∗(A|B,X) = TorA
e|Be

∗ (X,A) and H∗(A|B,X) = Ext∗Ae|Be(A,X).

Observe that in [22] those vector spaces are defined with respect to the extension
B ⊗ Aop ⊂ Ae. This turns out to be equivalent since the relative canonical reso-
lution of A is relative projective in both situations, and the canonical contracting
homotopies agree.

Being derived functors, they can be computed using an arbitrary relative projec-
tive resolution. In particular these vector spaces are the homology and the cohomol-
ogy of the following chains and cochains complexes C∗(A|B,X) and C∗(A|B,X):

· · ·
b
→ X ⊗Be A⊗Bn b

→ · · ·
b
→ X ⊗Be A

b
→ XB → 0,

0 → XB b
→ HomBe(A,X)

b
→ · · ·

b
→ HomBe(A⊗Bn, X)

b
→ · · ·

where
XB = X ⊗Be B = X/〈bx− xb〉 = H0(B,X),

XB = HomBe(B,X) = {x ∈ X | bx = xb for all b ∈ B} = H0(B,X),

and where the formulas for the boundaries and coboundaries are the ordinary ones.
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Definition 2.1 An extension of algebras B ⊂ A is split if there is a morphism of
algebras π : A → B which is a retraction to the inclusion, that is π(b) = b for all
b ∈ B.

Clearly B ⊂ A is split if and only if there exists a two-sided ideal M of A such
that A = B ⊕M .

Next we provide some examples of split extensions. In the last example we
add arrows to the quiver of a bound quiver algebra. Note that in relation to the
finitistic dimension conjecture, E.L. Green, C. Psaroudakis and Ø. Solberg [19] have
considered the case of adding exactly one arrow, which leads to a trivial extension.

Examples 2.2

1. Let B be an algebra, let N be a B-bimodule and let T be the tensor algebra

T = TB(N) = B ⊕ N ⊕ N ⊗B N ⊕ · · · .

Let T>i = N⊗Bi+1 ⊕ N⊗Bi+2 ⊕ · · ·

We have T = B ⊕ T>0, that is T is a split extension. Moreover, if J ⊂ T>0

is a two-sided ideal of T , then B ⊂ T/J is a split extension as well.

2. Let Q be a finite quiver, that is Q = (Q0, Q1, s, t) where Q0 and Q1 are
finite sets called respectively vertices and arrows, and s, t : Q0 → Q1 are
maps called respectively source and target. Let A = kQ/I be a bound quiver
algebra, where kQ is the path algebra of Q and I is an admissible two-sided
ideal of kQ, see [15, 16, 17] and [1, 29]. The extension B = kQ0 ⊂ A is
split.

3. Let B = kQ/I be a bound quiver algebra, and let F be a finite set of new
arrows, that is F is a finite set with two maps s, t : F → Q0. Let QF be the
quiver with the same vertices than Q, while its arrows are Q1 ⊔ F .

Let BF = kQF/〈I〉kQF
, where the denominator is the two-sided ideal of kQF

generated by I. It is easily proven that BF = TB(N) where

N =
⊕

a∈F

Bt(a)⊗ s(a)B. (2.1)

Let J ⊂ B>0
F be a two-sided ideal of BF . The algebra

A = BF /J = B ⊕ (B>0
F /J)

is also a split extension.

The first item of the next result is a generalisation of a reduced bar resolution
obtained in [11, Lemma 2.1].

Theorem 2.3 Let A = B ⊕M be a split extension of algebras.

1. There is a reduced relative bar resolution of A as A-bimodule

· · ·
d
→ A⊗BM

⊗Bn⊗BA
d
→ · · ·

d
→ A⊗BM⊗BA

d
→ A⊗BA

d
→ A → 0 (2.2)

where the formulas for the d’s are those of the ordinary bar resolution, see
[21, 22].
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In what follows the formulas for the (co)boundaries are the ordinary ones.

2. Let X be an A-bimodule. The homology of the following chain complex
CM

∗ (A|B,X) is H∗(A|B,X).

CM
∗ (A|B,X) : · · ·

b
→ X⊗BeM⊗Bn b

→ · · ·
b
→ X⊗Be M

b
→ XB → 0 (2.3)

3. The cohomology of the following cochain complex C∗
M (A|B,X) is

H∗(A|B,X).

0 → XB b
→ HomBe(M,X)

b
→ · · ·

b
→ HomBe(M⊗Bn, X)

b
→ · · · (2.4)

Proof. By construction, the bimodules involved in the first item are induced
bimodules, hence they are relative projective. Let a = aB+aM be the decomposition
of a ∈ A = B ⊕M , and let

t(a1 ⊗m2 ⊗ · · · ⊗mn+1 ⊗ an+2) = 1⊗ (a1)M ⊗m2 ⊗ · · · ⊗mn+1 ⊗ an+2.

It is easily proven that t is a well defined Be-morphism, which is a contracting
homotopy.

The second item is obtained by applying the functor X⊗Ae − to the resolution,
and the following canonical isomorphism where Z is a B-bimodule

X ⊗Ae (A⊗B Z ⊗B A) = X ⊗Be Z.

The last item is obtained analogously. ⋄

Remark 2.4 For later use, we record that the contracting homotopy t in the pre-
vious proof is also a right A-module map.

A B-bimodule M is B-tensor nilpotent if there exists n such that M⊗Bn = 0.
Moreover n is the index of B-tensor nilpotency if M⊗Bn−1 6= 0. For instance, let
kQ be the path algebra of a quiver Q. The kQ0-bimodule 〈Q1〉 ⊂ kQ is kQ0-tensor
nilpotent if and only if there is no oriented cycle in Q.

Corollary 2.5 Let A = B⊕M be a split extension, where M is B-tensor nilpotent
of index n. Let X be an A-bimodule. For ∗ ≥ n we have

H∗(A|B,X) = 0 and H∗(A|B,X) = 0.

Let C∗(A,X) be the ordinary chain complex

C∗(A,X) : · · ·
b
→ X ⊗A⊗n b

→ · · ·
b
→ X ⊗A

b
→ X → 0 (2.5)

whose homology is the Hochschild homology H∗(A,X) of an A-bimodule X . To-
wards obtaining a Jacobi-Zariski long exact sequence for a split extension algebra,
we observe the following.

Proposition 2.6 Let A = B⊕M be a split extension of algebras, and let X be an
A-bimodule. For ∗ ≥ 1, there is a sequence of chain complexes

0 → C∗(B,X)
ι
→ C∗(A,X)

κ
→ CM

∗ (A|B,X) → 0 (2.6)

where ι is injective, κ is surjective and κι = 0.
In degree 0 we have the sequence

0 → X
1
→ X → XB → 0.
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Proof. The definition of the map ι is clear, and it is also clear that ι is an injective
map of complexes. The map κ given by

x⊗ a1 ⊗ · · · ⊗ an 7→ x⊗Be [(a1)M ⊗B · · · ⊗B (an)M ]

is surjective, and κι = 0. The verification that κ is a map of complexes does not
raise any difficulty. It uses extensively that (aa′)M = aMa′M + aBa

′
M + aMa′B for

a, a′ ∈ A and that the first tensor product in CM
∗ (A|B,X) is over Be. ⋄

Remark 2.7 Considering C∗(A|B,X) instead of CM
∗ (A|B,X), and κ′ given by

x⊗ a1 ⊗ · · · ⊗ an 7→ x⊗Be [a1 ⊗B · · · ⊗B an]

does not give in general κ′ι = 0.

Let A = B ⊕ M be a split extension. In the ensuing decomposition of the
vector space A⊗n, let [MpBq] be the direct sum of the direct summands containing
p tensorands in M and q tensorands in B, with p+ q = n. For instance – omitting
the ⊗ signs – we have that

[M2B2] = MMBB ⊕MBMB ⊕MBBM ⊕BMBM ⊕BMMB ⊕BBMM

which is a direct summand of A⊗4.
We set

Kn,0 = Ker(X ⊗M⊗n
։ X ⊗Be M⊗Bn). (2.7)

Lemma 2.8 In the situation of Proposition 2.6,

Kerκ =
⊕

p+q=n
p≥0 q>0

X ⊗ [MpBq] ⊕ Kn,0

Imι = X ⊗ [M0Bn]

Kerκ/Imι =
⊕

p+q=n
p>0 q>0

X ⊗ [MpBq] ⊕ Kn,0.

Proof. Consider the direct sum decomposition

X ⊗A⊗n =
⊕

p+q=n
p≥0 q≥0

X ⊗ [MpBq].

If q > 0, then κ (X ⊗ [MpBq]) = 0, hence

⊕

p+q=n
p≥0 q>0

X ⊗ [MpBq] ⊂ Kerκ.

Instead if q = 0, then κ∣∣X⊗M⊗n
is not zero in general and its kernel is denoted

Kn,0. It follows that Kerκ is as stated.
In turn, in the above direct sum decomposition of X⊗A⊗n, the direct summand

for p = 0 and q = n is clearly Imι. This vector space is one of the direct summands
obtained above for Kerκ. The decomposition of Kerκ/Imι follows. ⋄

6



3 Nearly exact sequences and the Jacobi-Zariski long ex-

act sequence

In this section we will prove that if a sequence as (2.6) has zero homology for large
enough degrees at the second page of the associated spectral sequence, then there
is a long exact sequence in homology starting at this precise degree.

Definition 3.1 A sequence of chain complexes concentrated in non negative de-
grees

0 → C∗
ι
→ D∗

κ
→ E∗ → 0

is m-nearly exact if

- ι is injective,

- κ is surjective,

- κι = 0,

- the chain complex Kerκ/Imι with boundary induced by the boundary of D,
is exact in degrees ≥ m.

We will prove later on that under some hypotheses, the sequence of Proposition
2.6 is nearly exact.

Theorem 3.2 Let
0 → C∗

ι
→ D∗

κ
→ E∗ → 0 (3.1)

be a m-nearly exact sequence of chain complexes. There is a long exact sequence
as follows:

. . .
δ
→ Hm+1(C)

ι
→ Hm+1(D)

κ
→ Hm+1(E)

δ
→ Hm(C)

ι
→ Hm(D).

Proof. We will use standard results on spectral sequences, see for instance [26] or
[34].

The homological double complex arising from the sequence (3.1) with the stan-
dard change of signs, has the complexes E, D and C at columns p = 0, 1 and 2
respectively. Firstly we claim that this complex has zero homology in total degrees
≥ m+1. Indeed, consider the spectral sequence given by the filtration by the rows.
At the first page the columns corresponding to p = 0, 2 are zero since ι is injective
and κ is surjective. At column p = 1 we have the homology vector spaces of the
sequence (3.1) corresponding to the complex in the middle. Since the sequence is
m-nearly exact, at the second page the column p = 1 has zeros in degrees ≥ m,
and zeros elsewhere. This proves the claim.

Secondly we consider the filtration by columns. In page 1 of the corresponding
spectral sequence, let ι1 and κ1 be the horizontal maps induced by ι and κ at the
homology level of the complexes of the sequence (3.1). They are the morphisms
of the intended long exact sequence. We assert that in degrees ≥ m + 1 there is
exactness at the column corresponding to the homology of D. Indeed, the vector
spaces at the second page at column p = 1 are Kerκ1/Imι1. At these spots the
differentials d2 come from zero and go to zero. Hence these vector spaces live
forever in the subsequent pages of the spectral sequence. We proved before that
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the complex has no homology in total degrees ≥ m+ 1, hence these vector spaces
vanish in degrees ≥ m+ 1.

Finally we turn to the connecting homomorphism δ. In the second page of the
spectral sequence just considered, at columns p = 0, 2 we have respectively Cokerκ1

and Kerι1. We assert that the differentials d2 : Kerι1 → Cokerκ1 from total degree
m+ 1 to total degree m are isomorphisms, as well as in larger degrees. Indeed, in
these degrees Kerd2 and Cokerd2 live forever in the spectral sequence, hence they
vanish by the same argument than above. We assert that composing d−1

2 with the
inclusion of Kerι1 and the canonical projection to Cokerκ1 provides the required
connecting homomorphism δ of the long exact sequence for these degrees. Indeed,
by construction Kerδ = Imκ1 and Imδ = Kerι1. ⋄

For the next result we assume that the B-bimodule M verifies that for ∗ > 0
we have TorB∗ (M,M⊗Bn) = 0 for all n. Note that this is fulfilled if M is either a
left or a right projective B-module.

Proposition 3.3 Let A = B ⊕ M be a split algebra, let X be an A-bimodule
and consider the sequence (2.6) as a double complex after performing the standard
change of signs. Let E2

1,∗ be the second page of the spectral sequence obtained by
filtering by rows.

There is a double complex C∗,∗ which total homology is E2
1,∗. The filtration by

columns of C∗,∗ yields a spectral sequence. If M verifies that for ∗ > 0 we have

TorB∗ (M,M⊗Bn) = 0 for all n, the terms at page 1 are

F 1
p,q = TorB

e

p+q(X,M⊗Bp) for p, q > 0

and 0 otherwise.

Proof. By Lemma 2.8,

E1
1,n =

⊕

p+q=n
p>0 q>0

X ⊗ [MpBq] ⊕ Kn,0.

The differential of this column is deduced from the one of C∗(A,X). Clearly this
column is the total complex of the double chain complex.

• Cp,q = X ⊗ [MpBq] for p, q > 0,

• Cp,0 = Kp,0 for p > 0,

• 0 at other spots.

We modify momentarily C∗,∗ at its bottom line as follows:
C′

∗,∗ = X ⊗ [MpBq] for p > 0, q ≥ 0, and 0 at other spots,
with differentials still inherited from C∗(A,X).

We assert that the homology of the column p = 1 of C′
∗,∗ is TorB

e

∗ (X,M). To
this purpose, we next recall a specific projective resolution of M as a Be-module
which is provided in the proof of Proposition 4.1 of [12]. We have that the functor
X ⊗Be − applied to it yields the mentioned column, proving this way the assertion.
As before, we omit the tensor product sign ⊗ over k.

Let
qMp = B · · ·B

︸ ︷︷ ︸

q

M B · · ·B
︸ ︷︷ ︸

p

8



and consider the following complex of free Be-modules:

· · ·
d
→

⊕

p+q=n+1

p>0 q>0

qMp d
→ · · ·

d
→ 1M2 ⊕ 2M1 d

→ 1M1 d
→ M → 0,

where the first differential is special, namely d(b⊗m⊗b′) = bmb′. In larger degrees,
the differential is the differential of the total complex of the double complex which
has qMp at the spot (q, p), with vertical and horizontal differentials qMp → qMp−1

and qMp → q−1Mp given respectively by

b1 ⊗ · · · ⊗ bq ⊗m⊗ b′1 ⊗ · · · ⊗ b′p 7→
(−1)q+1[b1 ⊗ · · · ⊗ bq ⊗mb′1 ⊗ · · · ⊗ b′p +∑

(−1)ib1 ⊗ · · · ⊗ bq ⊗m⊗ b′1 ⊗ · · · ⊗ b′ibi+1 ⊗ · · · ⊗ b′p]

and

b1 ⊗ · · · ⊗ bq ⊗m⊗ b′1 ⊗ · · · ⊗ b′p 7→
∑

(−1)ib1 ⊗ · · · ⊗ bibi+1 ⊗ · · · ⊗ bq ⊗m⊗ b′1 ⊗ · · · ⊗ b′p +
(−1)qb1 ⊗ · · · ⊗ bqm⊗ b′1 ⊗ · · · ⊗ b′p.

We make precise that the vertical and horizontal differentials qM1 → qM0 and
1Mp → 0Mp are given respectively by

b1 ⊗ · · · ⊗ bq ⊗m⊗ b′1 7→ (−1)q+1b1 ⊗ · · · ⊗ bq ⊗mb′1
and

b1 ⊗m⊗ b′1 ⊗ · · · ⊗ b′p 7→ −b1m⊗ b′1 ⊗ · · · ⊗ b′p.

For the column p = 2 of C′
∗,∗, let F• → M be the previous projective resolution

of M by free bimodules. Its tensor product over B with the left bar resolution

· · · → BBM → BM → M → 0

of M provides the following double complex D:

...
...

...

0 BBM ⊗B M BBM ⊗B F0 BBM ⊗B F1 · · ·

0 BM ⊗B M BM ⊗B F0 BM ⊗B F1 · · ·

0 M ⊗B M M ⊗B F0 M ⊗B F1 · · ·

0 0 0

The bar resolution has a right B-module contracting homotopy. Hence the
columns of D are acyclic and its total complex Tot(D) is exact.

However the bimodules of the bottom row and of the left column are not pro-
jective in general, while the others are. In order to obtain the required projective
resolution of M ⊗B M as a bimodule, we proceed as in [12]. Let S be the double
subcomplex of D given by the bottom row and the left column. We claim that
Tot(D/S) → M ⊗B M is a free resolution of M ⊗B M as a B-bimodule.

9



First note that the homology of the bottom row is precisely TorB∗ (M,M), which
is zero in positive degrees by hypothesis. Hence Tot(S) is exact in positive degrees,
while in degree zero its homology is M ⊗B M : indeed, observe that for surjective
morphisms f : Y → X and g : Z → X , and (f, g) : Y ⊕ Z → X we have that

Ker(f, g)

Ker f ⊕Ker g
is isomorphic to X

by the map induced by f or by g.
Next we consider the long exact sequence associated to the exact sequence of

complexes
0 → S → D → D/S → 0.

It shows that Tot(D/S) is acyclic except in its last term where the homology is
M ⊗B M . This provides the required resolution of M ⊗B M .

Next we iterate the process by tensoring the last resolution with the left bar
resolution of M . As before, we use that TorB∗ (M,M ⊗B M) = 0 in positive
degrees to infer a projective resolution of the B-bimodule M ⊗B M ⊗B M .

This shows that the homology of the p-th column is TorB
e

∗ (X,M⊗Bp).
In order to return to C∗,∗, note that by (2.7) we have

(X ⊗M⊗p)/Kp,0 = X ⊗Be M⊗Bp = TorB
e

0 (X,M⊗Bp).

Hence replacing the bottom row of C′ by K∗,0 yields surjective maps at the bottom
stage of each column, therefore we have zero homology at spots of the bottom row
of C. ⋄

Next we provide sufficient conditions to ensure that the sequence (2.6) of Propo-
sition 2.6 is nearly exact.

Definition 3.4 Let B be an algebra. A B-bimodule M is bounded if

- M is B-tensor nilpotent,

- M is of finite projective dimension as a Be-module,

- M is either a left or a right projective B-module.

Remark 3.5 Let B be an algebra, and let M be a B-bimodule with a B-associative
structure, that is an associative map of B-bimodules M⊗BM → M . Then B⊕M
is a split extension algebra. Of course all split extensions occurs this way.

We underline that in the requirement that M is bounded, the B-associative
structure of M is not involved.

Definition 3.6 A split bounded extension B ⊕M is a split extension where M is
bounded.

Proposition 3.7 Let A = B ⊕ M be a split bounded extension. Let n be the
index of B-tensor nilpotency of M . Let u be the projective dimension of M as a
Be-module, and let X be an A-bimodule.

The sequence (2.6) is nu-nearly exact.
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Proof. We consider the spaces F 1
p,q = TorB

e

p+q(M
⊗Bp, X) for p, q > 0 of Propo-

sition 3.3. On the one hand F 1
p,q = 0 for p ≥ v.

On the other hand, from [10, Chapter IX, Proposition 2.6] we infer that since
M is projective either as left or as right B-module, and is of projective dimension u
as a B-bimodule, then M⊗Bp is of projective dimension ≤ pu. Hence if p+q ≥ pu,
then F 1

p,q = 0.
As a consequence, if p+ q ≥ nu, then F 1

p,q = 0. By Proposition 3.3 we obtain
that if ∗ ≥ nu then E2

1,∗ = 0, which means that the column of homologies from
the middle of the sequence (2.6) has in turn no homology in degrees ≥ nu, that is
the sequence is nu-nearly exact. ⋄

The previous result and Theorem 3.2 prove the following.

Theorem 3.8 Let A = B⊕M be a split bounded extension as in Proposition 3.7,
and let X be an A-bimodule. There is a Jacobi-Zariski long exact sequence as
follows.

. . .
δ
→Hnu+1m(B,X)

ι
→ Hnu+1(A,X)

κ
→ Hnu+1(A|B,X)

δ
→

Hnu(B,X)
ι
→ Hnu(A,X).

4 Han’s conjecture

A finite dimensional algebra is called smooth if it is of finite global dimension. As
it is mentioned in the Introduction, the word smooth is originated in commutative
algebra and is useful here for brevity. Note that for noetherian rings, the left and
right global dimensions are equal, see [2].

Han’s conjecture states that for A a finite dimensional algebra, H∗(A,A) van-
ishes in large enough degrees if and only if A is smooth. Let H be the class of
finite dimensional algebras which verify Han’s conjecture. Our aim is to prove the
following.

Theorem 4.1 Let A = B ⊕M be a split bounded extension of finite dimensional
algebras.

A ∈ H if and only if B ∈ H.

The proof relies on the next result.

Proposition 4.2 Let A = B⊕M be a split bounded extension of finite dimensional
algebras.

1. H∗(A,A) vanishes in large enough degrees if and only if H∗(B,B) vanishes
in large enough degrees.

2. A is smooth if and only if B is smooth.

Remark 4.3 For a split extension A = B⊕M , it is trivial that ifH∗(A,A) vanishes
in large enough degrees, then the same happens for H∗(B,B). Indeed, H∗(−,−)
is a functor on the category of algebras. Hence H∗(B,B) is a direct summand of
H∗(A,A).

Proof.
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1. Recall that n is the index of B-nilpotency of M , and u is the projective
dimension of M as a Be-module. We claim that H∗(A,A) and H∗(B,B) are
isomorphic if ∗ ≥ nu+ 1.

Recall that by Corollary 2.5 we have that H∗(A|B,A) vanishes for ∗ ≥ n.
Hence the Jacobi-Zariski long exact sequence of Theorem 3.8 shows that
H∗(B,A) and H∗(A,A) are isomorphic for ∗ ≥ nu+ 1.

On the other hand H∗(B,A) = H∗(B,B)⊕H∗(B,M). Moreover,

H∗(B,M) = TorB
e

∗ (B,M).

Hence if ∗ ≥ u, then H∗(B,M) = 0 and H∗(B,A) = H∗(B,B).

2. The bimodule M is projective from at least one side, we will suppose that M
is right projective. First we prove that if A is smooth then B is smooth. Let
π : A → B be the retraction algebra map of B ⊂ A, with kernel M . Let
Y be a right B-module, and let Y be the A-module obtained by restricting
scalars through π. We have Y = Y as right B-modules and YM = 0.

Let P∗ → Y be a finite right A-projective resolution of Y . It remains of
course exact when considering it as an exact sequence of right B-modules.
Moreover, if P is a right projective A-module then it is also projective as a
right B-module. Indeed, this is true for the free rank one A-module B ⊕M .
Then the standard arguments enable to conclude.

To prove that ifB is smooth then so isA, we begin by proving that any induced
A-module Z = A ⊗B Y is of finite projective dimension. Let Q∗ → Y be a
finite left B-projective resolution of Y . The functor A⊗B − is exact since A
is right projective. Moreover if Q is a left projective B-module, then A⊗B Q
is a left projective A-module, this follows from the fact that this is true for
Q = B. Therefore A⊗B Q∗ → A⊗B Y is a finite left A-projective resolution
of the induced module Z.

Let X be a left A-module. We claim that there exists an exact sequence of A-
modules 0 → Zn → Zn−1 → · · · → Z0 → X → 0 where the A-modules Zi

are induced. This claim ends the proof, indeed each Zi is of finite projective
dimension by the previous assertion, hence X is of finite projective dimension.

To prove the claim, consider the relative reduced bar resolution 2.2, which is
finite since M is B-tensor nilpotent. Moreover its contracting homotopy is a
right A-module map, see Remark 2.4. Consequently the relative reduced bar
resolution remains exact by applying the functor − ⊗A X . For some n we
obtain

0→A⊗B M⊗Bn ⊗B X→· · ·→A⊗B M ⊗B X→A⊗B X→X → 0.

Note that all the A-modules except X are induced A-modules. ⋄
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