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Key Points: 

● We present the first decadal time series of surface dust mass flux in Patagonia 

● The first event-based study in the southwestern Atlantic Ocean shows no evidence for 

an influence of dust on chlorophyll-a concentrations 

● Source-inherited low concentrations of bioavailable iron preclude enhancement of 

primary producers’ biomass in proximal open ocean waters  
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Abstract 

Mineral aerosols may affect global climate indirectly by enhancing net primary 

productivity (NPP) upon deposition to the oceans and associated atmosphere-to-ocean 

CO2 flux. This mechanism is hypothesized to have contributed significantly to the last 

interglacial-to-glacial climatic transition. However, the dust-NPP connection remains 

contentious for the present-day climate system. We analyze the impact of 

southernmost Patagonian dust emissions on southwestern Atlantic Ocean continental 

shelf and proximal open ocean satellite chlorophyll-a concentration. We use the first 

decadal time series of surface dust mass flux in southern Patagonia, along with in situ 

visibility data, to model dust emission, transport and deposition to the ocean. We then 

perform a dust event-based analysis of chlorophyll-a time series, using a novel 

approach by which time series are corrected for post-depositional particle advection 

due to ocean currents. Finally, we performed chemical analysis of iron in dust 

samples, a key micronutrient limiting phytoplankton biomass in high-nutrient, low-

chlorophyll oceans such as offshore of the 200-m isobath off Patagonia. We find no 

compelling evidence for an influence of dust as an enhancer of phytoplankton 

biomass either on shelf or proximal open ocean waters of the southwestern Atlantic 

Ocean. For open ocean waters this is consistent with a lack of source-inherited 

bioavailable iron in dust samples. Future case studies addressing similar questions 

should concentrate on dust sources with identified high contents of bioavailable iron, 

particularly in the Southern Hemisphere where atmospheric processing of iron is 

weak. 

1 Introduction 

Mineral aerosols (i.e., dust) impact global climate through a number of mechanisms, 

including hypothesized atmosphere-to-ocean CO2 flux due to enhancement of ocean 

net primary productivity (NPP) through input of micronutrient iron (Fe) to high-

macronutrient, low-chlorophyll (i.e., HNLC) oceans (Martin, 1990; Moore et al., 

2001). It has been proposed that this process may have contributed to the up to ~80 

ppm atmospheric pCO2 deficit during the globally dustier Last Glacial Maximum 

compared to the current interglacial (Martin, 1990). The identification of rises in NPP 

associated with present-day dust deposition would constitute a partial confirmation of 

this hypothesis. 

Globally, the dust-NPP connection has been studied extensively using varying 

approaches, with some studies having found a positive correlation (e.g., Bishop et al., 

2002; Gallisai et al., 2016; Shaw et al., 2008; Young et al., 1991), while most have 

found none (e.g., Baker et al., 2007; Bonnet et al., 2008; Crispo et al., 2005; Johnson 

et al., 2003; Mackie et al., 2008; Mills et al., 2004; Moore et al., 2006; Sedwick et al., 

2005; Torfstein and Kienast, 2018; Westberry and Siegel, 2006). The open ocean 

waters south of ~45ºS constitute the most extensive of the HNLC regions, and 

southern South America its main dust contributor, particularly to the Atlantic Ocean 

sector, both for the present-day (Li et al., 2008) and last glacial-interglacial cycle (Gili 

et al., 2017; Walter et al., 2000). It is thus of particular interest to test the role of dust 

as a NPP enhancer for the southern South America - southern Atlantic Ocean system 

(Bullard et al., 2016). Chlorophyll-a concentration ([Chl-a]) in the southern Atlantic 

Ocean is closely related to well-known oceanic phenomena, such as upwelling along 

the Patagonian shelf break (e.g., Carranza et al., 2017; Matano and Palma, 2008; 

Saraceno et al., 2005), tidal fronts (e.g., Romero et al., 2006) and open ocean 
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mesoscale features (e.g., Saraceno et al., 2005; Saraceno and Provost, 2012). Yet, dust 

deposition could have a superimposed effect on NPP in this region, and thus 

quantifying the relative contribution of dust to observed [Chl-a] is relevant. 

In the Atlantic sector of the southern oceans, only three studies have looked at the 

dust-NPP connection, none of which analyzed individual dust events. Between ~40-

55ºS, Erickson III et al. (2003) found a strong positive correlation between dust 

deposition fluxes obtained from a global climate model and monthly-resolved, 

satellite-derived [Chl-a] for two years of data, which they ascribed to the influence of 

Patagonian-derived atmospheric Fe. A similar conclusion was reached by Cassar et al. 

(2007) based on similarly derived Fe deposition fields and measurements of net 

community production. Instead, Meskhidze et al. (2007) diminished the role of dust as 

a NPP enhancer by proposing that the correlation observed by Erickson III et al. 

(2003) could be explained in terms of the existence of an atmospheric circulation 

pattern in the region that simultaneously causes Patagonian dust uplift and deposition 

and upwelling of nutrient-rich waters. In turn, Boyd and Mackie (2008) question the 

use of atmospheric Fe models in the southern oceans due to lack of validation with Fe 

deposition observations. Given the uncertainties in modeled dust emission that persist 

for southern South America (Ohgaito et al., 2018; Takemura et al., 2009; Yukimoto et 

al., 2012) and the dominant role of oceanic processes on [Chl-a] dynamics in this 

region, the methodology that maximizes the chances of capturing any potential impact 

of dust on NPP is one in which a big number of dust events spanning multiple years 

are analyzed individually, each with constrained emission area and strength, where 

[Chl-a] after each dust event is compared to their specific pre-event background 

value. 

Whereas total Fe content in dust and dust-emitting topsoils varies globally between 1-

7 wt% (Gaiero et al., 2003; Guieu et al., 2002; Journet et al., 2008; Mahowald et al., 

2005; Simonella et al., 2014, 2015), fractional Fe solubility (i.e., FFS) varies by more 

than four orders of magnitude (~0.001-90%) (Baker et al., 2006, 2013; Mahowald et 

al., 2005; Simonella et al., 2014, 2015). While part of this wide range in solubility 

estimates is explained by the equally wide range in techniques used (Perron et al., 

2020), other factors include the mineralogical composition (e.g., Cwiertny et al., 

2008; Journet et al., 2008) and Fe speciation (e.g., Shoenfelt et al., 2017) of dust at the 

source, and atmospheric processing (e.g., Hand et al., 2004). In the southern Atlantic 

Ocean, dust FFS ranges between 2.4-20% (Baker et al., 2006, 2013). In southern 

South America, three studies analyzed Fe on surface sediments believed to be the 

precursors of dust exported to the ocean (Shoenfelt et al., 2017; Simonella et al., 

2014, 2015), with FFS measurements between 0.01-4.5% (Simonella et al., 2014, 

2015). In terms of dust close to sources in southern South America, there is an almost 

complete dearth of Fe studies, with a single sample analyzed by Simonella et al. 

(2015). Given the uncertainty in soluble Fe of dust, particularly for that exported from 

southern South America, it is important that total Fe content and FFS be constrained 

in studies that analyze the effect of individual events of dust deposition on ocean 

NPP. 

Here, we present the first decadal time series of present-day surface vertical and 

horizontal dust mass flux in southern Patagonia. We use this data set together with 

hourly-resolved visibility data to model dust emission, transport and deposition to the 

southwestern Atlantic Ocean for 32 dust events in a 6-yr period. Next, we constructed 
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time series of satellite [Chl-a] to gauge the response of phytoplankton biomass to dust 

deposition for each event for the first time in this region. Finally, we determine the 

total Fe concentration, surface Fe speciation and perform release experiments under 

different pH conditions to evaluate some aspects of Fe bioavailability of the dust 

aerosol samples. We find that post-dust event [Chl-a] signals are for the most part 

unaffected by dust deposition, consistent with low concentrations of soluble Fe and 

high Fe3+ (versus Fe2+) in the analyzed dust samples. 

1.1 Dust sources in southernmost Patagonia 

The study area is located in the northern sector of Tierra del Fuego island, off the 

southern tip of Patagonia (Figure 1a). The region is semi-arid, dominated by 

grasslands and shrublands. Low hill ranges punctuate the landscape and define 

endorheic basins whose depositional centers collect superficial run-off channelized 

through short and ephemeral streams (Figure 1b) (Villarreal & Coronato, 2017). 

These depositional centers are deflation hollows, many of which contain a seasonal, 

shallow water body that accumulates during the months of positive hydrologic 

balance when precipitation exceeds  evaporation (April-August). Hydrologic deficit 

begins in September, which together with year-round strong southwesterly winds is 

conducive to aerial exposure of easily erodible fine-grained lake bed sediments along 

their western margin (Figure 1c), in turn leading to dust emissions mainly during the 

austral summer (Figure 1d-e). 

1.2 Background biological activity and chemistry of the southwestern Atlantic Ocean 

We look at satellite-derived surface ocean [Chl-a] to gauge the effect of dust on 

phytoplankton biomass. Even if this presents caveats such as a phytoplankton 

physiology-dependent chlorophyll-biomass relationship (Geider et al., 1997) and the 

fact that satellites are limited to the first optical depth (i.e., depth at which sunlight 

irradiance is reduced to 1/e of its surface value), [Chl-a] remains the best proxy for 

phytoplankton biomass (Huot et al., 2007). Because dust emission in southernmost 

Patagonia occurs mostly during the austral summer, we look at the January-February-

March climatology of [Chl-a] (Figure 2a) to analyze background phytoplankton 

biomass. Within the continental shelf, values range between 0.4-1.0 mg m-3, while 

[Chl-a] in the southwestern Atantic Ocean open ocean waters drop to <0.2 mg m-3. 

Available summer surface ocean macronutrient concentration data (World Ocean 

Atlas 2018) show south-to-north reductions for nitrate (Figure 2b), phosphate (Figure 

2c) and to a lesser degree silicate (Figure 2d). This reflects the influence of 

macronutrient-rich subantarctic waters on the southwestern Atlantic Ocean nutrient 

stocks. Superimposed to this trend, there is a rise in nitrate from continental shelf to 

open ocean waters (Figure 2b). North of 55ºS, silicate is found at low concentrations 

both in the shelf and open ocean (Figure 2d). The fact that continental shelf waters are 

high-chlorophyll and low-macronutrient in summer, particularly north of 52ºS, is best 

explained by prolonged consumption of nutrients by phytoplankton since the end of 

light-depleted conditions in late winter, and eventual nutrient depletion in summer. 

Very few dissolved surface Fe measurements exist in open ocean waters of the 

southwestern Atlantic Ocean, with no measurements at all within the continental shelf 

(Figure 2e). There is also limitation in terms of time coverage, given that data is only 

available for one late austral summer (45-55ºS) and for one early fall (55-60ºS) 
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GEOTRACES oceanographic campaigns (Schlitzer et al., 2018). Available 

observations indicate predominantly low dissolved Fe, with concentrations <0.49 

nmol kg-1, which is the threshold value required to persist throughout the mixed layer 

during at least three days to initiate an algal bloom in the Fe-limited Southern Ocean 

(Boyd et al., 2010). 

 

Figure 1. (a) Digital elevation model (SRTM, 90 m) of southern Patagonia, including 

Tierra del Fuego (TdF). SWW: South Westerly Winds, MC: Malvinas Current, ACC: 

Antarctic Circumpolar Current. (b) Satellite image (Landsat/Copernicus) of the study 

area, showing the area of dust emission analyzed in this study. (c) Deflation pan 

showing a windward dry lake floor and a leeward shallow water body (modified from 

Villarreal and Coronato, 2017). (d) True color Terra/MODIS image of a dust event on 

21 February 2014, where two dust plumes emitted from the study area are identified. 
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(e) These plumes are clearly defined by higher-than-background Aerosol Optical 

Depth (Terra/MODIS). White star: Rio Grande dust monitoring station.   

Biogeochemical modeling agrees with available observations. Song et al. (2016) used 

a model with six biogeochemical tracers and a representation of the dependency of the 

biological uptake of NO3
- and Fe as a function of nutrient and light availability, to 

conclude that between 45-55ºS the Patagonian shelf is mostly nitrate-limited during 

summer, while open ocean waters are mostly Fe-limited (Figure 2e).  
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Figure 2. Austral summer 

(JFM) concentrations of (a) 

chlorophyll-a (2013-2019, OC-

CCI v4.2) and (b,c,d) major 

macronutrients (<10 m depth, 

1º-grid cell means, World 

Ocean Atlas 2018) in the 

southwestern Atlantic Ocean. 

(e) Dissolved Fe measurements 

(<10 m below sea level) as part 

of GEOTRACES cruise 

sections GA02 (March 2011) 

and GIPY05 (April 2008) 

(Schlitzer et al., 2018). Dots 

with no tag <0.49 nmol kg-1. 

Cyan diamonds represent areas 

where nitrate is modeled to be 

the limiting nutrient (vs. Fe), 

with Fe the limiting nutrient 

elsewhere (Song et al., 2016). 

White/grey contours 

correspond to modeled 5 μg m-

3 isolines of total dust 

deposition for the 32 dust 

events considered in this study 

(see section 3.2). The black 

contour is the 200-m isobath. 

PAT: Patagonia, MI: Malvinas 

Islands.  
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2 Materials, Data and Methods 

2.1 Dust sampling 

Dust was sampled using two passive collectors installed on the outskirts of Rio 

Grande city (53.79ºS, 67.75ºW) (Figure 1). One collector is a pyramidal receptacle 

(CP), with a 2025-cm2 collection surface suited for measuring vertical dust flux (e.g., 

Cosentino et al., 2020a; Gaiero et al., 2003, 2013; Orange et al., 1990; Skonieczny et 

al., 2011). The other is a Buffalo Spring Number Eight (BSNE) (Fryrear, 1986), with 

a 10-cm2 collection surface suited for measuring horizontal dust flux (e.g., Cosentino 

et al., 2020a; Waza et al., 2019). Both collectors were placed 5 m above ground to 

avoid collecting local saltation material. They trapped particles during 38-day average 

sampling periods, after which an operator collected the samples using a vacuum pump 

to filter particles on a previously weighted 0.45 μm membrane. 

2.2 Constraining dust event length with visibility data 

Visibility and wind speed data from the Argentine meteorology agency at World 

Meteorological Organization (WMO) station #87934 (distant <1 km from the dust 

monitoring site) are used to constrain the duration of individual dust events (see Table 

S1 of the Supporting Information). Hourly resolved dust events are defined based on 

reductions in visibility due to dust-related phenomena (from a normal 30-km visibility 

to an average of 5.6 km during dust events). Dust phenomena is reported as Present 

Weather international surface synoptic observation (i.e., SYNOP) codes 6-9, 30-35 

and 98 (Table S1). As expected, events were associated with short-term rises in wind 

speed (see Figure S1 of the Supporting Information). This is consistent with the 

general observation that high wind speed triggers dust emission (e.g., Gillette et al., 

1980) and supports the use of visibility data for in situ dust event identification (e.g., 

Gaiero et al., 2013; Gassó et al., 2010; Gassó and Torres, 2019). 

2.3 Grain size measurements 

Dust deposition is a function of grain size. Grain size distributions (GSDs) of samples 

of dust exported to the ocean (i.e., BSNE samples) were measured by laser-diffraction 

using a Horiba LA-950 particle size analyzer. Samples were minimally dispersed to 

prevent the breaking up of aggregates. The reproducibility of measurements was 

tested using mixtures of glass beads (NIST Traceable polydisperse particle standard 

PS202/3–30 μm and PS215/10–100 μm, Whitehouse Scientific). For both runs 

(PS202, n = 6 and PS215, n = 5), the median (D50) and D10/D90 percentiles were 

within 3% and 5% of the certified nominal values, respectively. 

2.4 Modeling of dust emission, transport and deposition 

The Hybrid Single Particle Lagrangian Integrated Trajectory Model version 4 

(HYSPLIT4) was used to model particle emission, atmospheric dispersion, and 

deposition (Draxler & Hess, 1998) for each dust event. The National Center for 

Environmental Prediction's Global Data Assimilation System meteorological grids 

(Kanamitsu, 1989) were used, with 3-hour and 0.5º resolutions. It has been shown that 

air-parcel trajectories based on wind fields from these climate reanalysis data are 

robust, showing high correlations to measurements at high-latitude Southern 

Hemisphere stations (Neff and Bertler, 2015). Also, this model has been extensively 
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used to characterize dust and volcanic ash events on a regional scale in southern South 

America (e.g., Bucher and Stein, 2016; Gaiero et al., 2013; Gassó et al., 2010; 

Simonella et al., 2015). 

Particle diameter was prescribed as the mode of the GSD of the corresponding BSNE 

sample. If more than one mode exists, then as many particle diameters as existing 

modes were defined, with mass apportionment based on the GSD. Particle shape was 

assumed spherical and density was set to 2650 kg m-3, except for particles with 

diameter <1 m for which density was set to 2500 kg m-3 (Li et al., 2008). 

To constrain the emission surface area for individual dust events, backward particle 

dispersion was first performed with a point source located at the dust monitoring site. 

Total simulation time was set as the duration of the dust event. Dust concentration 

was then time-integrated within 0-1500 meters above ground level, with the 

concentration contour equivalent to two orders of magnitude less than the 

concentration maximum used as a spatial boundary within which dust-emitting 

surfaces were mapped. An example of this procedure for one dust event analyzed is 

shown in Figure 3a-b. The concentration gradient along the direction perpendicular to 

the main advection direction was generally steep and thus the results are not sensitive 

to the choice of dust concentration contour. Surfaces were mapped on a collection of 

high-resolution true color satellite images by CNES/Airbus and Maxar Technologies 

(displayed by Google Earth). The historical collection of satellite imagery from 

Google Earth was used to differentiate exposed surfaces for each dust event. 

For the forward trajectory simulation, a point dust emission source was assumed, 

estimated by visual inspection for each dust event (Figure 3b). The extent of dust 

deposition (>1000 km from the coast) is more than an order of magnitude greater than 

the distance between the most distant dust-emitting surfaces considered (~70 km) 

(Figure 3c), which justifies this simplification. Given the proximity of the BSNE 

collector to the emitting surfaces, it is assumed that horizontal dust flux during any 

given BSNE sampling period is equal to the dust emission rate. It is further assumed 

that all BSNE dust mass collected during any given sampling period was accumulated 

during dust-related visibility reduction events (i.e., dust events), and that background 

dust (i.e., dust accumulated outside of dust events) contributed negligibly (see section 

3.1 for a justification of this assumption). To calculate dust emission rate for each dust 

event, each BSNE sample total mass was apportioned to each dust event based on the 

intensity and length of the reduction in visibility. 

In HYSPLIT4, dry deposition is achieved through gravitational settling, while wet 

deposition is achieved through below-cloud and in-cloud processes when grid cells 

have a non-zero precipitation value and a defined cloud layer (Draxler & Hess, 1998). 

Default below-cloud and in-cloud parameters were used for dust deposition (both 8 x 
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10-5 s-1). Finally, simulations are run for 24 hours, after which dust deposition is found 

to be negligible. 

 

Figure 3. (a) Backward dispersion simulation for a 3-hour dust event with point-

source emission from the BSNE collector at the monitoring station. (b) Mapping of 

dust sources within the contour defined by backward dispersion. (c) The forward 

dispersion simulation. 

2.5 Satellite [Chl-a] time series 

Surface [Chl-a] data was obtained from the Ocean Colour - Climate Change Initiative 

version 4.2 (OC-CCI v4.2). This product has a 4-km spatial resolution and is 

constructed by merging all available satellites (MERIS, Aqua-MODIS, SeaWiFS and 

VIIRS) (Sathyendranath et al., 2019). This product was chosen over any single 

satellite so as to reduce the amount of missing values due to clouds, which is an issue 

in the study region (e.g., Romero et al., 2006). To further reduce missing data, 5-day 

20 km

N

N

3 km

a

b

N

100 km
c

03-09 UTC

Panel b

Total 24-h dust deposition (g m -2)

5 2 1 0.20.5 0.010.020.050.1 0.005

54ºS

70ºW

59ºW

52ºS

Point source for forward simulation

1 g m-3 dust concentration

(integrated 0-1500 masl)

09-15 UTC 15-21 UTC

21-03 UTC

DUST EVENT

16 February 2016

03-06 UTC

Rio Grande dust monitoring station



 

 

©2020 American Geophysical Union. All rights reserved. 

composite values were used (Figure 4a), which constitutes a good compromise 

between data completeness and the loss in temporal resolution, given expected 

response times of [Chl-a] to input of dust of >6 days (Tian et al., 2018). Next, a mask 

was applied between the coast and 80-m depth to remove pixels whose signal is 

contaminated by suspended material, and where the tidal regime is strong enough to 

mix the entire water column (Rivas & Pisoni, 2009), bringing nutrients from the 

bottom and potentially masking the atmospheric-induced [Chl-a] signal. Four search 

areas were defined based on bathymetry (i.e., shelf vs. open ocean, limited by the 

200-m isobath) and intensity of time-integrated dust deposition (i.e., HYSPLIT-

derived deposition contours): the area (1) onshore of 0.2 g m-2, (2) onshore of 0.02 g 

m-2, (3) offshore of 0.02 g m-2 and (4) offshore of 0.005 g m-2. 

Four [Chl-a] time series were built for each dust event, one for each of these four 

search areas, where each data point is the 5-day spatial average of pixels within the 

search area. Figure 4b shows an example of a [Chl-a] time series whose search area is 

onshore of the time-integrated 0.2 g m-2 deposition contour. Data points are 

considered only when at least 50% of the pixels comprising a search area contain 

data. We classify each post-event data point as equivalent (E), high (H) or low (L) 

based on whether they fall within, above or below a 95%-confidence interval built 

around the average of the pre-event signal (one month), respectively. For details on 

how we modify this methodology for pre-event signals that trend, or for time and/or 

spatially overlapping dust events, see Text S1 of the Supporting Information. 

Given the possibility that ocean fertilization by dust is either not instantaneous or 

protracted, surface ocean current advection of deposited dust particles was considered 

using satellite altimetry. The main shelf circulation in the region is to the NE with 

velocities that increase from the coast (~0.03 m s-1) to the shelf break (~0.4 m s-1) 

where the strong northward Malvinas Current flows (e.g., Palma et al., 2008; Rivas, 

1997). South of 54ºS, the Antarctic Circumpolar Current has a mean velocity of ~0.8 

m s-1 (Koenig et al., 2014). Here, velocities were calculated from gridded maps of 

satellite-derived sea surface height (Copernicus Marine and Environment Monitoring 

Service) with 1-day and 0.25º resolutions. Altimeter-derived currents account only for 

the geostrophic component of the currents. Yet, comparisons with in situ 

measurements show that they represent very accurately ocean currents in the region 

(Barré et al., 2008; Ferrari et al., 2012). Backward and forward trajectories were 

calculated using the Runge Kutta fourth order method (Mehdi & Kareem, 2017). The 

position of dust particles after 8-12 days of being deposited on 12 February 2018 is 

observed in Figure 4a. Then, we extracted the nearest [Chl-a] values in terms of space 

and time, and averaged spatially for each time step to construct the time series 

corrected for current advection. 

2.6 Total concentration, release experiments and solid speciation analysis for Fe 

The <63-µm size fraction of most of the collected dust samples represent over 90% of 

total sample volume and hence, chemical analyses described in this section were run 

on bulk dust samples. Total Fe concentration of the six BSNE collector dust samples 

representing peaks in dust flux was determined by alkaline fusion at 1050ºC using 

Li2B4O7 (Spectromelt A10), followed by dissolution with sub-boiled HNO3 5%. A 

blank sample composed purely of lithium tetraborate was included to correct for 

matrix Fe concentration. Finally, resulting dissolutions were analyzed by inductively 

coupled plasma - optical emission spectrometry (ICP-OES, Thermo Fisher Scientific 
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iCAP 7200). The validity of this methodology was tested by determining total Fe for 

two reference materials during the same run: granodiorite USGS GSP-2 (Wilson, 

1998) and river sediment SRM 2704 (Epstein et al., 1989). 

 

Figure 4. (a) Map of [Chl-a] for 20-24 February 2018. The black diamonds represent 

the final position of dust particles after advection by satellite ocean currents from the 

day of the dust event to 20 February 2018. (b) Time series for [Chl-a] uncorrected for 

post-depositional dust particle advection due to surface ocean currents. All six 5-day 

mean values after dust deposition plot above the 95% confidence interval of the pre-

event signal, so they are classified H for “high”. 

The release of Fe in dust samples was evaluated with a continuous flow method. A 

solution extraction stream was propelled by a peristaltic pump (Gilson Minipuls 3) at 

0.880 ± 0.005 mL min-1 through a column that contained the dust sample (~5.00 mg), 

as well as a methodological blank (i.e., no sample). The supernatant was collected in 

an acid-washed tube. The leaching experiment consisted of two steps. First, a flow of 

deionized water (MilliQ, pH~5) passed through the column for 20 minutes. Deionized 

extraction is intended to measure Fe in the most labile surface mineral phases. It was 

observed that 20 minutes were enough for removing the easily available Fe from 

similar samples (Simonella et al., 2014). The second step consisted of extraction with 

a diluted acid solution (sub-boiled HNO3 1%, pH~2) which passed through the system 

for 80 minutes. This is intended to measure Fe in water-insoluble surface mineral 

phases. In a similar study, a fast Fe release after 30–40 minutes of sample contact 

with HNO3 1% was observed, after which the dissolved Fe concentration increased at 

a slower rate (Simonella et al., 2015). Iron concentration in the supernatants retrieved 
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after each step were determined by ICP-OES. See Cosentino et al. (2020b, 2020c) for 

procedural details on ICP-OES runs for both total Fe and Fe release experiments (i.e., 

analytical blank results, blank corrections, run controls, duplicates, curve calibration, 

detection and quantification limits, reproducibility and error analysis). 

The surface speciation of Fe (2–10 nm) in dust samples was determined by X-ray 

photoelectron spectroscopy (XPS, Thermo Fisher Scientific K-Alpha+). To minimize 

charging effects, samples were bombarded during data acquisition with low-energy 

electrons supplied by a flood gun, and three spectra of the same element with no 

evidence of beam damage were collected (Bia et al., 2020). Besides, the spectrum of 

C 1s, O 1s and Si 2p were monitored from the beginning to the end of measurements 

in order to determine the extent of the charging effect. Spectra for C 1s and Fe 2p 

were fitted using theoretical parameters from Wagner et al. (1997) and the XPSPeak 

4.1 software. Further details can be found in Text S2 of the Supporting Information. 

3 Results and discussion 

3.1 A 10-yr record of episodic dust emissions from southernmost Patagonia 

Dust activity as measured by dust-related visibility reduction during the last decade 

(Table S1) peaks during the austral summer months: an average of 0.8 to 2.5 days per 

month experienced a dust event during January to March, with a secondary peak in 

spring (Figure 5a). The rest of the year is characterized by a dearth of events. This 

annual variability is similar to that observed by Gassó and Torres (2019) in a coastal 

site in central Patagonia (~46ºS). Mean annual precipitation (see Table S2 in the 

Supporting Information) is 341 mm, reaching maximums during summer (Figure 5a). 

Notably, the month with highest mean precipitation coincides with the peak in 

number of dust events (February). However, when potential evapotranspiration is 

considered, it is observed that both peaks in dust activity take place during months of 

negative hydrological balance, and in particular, the main peak occurs after six (out of 

seven) months of water deficit have elapsed. Wind is persistent throughout the year, 

with maximum monthly-mean speeds of 7.5-8.3 m s-1 during spring. The secondary 

peak in dust event occurrence takes place during the month of highest wind speed 

(November). Winds are controlled by the South Pacific anticyclone, resulting in 

dominant W-SW, W and W-NW directions (Figure 5b). During dust events, mean 

wind speed is 14.6 m s-1 (WSmean), with most events characterized by wind speed 

above 11.2 m s-1 (WSmean - 1σ). For events occurring during the main (secondary) 

peak in January-February-March (November), WSmean and WSmean - 1σ are 14.5 (15.7) 

and 11.2 (12.5) m s-1, respectively. We may thus consider 11.2 and 12.5 m s-1 as 

surface wind speed thresholds for dust emission downwind of the dust monitoring site 

under summertime and spring soil moisture conditions, respectively. A higher wind 

speed threshold during November than during summertime is consistent with a shorter 

cumulative time of negative hydrological balance (Figure 5a), which implies higher 

soil moisture. 

Vertical dust flux (i.e., deposition rate) as measured by the CP collector between 

December 2008 and February 2019 (no data between August 2010 and September 

2011) averages 0.27 g m-2 day-1 (95% of samples: 0.00-0.27 g m-2 day-1) (Figure 5c). 

This average is highly influenced by three samples between August-November 2015 

that constitute exceptionally high mass accumulation. Discarding them, the average 

vertical dust flux is 0.08 g m-2 day-1. The high and irregular sampling interval 
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(average: 38 days, 15-168 days) makes it difficult to ascertain any annual variability, 

precluding traditional statistical trend tests and spectral analysis (e.g., Cosentino et al., 

2020a). However, visual inspection indicates no annual periodicity. A compilation of 

global dust deposition rates spanning diverse methodologies and meteorological 

conditions shows a relationship between deposition rate and distance to sources, in 

which sites located >1000 km (global), between 10 and 1000 km (regional), and <10 

km (local) from source regions receive 0.05–1 g m− 2, 1–50 g m− 2 and >50 g m− 2 of 

airborne dust per year, respectively (Lawrence and Neff, 2009). Our mean deposition 

rate (99 g m-2 yr-1, or 27 g m-2 yr-1 excluding the August-November 2015 peak) is 

consistent with this global dataset, given that sources contributing dust to the CP 

collector at the Rio Grande monitoring station are located <70 km (see next section). 

Horizontal dust flux (i.e., in transit) as measured by the BSNE collector between 

December 2008 and February 2019 averages 12 g m-2 day-1 (95% of samples: 0.00-49 

g m-2 day-1) (Figure 5d). Measured masses for each sampling interval for both the 

BSNE and CP collectors, as well as grain size measurements, can be found in 

Cosentino et al. (2020d). Contrary to the CP time series, horizontal dust flux clearly 

shows an annual seasonality, peaking in austral summer and late spring. Mean surface 

dust concentration is 22 μg m-3. The only other study that measured in situ surface 

dust concentration in Patagonia was carried out by Crespi-Abril et al. (2018), albeit 

with a different methodology (i.e., high-volume, active sampler). No mean is reported 

in the Crespi-Abril et al. (2018) study, but by visual inspection a December 2004 to 

December 2007 mean of ~45 μg m-3 is estimated for a coastal site in northern 

Patagonia (42.8ºS), roughly twice our estimate. 

Notably, dust events are clustered within peaks in BSNE horizontal dust flux (Figure 

5d). Also, the higher the number of dust events and/or the longer their duration, the 

higher the peak in BSNE dust flux. This is particularly evident for well-defined BSNE 

peaks (i.e., with short sampling periods). This observation, together with the fact that 

BSNE dust flux outside major peaks is comparatively small, justifies our assumption 



 

 

©2020 American Geophysical Union. All rights reserved. 

that most of the mass collected at the BSNE trap was accumulated during dust events, 

with mass accumulated by background dust activity negligible. 

 

Figure 5. (a) Monthly means for days per month with at least one hour of reduction in 

visibility due to dust (January 2009-February 2019), precipitation, potential 

evapotranspiration (PET, Penman-Monteith) and wind speed (January 2009-

December 2018). Error bars are 1σ. (b) Direction of wind (hourly) between 29 

December 2008 and 20 February 2019. Wind speed during dust events is mostly 

>11.2 m s-1. (c) Vertical and (d) horizontal dust fluxes measured at the dust 

monitoring station (red line), and visibility reduction events due to dust (i.e., dust 

events, black dots). The 32 dust events that fall inside peaks in horizontal dust mass 
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flux marked with green arrows were modeled in terms of particle trajectories and 

deposition. 

3.2 Dust deposition on the southern Patagonian shelf and proximal open ocean 

Between December 2008 and February 2019, 73 dust events, defined as a reduction in 

surface visibility due to dust, were identified at the Rio Grande city airport (Figure 

5d). A subset of 32 dust events (see Table S3 of the Supporting Information), all 

taking place during peaks in horizontal dust flux at the Rio Grande monitoring station 

(see green arrows in Figure 5d) were simulated. Based on backward dispersion 

modeling, dust-emitting surfaces are located proximally to the monitoring station 

(<80 km). Individual events are associated with dust-emitting surface areas ranging 

between 8.3-78.4 km2, while emission rates range between 1.0-34.3 Gg h-1 (Table S3). 

BSNE efficiency is between 35-45% with no (Goossens and Offer, 2000) or little 

(Waza et al., 2019) wind speed dependency between 1-5 m s-1. However, wind speed 

was above this range most of the time in Rio Grande, so that these emission rates 

should be considered minimum estimates. 

Dust deposition during these 32 dust events (Figure 2) was controlled by prevailing 

northwesterly to southwesterly winds (Figure 5b), with a total deposition area of ~1.8 

x 106 km2 between 45-60ºS (Figure 2). Dust was deposited over the continental shelf 

(onshore of the 200-m isobath) as well as over the open ocean waters of the 

southwestern Atlantic Ocean. An average of 72% of the total dust mass emitted from 

the study area from November 2012 to February 2019 was deposited within this vast 

area, with dust deposition rate at 112 ± 43 Gg yr-1. Most dust deposition (71%) 

however took place proximally, within the southern Patagonian continental shelf and 

the open ocean waters surrounding the Malvinas archipelago (Figure 2a). 

3.3 Links between surface ocean dust deposition and [Chl-a] 

We analyzed [Chl-a] time series of Patagonian shelf and proximal open ocean waters 

for a month before and after 32 dust events originating in southernmost Patagonia. 

Emissions were concentrated during the austral summer and spanned >6 years. Most 

post-event 5-day-mean [Chl-a] data points across all studied dust events and dust 

deposition contours fall within the pre-event variability, both within the shelf (Figure 

6a, see also Table S4 of the Supporting Information) and open ocean (Figure 6b, 

Table S4). 

Within the shelf and for [Chl-a] uncorrected for advection, [Chl-a] data points that 

classify as H (i.e., higher than pre-event signal) dominate over those classifying as L 

(i.e., lower than pre-event signal). This is true for the area of time-integrated dust 

deposition ≥0.02 g m-2 (7-33% vs. 0-22%), and more so for the area of dust deposition 

≥0.2 g m-2 (13-42% vs. 0-11%) (Figure 6a). Data points classified as H are 

concentrated on days 1-5 after dust deposition, particularly for the area of higher 

deposition, where 42% of data points classify as H (vs. 54% and 4% that classify as E 

and L, respectively). An example of this behavior is illustrated in Figure 7a, which 

shows the [Chl-a] time series for a search area defined by the ≥0.2 g m-2 time-

integrated deposition contour for dust event p6e9 (Table S3). Here, [Chl-a] for the 5-

day period that includes the day in which dust deposition took place is significantly 

above the pre-event signal, even accounting for the observed trend. To test whether 

this short-term rise in [Chl-a] may have been triggered by dust deposition, we look at 
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a map of anomalies of [Chl-a] of days 1-5 after the dust event with respect to the pre-

event signal (i.e., [Chl-a] for days 1-5 minus mean pre-event [Chl-a]) (Figure 7b). A 

broad positive [Chl-a] anomaly is observed within the shelf, but rather than being 

restricted to the area of dust deposition it extends all along the Tierra del Fuego shelf 

waters. Dust emission surfaces similar to the ones considered here extend north of the 

study area in Tierra del Fuego and the rest of southern Patagonia. Arguably, rises in 

surface wind speed conducive to dust emission in our study area could also have 

generated emissions further north, as was the case on 26 February 2005 (Gassó et al., 

2010). Assuming that dust deposition indeed enhances phytoplankton biomass within 

the Patagonian shelf, analogous dust emission sites located further north could 

potentially explain the broader spatial scale of positive [Chl-a] anomalies outside the 

dust deposition area projected from our sample site. However, for this event, the 

positive [Chl-a] anomaly extends further south and the dust emission sources 

considered in this study are the southernmost of its nature along the Patagonian coast. 

Another explanation for the broad positive [Chl-a] anomaly is that high wind speeds 

conducive to localized dust emission and deposition are also conducive to broader-

scale water column mixing within the shelf and associated potential upwelling of 

nutrient-rich deep waters. In this scenario, the broad-scale positive [Chl-a] anomaly 

associated with wind-induced water mixing should be accompanied by a higher, 

localized positive anomaly in the area impacted by dust. This hypothetical second-

order positive [Chl-a] anomaly cannot be distinguished from the broad-scale pattern 

in Figure 7b. 

Offshore of the 200-m isobath, the opposite occurs, with [Chl-a] data points that 

classify as L dominating over those that classify as H (≥0.005 g m-2: 4-26% vs. 7-

17%; ≥0.02 g m-2: 4-35% vs. 4-11%) (Figure 6b). Contrary to the positive [Chl-a] 

anomaly over the shelf, the negative [Chl-a] response in open ocean waters is 

protracted and becomes more evident starting at days 11-15 after dust deposition. For 

dust particles deposited over the continental shelf, the error of not considering post-

depositional ocean advection is small due to a low-velocity shelf circulation. Instead, 

dust particles deposited on proximal open ocean waters are subjected to the strong 

Malvinas current (Figure 1) and within 5-8 days they may be advected away from the 

deposition area. Given that the observed low post-event [Chl-a] signal is protracted, 

correction of the open ocean data set by ocean advection is warranted. The corrected 

[Chl-a] data set also shows a dominance of L over H data points, albeit not as strongly 

as the uncorrected data set, as well as a protracted response starting at days 11-15 

after dust deposition (Figure 6b). Figure 7c shows a time series for [Chl-a] before and 

after the same dust event as Figure 7a, this time offshore of the 200-m isobath, that 

exemplifies this protracted negative anomaly starting at days 11-15 after dust 

deposition. Figures 7d-f show maps of [Chl-a] anomalies for days 11-15, 16-20 and 

26-30 after dust deposition. East of the Malvinas islands and for these three time 

periods, [Chl-a] anomalies show negative values in a broad region that extends to the 

north and south of the dust deposition contour. The spatial pattern of this decrease in 

[Chl-a] does not correspond with the dust deposition contour and does not trail the 

path of advected particles. There is thus no compelling evidence for an influence of 

southernmost Patagonian dust on phytoplankton biomass at either shelf or proximal 
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open ocean waters of the southwestern Atlantic Ocean. Similar findings were reported 

for Australian dust events (Boyd et al., 2004). 

 

Figure 6. Summary of results of our satellite [Chl-a] analysis in southernmost 

Patagonia. We plot (a) platform (i.e., onshore of the 200-m isobath) and (b) open 

ocean area-averaged [Chl-a] for 5-day periods after dust deposition, normalized to the 

pre-event mean, within dust deposition contours of 0.005, 0.02 and 0.2 g m-2, with and 

without correction (corr.) for post-depositional particle advection due to currents. On 
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each box, the central red mark represents the median, the bottom and top blue edges 

indicate the 25th and 75th percentiles, respectively, and the whiskers extend to the 

most extreme data points. Data points separated more than 3 from the mean were 

previously discarded. The pink area represents the mean 95% confidence interval 

around the pre-event means. The percentages correspond to the fraction of dust events 

that classify as high (H)/low (L), with H + L + E (i.e., equivalent) = 100% (see section 

2.5). 

3.4 Low Fe bioavailability of dust at the source precludes [Chl-a] enhancement 

Total Fe content for the six BSNE collector dust samples representing peaks in 

horizontal mass flux range between 2.77-3.23 wt% (Table 1), within the reported 1-5 

wt% global variability (e.g., Mahowald et al., 2005). Six of seven topsoil samples 

collected from a variety of geomorphic locations believed to be present-day dust 

sources in Patagonia range between 1.8-3.3 wt% (Shoenfelt et al., 2017; Simonella et 

al., 2015), with one outlier at 16 wt% in northern Tierra del Fuego island (Shoenfelt et 

al., 2017). Only one dust total Fe measurement exists at a coastal site in northern 

Patagonia (i.e., 4.1 wt%, Simonella et al., 2015). 

However, it is not total Fe content that acts as a main control on Fe bioavailability to 

planktonic biota, but rather the most labile fraction of Fe and solid speciation of 

materials at continental sources (e.g., Morel et al., 2008; Shoenfelt et al., 2017), 

atmospheric wet processing (e.g., Colin et al., 1990; Meskhidze et al., 2003) and post-

depositional ocean processing (e.g., Maldonado and Price, 1999; Strzepek et al., 

2011). We performed experiments to determine Fe solubility of dust samples in 

deionized water as a measure of the solubility of Fe that is inherited by dust from the 

source, previous to any atmospheric or oceanic processing. Values range between 

0.00079-0.00420 wt% with respect to total sample (Table 1), or 0.03-0.15% in terms 

of FFS. These values of FFS are at the lower end of the ~0.001-90% global variability 

range, which includes FFSs not only under deionized water conditions, but under 

more acidic conditions as well. 

Surface (i.e., first 2-10 nm) speciation of Fe in dust particles indicates a predominance 

of oxidized Fe(III) for the illuminated surfaces, with Fe(II) between 13-22% (vs. 

Fe(III), Table 1). XPS results are consistent with Fe(II)-O and Fe(III)-O chemical 

bondings. In accordance with values reported in the literature (Biesinger et al., 2011; 

Grosvenor et al., 2004), binding energies for Fe(II)-O at 709 eV and for Fe(III)–O at 

711–712 eV suggest (hydr)oxides and silicates as the main Fe-bearing phases (see 

Figure S2 of the Supporting Information and Cosentino et al. (2020e) for further 

details). Although these mineral phases carrying Fe(II) and Fe(III) cannot be 

constrained any further with XPS alone, Fe(II) is in general more soluble and 

bioavailable than Fe(III) (Baker & Croot, 2010; Schroth et al., 2009; Shaked et al., 

2005). This is consistent with low Fe solubility in deionized water. It is also consistent 

with the predominantly non-glacial origin of surface materials that emit dust in the 

study area (Villarreal & Coronato, 2017), which has been shown to be associated with 

higher Fe(III) than Fe(II) (Shoenfelt et al., 2017). 

Source-inherited Fe solubility in dust may be enhanced by several proposed 

mechanisms during atmospheric transport and after deposition to the ocean. Some of 

these mechanisms include atmospheric acidification through oxidation of SO2 in the 

atmosphere (e.g., Colin et al., 1990), including SO2 derived from anthropogenic 
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emissions (e.g., Koch et al., 2000) and from the oxidation of dimethyl sulfide (DMS) 

emitted by phytoplankton (e.g., Duce & Tindale, 1991), as well as adaptive strategies 

by phytoplankton to access organically complexed Fe (e.g., Strzepek et al., 2011). In 

order to gauge Fe solubility enhancement due to any combination of these diverse 

phenomena, we performed experiments to measure the solubility of Fe in dilute acid 

(HNO3 1%). Although we have no means to test whether any of these mechanisms 

may be acting in the shelf and proximal open ocean waters of the southwestern 

Atlantic Ocean, we argue that solubility of Fe in dilute acid (HNO3 1%) may be used 

as an upper boundary estimate of Fe that is effectively bioavailable to phytoplankton. 

Acid-soluble Fe ranges between 0.148-0.207 wt% with respect to total sample (Table 

1), or between 4.4-6.6% in terms of FFS. This represents a solubility enhancement of 

~40-150x with respect to the deionized water leaching experiments. Nonetheless, it 

remains at the lower end of the global range in measured dust Fe solubility (i.e., 

~0.001-90%). 

Proximal open ocean waters impacted by dust deposition south of 50ºS have high 

surface concentrations of macronutrients NO3
- and PO4

3- during austral summer, when 

dust events take place (Figure 2b-c). These waters are also characterized by low [Chl-

a] (Figure 2a), constituting an HNLC region during summer. Available surface 

dissolved Fe measurements offshore of the 200-m isobath are scarce between 45-60ºS 

and average 0.23 nmol kg-1 (Figure 2e). These observations, together with 

biogeochemical modeling results (Song et al., 2016), are consistent with Fe being a 

limiting nutrient for phytoplankton growth, although it is possible that silicate may be 

a co-limiting macronutrient (Figure 2d). For dust events studied here, a conservative 

upper bound for the amount of dissolved Fe incorporated to open ocean waters 

through deposition of unprocessed dust (i.e., dust that did not experience Fe solubility 

enhancement due to atmospheric and/or oceanic processes) may be calculated 

assuming 0.2 g m-2 time-integrated dust deposition, 0.00423 wt% dissolved Fe (Table 

1) and a 20-m ocean mixed layer depth (see Figure S3 of the Supporting Information). 

Strong winds further north of our study area and west of the 200-m isobath generate 

intense vertical turbulence that readily homogenize the water column within the 

mixed layer depth in a matter of hours (e.g., Rivas & Piola, 2002). Winds are even 

stronger in the open ocean waters where dust from the studied events is deposited, so 

that vertical turbulence is arguably equally strong. It is thus estimated that <0.008 

nmol L-1 of dissolved Fe is added to open ocean waters through deposition of 

unprocessed dust, potentially raising background surface ocean values from ~0.22 nM 

to ~0.23 nM. This is insufficient to generate algal blooms in this region ([Chl-a] > 1 

mg m-3), which require at least 0.5 nM along the full mixed layer depth for at least 

three days (Boyd et al., 2010). However, small inputs of Fe may have a resolvable 

effect on satellite [Chl-a]. By comparing post-event [Chl-a] with a pre-event 

background value that is specific to each of the multiple events our analysis 

maximizes the chances of capturing such small phytoplankton biomass responses. The 

fact that we do not see any response indicates that unprocessed dust iron deposition to 

the open ocean has an effect too small to be instrumentally resolved, or alternatively, 

that iron limitation relief cannot be achieved until a threshold value in Fe is reached. 

An upper bound to dissolved Fe addition after atmospheric and/or ocean processing 

may be estimated if we instead use the maximum value measured for Fe solubility 

under acidic conditions (i.e., 0.208 wt%, Table 1). In this case an estimated ~0.4 nM 

may potentially be added, raising oceanic surface dissolved Fe concentration from 
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~0.2 nM to ~0.6 nM. Nonetheless, it is highly unlikely that processing of dust may 

raise Fe solubility for two reasons: (1) emissions of SO2 to the atmosphere derived 

from oxidation of DMS may not be sufficient to generate observable changes in NPP 

(Meskhidze et al., 2005), and (2) southernmost Patagonia is scarcely populated and 

local anthropogenic emissions of SO2 are negligible. 

 

Figure 7. (a) Time series of [Chl-a] onshore of the 200-m isobath and within the 0.2 g 

m-2 time-integrated dust deposition contour, centered on the day of dust event p6e9 

(Table S3). Green tags represent classification of data points based on pre-event 

signal variability (H: higher, E: equivalent and L: lower at 95% confidence level, 

normal (bold) text: data points uncorrected (corrected) for ocean advection). Red dots 

represent data-points that were obtained with less than 50% of pixels that fall within 

the search area. (b) Map of [Chl-a] anomalies for the 5-day period that includes the 

dust event, versus the mean of pre-event values (one month prior). (c) Same as (a) for 

a search area offshore of the 200-m isobath and within the 0.02 g m-2 time-integrated 
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dust deposition contour. (d-f) Same as (b) for the third, fourth and sixth post-dust 

event 5-day periods, respectively. 

 

Table 1. Total iron (FeTOT), H20- and HNO3-soluble iron (DFew and DFeacid) and iron speciation (Fe2+ vs. Fe3+) of dust samples. 

sample lab name BSNE peak #1 FeTOT ± 1σ (wt%)2 DFew ± 1σ (wt%)2 DFeacid ± 1σ (wt%)2 Fe2+ (%, vs. Fe3+)3 

RG-BSNE59 1 2.83 ± 0.02 0.00165 ± 0.00001 0.148 ± 0.001 n.d. 

RG-BSNE74 2 2.77 ± 0.01 0.00140 ± 0.00001 0.188 ± 0.001 n.d. 

RG-BSNE82 3 3.137 ± 0.004 0.00420 ± 0.00003 0.183 ± 0.001 19 

RG-BSNE89 4 3.23 ± 0.03 0.00295 ± 0.00002 0.173 ± 0.001 16* 

RG-BSNE99 5 3.01 ± 0.02 0.00079 ± 0.00001 0.207 ± 0.001 15-21* 

RG-BSNE104 6 3.12 ± 0.02 0.00176 ± 0.00001 0.207 ± 0.001 13-22* 

1See peak numbering in Figure 5d. 
2With respect to total sample. For details see Cosentino et al. (2020b, 2020c, 2020e). 

3CP collector samples analyzed for the same time period (asterisk). n.d.: no data. 

Assessing the reasons for the lack of a response of phytoplankton biomass to dust 

deposition over Patagonian shelf waters is challenging due to a lack of data on dust 

macronutrient concentrations and surface Fe concentrations on the shelf (Figure 2e). 

Summer [Chl-a] over the section of the shelf most impacted by dust deposition (53-

55ºS) is low compared to shelf waters further north (<0.6 vs 0.4-1.0 mg m-3) (Figure 

2a). High PO4
3- (Figure 2c) and low NO3

- (Figure 2b) and silicate (Figure 2d) suggest 

co-limitation by NO3
- and silicate. However, similarly low values in silicate elsewhere 

in the high-chlorophyll Patagonian shelf suggest silicate does not limit phytoplankton 

biomass in the shelf south of 53ºS. No measurements exist for dissolved Fe in surface 

waters onshore of the 200-m isobath (Figure 2e), so that co-limitation by Fe cannot be 

assessed. The lack of surface ocean Fe measurements in this region also precludes 

validation of biogeochemical model results that suggest NO3
- limitation at coastal and 

central shelf waters, and Fe limitation over the outer shelf waters (Song et al., 2016) 

(Figure 2e). In order to properly gauge the fertilization potential of dust in the 

Patagonian shelf, Fe determinations in dust should be complemented by similar 

macronutrient characterizations (Paparazzo et al., 2018). 

4 Conclusions 

Based on a decadal time series of surface horizontal dust flux in situ observations and 

visibility data in southernmost Patagonia, we modeled dust emission, transport and 

deposition during 32 dust events sourced from exposed lake beds during austral 

summer. Dust was exported and deposited over the shelf and proximal open ocean 

waters of the southwestern Atlantic Ocean. An individual event-based analysis of 

[Chl-a] time series appropriate for identifying potentially small responses shows no 

compelling evidence for an influence of Patagonian dust deposition on satellite [Chl-

a], neither on low-macronutrient, intermediate-chlorophyll shelf surface waters that 

are characteristic of the summer season nor on Fe-limited open ocean HNLC surface 

waters. The lack of phytoplankton biomass response to dust deposition on proximal 

open ocean waters is best explained by low Fe solubility of dust due to largely 
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insoluble Fe(III)-bearing phases inherited from the source regions, and a lack of 

atmospheric processing due to non-acidic atmospheric conditions in the region. 

The so-called Fe hypothesis is a compelling explanation for the up to ~80 ppm 

atmospheric pCO2 surplus that existed during the last interglacial compared to the 

globally dustier Last Glacial Maximum. A partial confirmation for this hypothesis 

would be the identification of a single event-based connection between dust 

deposition to HNLC waters and phytoplankton biomass enhancement for the present-

day climate system. We find that FFS inherited from dust source topsoils is key in 

determining mineral aerosol Fe bioavailability to ocean phytoplankton, particularly in 

the less industrialized Southern Hemisphere. Given the high variability of dust Fe 

solubility at the source, we find that similar future studies that look at the influence of 

dust on ocean NPP need to concentrate on dust events sourced from topsoils of 

identified high FFS. We also propose that in order to correctly gauge the impact of 

dust deposition on phytoplankton growth in waters with high-velocity surface 

currents, it is important to correct [Chl-a] time series for post-depositional dust 

particle advection. 

Acknowledgments 

We thank C. Ferrer, G. Connon, L. Barbero and J. L. Hormaechea from Estación 

Astronómica Rio Grande (CADIC-CONICET) for continuous support with the dust 

monitoring program. We also thank Adi Torfstein and two anonymous reviewers for 

improving our manuscript with insightful comments. This work was financed by awards 

ANPYCT-PICT-2012-0525 and ANPYCT-PICT-2017-2705 to DMG, awards from SECyT-

UNC, Antorchas, IAI, the Weizmann Institute and the Leverhulme Trust International 

Network to DMG, award ANID FONDECYT/POSTDOCTORADO 2020 #3200085 to NJC, 

and awards ANPYCT-PICT-2018-02433 and UBACYT 20020170100620BA to MS. The 

HYSPLIT4 model may be accessed online or downloaded 

(https://www.ready.noaa.gov/HYSPLIT.php). Ocean dissolved Fe data can be accessed 

through the GEOTRACES Intermediate Data Product 2017 

(https://www.geotraces.org/geotraces-intermediate-data-product-2017/). Macronutrient ocean 

concentrations were obtained from the World Ocean Atlas 2018 

(https://www.nodc.noaa.gov/OC5/SELECT/woaselect/woaselect.html). The [Chl-a] data is 

from OC-CCI v4.2 (https://esa-oceancolour-cci.org), while the ocean surface height data is 

from the Copernicus Marine and Environment Monitoring Service 

(https://marine.copernicus.eu). All new data generated in this contribution has been deposited 

in the EarthChem online repository, including: total iron and iron solubility of dust 

(Cosentino et al., 2020b, 2020c), dust mass and grain size (Cosentino et al., 2020d) and dust 

iron speciation (Cosentino et al., 2020e). 

References 

Baker, A. R., Jickells, T. D., Witt, M., & Linge, K. L. (2006). Trends in the solubility of iron, 

aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean. Marine 

Chemistry, 98, 43-58. doi:10.1016/j.marchem.2005.06.004. 

Baker, A. R., Weston, K., Kelly, S. D., Voss, M., Streu, P., & Cape, J. N. (2007). Dry and 

wet deposition of nutrients from the tropical Atlantic atmosphere: Links to primary 

productivity and nitrogen fixation. Deep Sea Research Part I: Oceanographic Research 

Papers, 54(10), 1704-1720. doi:10.1016/j.dsr.2007.07.001. 



 

 

©2020 American Geophysical Union. All rights reserved. 

Baker, A. R., & Croot, P. L. (2010). Atmospheric and marine controls on aerosol iron 

solubility in seawater. Marine Chemistry, 120(1-4), 4-13. 

doi:10.1016/j.marchem.2008.09.003. 

Baker, A. R., Adams, C., Bell, T. G., Jickells, T. D., & Ganzeveld, L. (2013). Estimation of 

atmospheric nutrient inputs to the Atlantic Ocean from 50° N to 50° S based on large‐scale 

field sampling: Iron and other dust‐associated elements. Global Biogeochemical Cycles, 

27(3), 755-767. doi:10.1002/gbc.20062. 

Barré, N., Provost, C., Sennechael, N., & Lee, J. H. (2008). Circulation in the Ona Basin, 

southern Drake Passage. Journal of Geophysical Research: Oceans, 113(C4). 

doi.org/10.1029/2007JC004549. 

Bia, G., Borgnino, L., Zampieri, G., & García, M. G. (2020). Fluorine surface speciation in 

South Andean volcanic ashes. Chemical Geology, 532, 119402. 

doi:10.1016/J.CHEMGEO.2019.119402. 

Biesinger, M. C., Payne, B. P., Grosvenor, A. P., Lau, L. W., Gerson, A. R., & Smart, R. S. 

C. (2011). Resolving surface chemical states in XPS analysis of first row transition metals, 

oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 257(7), 2717-2730. 

doi:10.1016/j.apsusc.2010.10.051. 

Bishop, J. K. B., Davis, R. E., & Sherman, J. T. (2002). Robotic observations of dust storm 

enhancement of carbon biomass in the North Pacific. Science, 298(5594), 817–821. 

doi:10.1126/science.1074961. 

Bonnet, S., Guieu, C., Bruyant, F., Prášil, O., Van Wambeke, F., Raimbault, P., et al. (2008). 

Nutrient limitation of primary productivity in the Southeast Pacific (BIOSOPE cruise). 

Biogeosciences, 5(1), 215-225. 

Boyd, P. W., McTainsh, G., Sherlock, V., Richardson, K., Nichol, S., Ellwood, M., & Frew, 

R. (2004). Episodic enhancement of phytoplankton stocks in New Zealand subantarctic 

waters: Contribution of atmospheric and oceanic iron supply. Global Biogeochemical Cycles, 

18(GB1029). doi:10.1029/2002GB002020. 

Boyd, P. W., & Mackie, D. (2008). Comment on the Southern Ocean biological response to 

aeolian iron deposition. Science, 319(5860), 159a. doi:10.1126/science.1149884. 

Boyd, P. W., Mackie, D. S., & Hunter, K. A. (2010). Aerosol iron deposition to the surface 

ocean - Modes of iron supply and biological responses. Marine Chemistry, 120, 128-143. 

doi:10.1016/J.MARCHEM.2009.01.008. 

Bucher, E. H., & Stein, A. F. (2016). Large salt dust storms follow a 30-year rainfall cycle in 

the Mar Chiquita lake (Córdoba, Argentina). PLoS ONE, 11(6), e0156672. 

doi:10.1371/journal.pone.0156672. 

Bullard, J. E., Baddock, M., Bradwell, T., Crusius, J., Darlington, E., Gaiero, D., et al. 

(2016). High‐latitude dust in the Earth system. Reviews of Geophysics, 54(2), 447-485. 

doi:10.1002/2016RG000518. 

Carranza, M. M., Gille, S. T., Piola, A. R., Charo, M., & Romero, S. I. (2017). Wind 

modulation of upwelling at the shelf‐break front off Patagonia: Observational evidence. 

Journal of Geophysical Research: Oceans, 122(3), 2401-2421. doi:10.1002/2016JC012059. 

Cassar, N., Bender, M. L., Barnett, B. A., Fan, S., Moxim, W. J., Levy II, H., & Tilbrook, B. 

(2007). The southern ocean biological response to aeolian iron deposition. Science, 

317(5841), 1067-1070. doi:10.1126/science.1144602. 



 

 

©2020 American Geophysical Union. All rights reserved. 

Colin, J. L., Jaffrezo, J. L., & Gros, J. M. (1990). Solubility of major species in precipitation: 

Factors of variation. Atmospheric Environment. Part A. General Topcis, 24(3), 

537–544. doi:10.1016/0960-1686(90)90008-B. 

Cosentino, N. J., Gaiero D. M., Torre, G., Pasquini, A. I., Coppo, R., Arce, J. M., & Vélez, G. 

(2020a). Atmospheric dust dynamics in southern South America: A 14-year modern dust 

record in the loessic Pampean region. The Holocene 30(4): 575-588. 

doi:10.1177/0959683619875198. 

Cosentino, N. J., Ruiz-Etcheverry, L. A., Bia, G. L., Simonella, L. E., Coppo, R., Torre, G. et 

al. (2020b). Total iron content in dust samples of southernmost Patagonia. Interdisciplinary 

Earth Data Alliance (IEDA). doi:10.26022/IEDA/111753. Accessed 18 November 2020. 

Cosentino, N. J., Ruiz-Etcheverry, L. A., Bia, G. L., Simonella, L. E., Coppo, R., Torre, G. et 

al. (2020c). Deionized water and acid solubility of iron in southernmost Patagonian dust 

samples. Interdisciplinary Earth Data Alliance (IEDA). doi:10.26022/IEDA/111754. 

Accessed 18 November 2020. 

Cosentino, N. J., Ruiz-Etcheverry, L. A., Bia, G. L., Simonella, L. E., Coppo, R., Torre, G. et 

al. (2020d). Decadal dust monitoring in southernmost Patagonia. Interdisciplinary Earth Data 

Alliance (IEDA). doi:10.26022/IEDA/111756. Accessed 18 November 2020. 

Cosentino, N. J., Ruiz-Etcheverry, L. A., Bia, G. L., Simonella, L. E., Coppo, R., Torre, G. et 

al. (2020e). Surface iron speciation of dust samples in southernmost Patagonia. 

Interdisciplinary Earth Data Alliance (IEDA). doi:10.26022/IEDA/111755. Accessed 18 

November 2020. 

Crespi-Abril, A. C., Soria, G., De Cian, A., & López-Moreno, C. (2018). Roaring forties: An 

analysis of a decadal series of data of dust in Northern Patagonia. Atmospheric Environment, 

177, 111–119. doi:10.1016/J.ATMOSENV.2017.11.019. 

Crispo, S. M., Peterson, T. D., & Lohan, M. C. (2005). Implications of an Asian dust storm 

on the Gulf of Alaska. Sea Technology, 46(9), 29-35. 

Cwiertny, D. M., Baltrusaitis, J., Hunter, G. J., Laskin, A., Scherer, M. M., & Grassian, V. H. 

(2008). Characterization and acid-mobilization study of iron-containing mineral dust 

source materials. Journal of Geophysical Research: Atmospheres, 113(D5). doi:10.1029/ 

2007JD009332. 

Draxler, R. R., & Hess, G. D. (1998). An overview of the HYSPLIT_4 modelling system for 

trajectories, dispersion and deposition. Australian Meteorological Magazine, 47, 295-308. 

Duce, R. A., & Tindale, N. W. (1991). Atmospheric transport of iron and its deposition in the 

ocean. Limnology and Oceanography, 36(8), 1715–1726. doi:10.4319/lo.1991.36.8.1715. 

Epstein, M. S., Diamondstone, B. I., & Gills, T. E. (1989). A new river sediment standard 

reference material. Talanta, 36(1-2), 141-150. 

Erickson III, D. J., Hernandez, J. L., Ginoux, P. , Gregg, W. W. , McClain, C. , & Christian, 

J. (2003). Atmospheric iron delivery and surface ocean biological activity in the Southern 

Ocean and Patagonian region. Geophysical Research Letters, 30(12), 1609. 

doi:10.1029/2003GL017241. 

Ferrari, R., Provost, C., Renault, A., Sennéchael, N., Barré, N., Park, Y. H., & Lee, J. H. 

(2012). Circulation in Drake Passage revisited using new current time series and satellite 

altimetry: 1. The Yaghan Basin. Journal of Geophysical Research: Oceans, 117(C12). 

doi:10.1029/2012JC008264. 



 

 

©2020 American Geophysical Union. All rights reserved. 

Fryrear, D. W. (1986). A field dust sampler. Journal of Soil and Water Conservation, 41, 

117–120. 

Gaiero, D. M., Probst, J.-L., Depetris, P. J., Bidart, S. M., & Leleyter, L. (2003). Iron and 

other transition metals in Patagonian riverborne and windborne materials: Geochemical 

control and transport to the southern South Atlantic Ocean. Geochimica et Cosmochimica 

Acta, 67(19), 3603–3623. doi:10.1016/S0016-7037(03)00211-4. 

Gaiero, D. M., Simonella, L. E., Gassó. S, Gili, S., Stein, A. F., Sosa, P., et al. (2013). 

Ground/satellite observations and atmospheric modeling of dust storms originating in the 

high Puna-Altiplano deserts (South America): Implications for the interpretation of paleo-

climatic archives. Journal of Geophysical Research: Atmospheres, 118, 1–15. 

doi:10.1002/JGRD.50036. 

Gallisai, R., Volpe, G., & Peters, F. (2016). Large Saharan dust storms: Implications for 

chlorophyll dynamics in the Mediterranean Sea. Global Biogeochemical Cycles, 30(11), 

1725-1737. doi:10.1002/2016GB005404. 

Gassó, S., Stein, A., Marino, F., Castellano, E., Udisti, R., & Ceratto, J. (2010). A combined 

observational and modeling approach to study modern dust transport from the Patagonia 

desert to East Antarctica. Atmospheric Chemistry and Physics, 10, 8287-8303. 

doi:10.5194/ACP-10-8287-2010. 

Gassó, S., & Torres, O. (2019). Temporal characterization of dust activity in the Central 

Patagonia desert (years 1964–2017). Journal of Geophysical Research: Atmospheres, 124. 

doi:10.1029/2018JD030209. 

Geider, R. J., MacIntyre, H. L., & Kana, T. M. (1997). Dynamic model of phytoplankton 

growth and acclimation: responses of the balanced growth rate and the chlorophyll a: carbon 

ratio to light, nutrient-limitation and temperature. Marine Ecology Progress Series, 148, 187-

200. doi:10.3354/meps148187. 

Gili, S., Gaiero, D. M., Goldstein, S. L., Chemale Jr, F., Jweda, J., Kaplan, M. R., et al. 

(2017). Glacial/interglacial changes of Southern Hemisphere wind circulation from the 

geochemistry of South American dust. Earth and Planetary Science Letters, 469, 98-109. 

doi:10.1016/j.epsl.2017.04.007. 

Gillette, D. A., Adams, J., Endo, A., & Smith, D. (1980). Threshold velocities for input of 

soil particles into the air by desert soils. Journal of Geophysical Research, 85, 5621-5630. 

Goossens, D., & Offer, Z. (2000). Wind tunnel and field calibration of six aeolian dust 

samplers. Atmospheric Environment, 34, 1043–1057. 

Grosvenor, A. P., Kobe, B. A., Biesinger, M. C., & McIntyre, N. S. (2004). Investigation of 

multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surface and 

Interface Analysis, 36(12), 1564-1574. doi:10.1002/sia.1984. 

Guieu, C., Loÿe‐Pilot, M. D., Ridame, C., & Thomas, C. (2002). Chemical characterization 

of the Saharan dust end‐member: Some biogeochemical implications for the western 

Mediterranean Sea. Journal of Geophysical Research: Atmospheres, 107(D15), ACH 5-1-

ACH 5-11. doi:10.1029/2001JD000582. 

Hand, J. L., Mahowald, N. M., Chen, Y., Siefert, R. L., Luo, C., Subramaniam, A., & Fung, I. 

(2004). Estimates of atmospheric-processed soluble iron from observations and a 

global mineral aerosol model: biogeochemical implications. Journal of Geophysical 

Research: Atmospheres, 109(D17). doi:10.1029/2004JD004574. 



 

 

©2020 American Geophysical Union. All rights reserved. 

Huot, Y., Babin, M., Bruyant, F., Grob, C., Twardowski, M. S., & Claustre, H. (2007). Does 

chlorophyll a provide the best index of phytoplankton biomass for primary productivity 

studies? Biogeosciences Discussions, 4(2), 707-745. 

Kanamitsu, M. (1989). Description of the NMC Global Data Assimilation and Forecast 

System. Weather and Forecasting, 4, 335-342. 

Koch, D., Jacob, D., Tegen, I., Rind, D., & Chin, M. (2000). Tropospheric sulfur simulation 

and sulfate direct radiative forcing in the Goddard Institute for Space Studies general 

circulation model. Journal of Geophysical Research: Atmospheres, 104(D19), 23799–23822. 

doi:10.1029/1999JD900248. 

Koenig, Z., Provost, C., Ferrari, R., Sennéchael, N., & Rio, M. H. (2014). Volume transport 

of the Antarctic Circumpolar Current: Production and validation of a 20 year long time series 

obtained from in situ and satellite observations. Journal of Geophysical Research: Oceans, 

119(8), 5407-5433. doi:10.1002/2014JC009966. 

Johnson, K. S., Elrod, V. A., Fitzwater, S. E., Plant, J. N., Chavez, F. P., Tanner, S. J., et al. 

(2003). Surface ocean‐lower atmosphere interactions in the northeast Pacific Ocean gyre: 

Aerosols, iron, and the ecosystem response. Global Biogeochemical Cycles, 17(2). 

doi:10.1029/2002GB002004. 

Journet, E., Desboeufs, K. V., Caquineau, S., & Colin, J. L. (2008). Mineralogy as a critical 

factor of dust iron solubility. Geophysical Research Letters, 35(7). 

doi.org/10.1029/2007GL031589. 

Lawrence, C. R., & Neff, J. C. (2009). The contemporary physical and chemical flux of 

aeolian dust: A synthesis of direct measurements of dust deposition. Chemical Geology, 267, 

46–63. doi:10.1016/J.CHEMGEO.2009.02.005. 

Li, F., Ginoux, P., & Ramaswamy, V. (2008). Distribution, transport, and deposition of 

mineral dust in the Southern Ocean and Antarctica: Contribution of major sources. Journal of 

Geophysical Research, 113(D10207). doi:10.1029/2007JD009190. 

Mackie, D. S., Boyd, P. W., McTainsh, G. H., Tindale, N. W., Westberry, T. K., & Hunter, 

K. A. (2008). Biogeochemistry of iron in Australian dust: From eolian uplift to marine 

uptake. Geochemistry, Geophysics, Geosystems, 9(3). doi:10.1029/2007GC001813. 

Mahowald, N. M., Baker, A. R., Bergametti, G., Brooks, N., Duce, R. A., Jickells, et al. 

(2005). Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochemical 

Cycles, 19(GB4025). doi:10.1029/2004GB002402. 

Maldonado, M. T., & Price, N. M. (1999). Utilization of iron bound to strong organic ligands 

by plankton communities in the subarctic Pacific Ocean. Deep Sea Research Part II: Topical 

Studies in Oceanography, 46(11-12), 2447-2473. doi:10.1016/S0967-0645(99)00071-5. 

Martin, J. H. (1990). Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 

and paleoclimatology, 5(1), 1–13. doi:10.1029/PA005i001p00001. 

Matano, R. P., & Palma, E. D. (2008). On the upwelling of downwelling currents. Journal of 

Physical Oceanography, 38(11), 2482-2500. doi:10.1175/2008JPO3783.1. 

Meskhidze, N., Chameides, W. L., Nenes, A., & Chen, G. (2003). Iron mobilization in 

mineral dust: Can anthropogenic SO2 emissions affect ocean productivity? Geophysical 

Research Letters, 30(21). doi:10.1029/2003GL018035. 



 

 

©2020 American Geophysical Union. All rights reserved. 

Meskhidze, N., Chameides, W. L., & Nenes, A. (2005). Dust and pollution: A recipe for 

enhanced ocean fertilization? Journal of Geophysical Research: Atmospheres, 110(D3). 

doi:10.1029/2004JD005082. 

Meskhidze, N., Nenes, A., Chameides, W. L., Luo, C., & Mahowald, N. (2007). Atlantic 

Southern Ocean productivity: Fertilization from above or below? Global Biogeochemical 

Cycles, 21(2). doi:10.1029/2006GB002711. 

Mills, M. M., Ridame, C., Davey, M., La Roche, J., & Geider, R. J. (2004). Iron and 

phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature, 429, 292-

294. doi:10.1038/nature02550. 

Moore, J. K., Doney, S. C., Glover, D. M., & Fung, I. Y. (2001). Iron cycling and nutrient-

limitation patterns in surface waters of the World Ocean. Deep Sea Research Part II: Topical 

Studies in Oceanography, 49(1-3), 463-507. doi:10.1016/S0967-0645(01)00109-6. 

Moore, C. M., Mills, M. M., Milne, A., Langlois, R., Achterberg, E. P., Lochte, K., et al. 

(2006). Iron limits primary productivity during spring bloom development in the central 

North Atlantic. Global Change Biology, 12(4), 626-634. doi:10.1111/j.1365-

2486.2006.01122.x. 

Morel, F. M. M., Kustka, A. B., & Shaked, Y. (2008). The role of unchelated Fe in the iron 

nutrition of phytoplankton. Limnology and Oceanography, 53, 400–404. 

doi:10.4319/lo.2008.53.1.0400. 

Neff, P. D., & Bertler, N. A. N. (2015). Trajectory modeling of modern dust transport to the 

Southern Ocean and Antarctica, Journal of Geophysical Research: Atmosphere, 120, 9303–

9322. doi:10.1002/2015JD023304. 

Ohgaito, R., Abe-Ouchi, A., O'ishi, R., Takemura, T., Ito, A., Hajima, T., et al. (2018). Effect 

of high dust amount on surface temperature during the Last Glacial Maximum: a modelling 

study using MIROC-ESM. Climate of the Past, 14, 1565-1581. doi:10.5194.cp-14-1565-

2018. 

Orange, D., Gac, J.-Y., Probst J.-L., & Tanre, D. (1990). Mesure du dépôt au sol des aérosols 

désertiques. Une méthode simple de prélèvement : le capteur pyramidal. Comptes Rendus de 

l’Académie des Sciences, 311(2), 167–172. 

Palma, E. D., Matano, R. P., & Piola, A. R. (2008). A numerical study of the Southwestern 

Atlantic Shelf circulation: Stratified ocean response to local and offshore forcing. Journal of 

Geophysical Research: Oceans, 113(C11). doi:10.1029/2007JC004720. 

Paparazzo, F. E., Crespi-Abril, A. C., Gonçalves, R. J., Barbieri, E. S., Gracia Villalobos, L. 

L., Solís, M. E., & Soria, G. (2018). Patagonian dust as a source of macronutrients in the 

Southwest Atlantic Ocean. Oceanography, 31(4), 33-39. doi:10.5670/oceanog.2018.408. 

Perron, M. M. G., Strzelec, M., Gault-Ringold, M., Proemse, B. C., Boyd, P. W., & Bowie, 

A. R. (2020). Assessment of leaching protocols to determine the solubility of trace metals in 

aerosols. Talanta, 208, 120377. doi:10.1016/j.talanta.2019.120377. 

Rivas, A. L. (1997). Current meter observations in the Argentine Continental Shelf. 

Continental Shelf Research, 17, 391-406. doi:10.1016/S0278‐4343(96)00039‐8. 

Rivas, A. L., & Piola, A. R. (2002). Vertical stratification at the shelf off northern Patagonia. 

Continental Shelf Research, 22(10), 1549-1558. doi:10.1016/S0278-4343(02)00011-0. 



 

 

©2020 American Geophysical Union. All rights reserved. 

Rivas, A. L., & Pisoni, J. P. (2009). Identification, characteristics and seasonal evolution of 

surface thermal fronts in the Argentinean Continental Shelf. Journal of Marine Systems, 

79(1-2), 134–143. doi:10.1016/j.jmarsys.2009.07.008. 

Romero, S. I., Piola, A. R., Charo, M., & Garcia, C. A. E. (2006). Chlorophyll‐a variability 

off Patagonia based on SeaWiFS data. Journal of Geophysical Research: Oceans, 111(C5). 

doi:10.1029/2005JC003244. 

Saraceno, M., Provost, C., & Piola, A. R. (2005). On the relationship of satellite retrieved 

surface temperature fronts and chlorophyll-a in the Western South Atlantic. Journal of 

Geophysical Research: Oceans, 110, C11016, doi:10.1029/2004JC002736.  

Saraceno, M., & Provost, C. (2012). On eddy polarity distribution in the Southwestern 

Atlantic. Deep Sea Research I, 69, 62-69. doi:10.1016/j.dsr.2012.07.005.  

Sathyendranath, S., Brewin, R. J., Brockmann, C., Brotas, V., Calton, B., Chuprin, A., et al. 

(2019). An ocean-colour time series for use in climate studies: The experience of the Ocean-

Colour Climate Change Initiative (OC-CCI). Sensors, 19(19), 4285. doi:10.3390/s19194285. 

Schlitzer, R., Anderson, R. F., Dodas, E. M., Lohan, M., Geibert, W., Tagliabue, A., et al. 

(2018). The GEOTRACES intermediate data product 2017. Chemical Geology, 493, 210-

223. doi:10.1016/J.CHEMGEO.2018.05.040. 

Schroth, A. W., Crusius, J., Sholkovitz, E. R., & Bostick, B. C. (2009). Iron solubility driven 

by speciation in dust sources to the ocean. Nature Geoscience, 2(5), 337-340. 

doi:10.1038/ngeo501. 

Sedwick, P. N., Church, T. M., Bowie, A. R., Marsay, C. M., Ussher, S. J., Achilles, K. M., et 

al. (2005). Iron in the Sargasso Sea (Bermuda Atlantic Time‐series Study region) during 

summer: Eolian imprint, spatiotemporal variability, and ecological implications. Global 

Biogeochemical Cycles, 19(4). doi:10.1029/2004GB002445. 

Shaked, Y., Kustka, A. B., & Morel, F. M. (2005). A general kinetic model for iron 

acquisition by eukaryotic phytoplankton. Limnology and Oceanography, 50(3), 872-882. 

doi:10.4319/lo.2005.50.3.0872. 

Shaw, E. C., Gabric, A. J., & McTainsh, G. H. (2008). Impacts of aeolian dust deposition on 

phytoplankton dynamics in Queensland coastal waters. Marine and Freshwater Research, 

59(11), 951-962. doi:10.1071/MF08087. 

Shoenfelt, E. M., Sun, J., Winckler, G., Kaplan, M. R., Borunda, A. L., Farrell, K. R., et al. 

(2017). High particulate iron (II) content in glacially sourced dusts enhances productivity of a 

model diatom. Science advances, 3(6), e1700314. doi:10.1126/sciadv.1700314. 

Simonella, L. E., Gaiero, D. M., & Palomeque, M. E. (2014). Validation of a continuous flow 

method for the determination of soluble iron in atmospheric dust and volcanic ash. Talanta, 

128, 248-253. doi:10.1016/J.TALANTA.2014.04.076. 

Simonella, L. E., Palomeque, M. E., Croot, P. L., Stein, A., Kupczewski, M., Rosales, A., et 

al. (2015). Soluble iron inputs to the Southern Ocean through recent andesitic to rhyolitic 

volcanic ash eruptions from the Patagonian Andes. Global Biogeochemical Cycles, 29, 1125-

1144. doi:10.1002/2015GB005177. 

Skonieczny, C., Bory, A., Bout-Roumazeilles, V., Abouchami, W., Galer, S. J. G., Crosta, X., 

et al. (2011). The 7–13 March 2006 major Saharan outbreak: Multi-proxy characterization of 

mineral dust deposited on the West African margin. Journal of Geophysical Research, 

116(D18). doi:10.1029/2011JD016173. 



 

 

©2020 American Geophysical Union. All rights reserved. 

Song, H., Marshall, J., Follows, M. J., Dutkiewicz, S., & Forget, G. (2016). Source waters for 

the highly productive Patagonian shelf in the southwestern Atlantic. Journal of Marine 

Systems, 158, 120-128. doi:10.1016/J.MARSYS.2016.02.009. 

Strzepek, R. F., Maldonado, M. T., Hunter, K. A., Frew, R. D., & Boyd, P. W. (2011). 

Adaptive strategies by Southern Ocean phytoplankton to lessen iron limitation: Uptake of 

organically complexed iron and reduced cellular iron requirements. Limnology and 

Oceanography, 56(6), 1983-2002. doi:10.4319/lo.2011.56.6.1983. 

Takemura, T., Egashira, M., Matsuzawa, K., Ichijo, H., O’ishi, R., & Abe-Ouchi, A. (2009). 

A simulation of the global distribution and radiative forcing of soil dust aerosols at the Last 

Glacial Maximum. Atmospheric Chemistry and Physics, 9, 3061-3073. doi:10.5194/acp-9-

3061/2009. 

Tian, R., Chen, J., Sun, X., Li, D., Liu, C., & Weng, H. (2018). Algae explosive growth 

mechanism enabling weather-like forecast of harmful algal blooms. Scientific Reports, 8, 

9923. doi:10.1038/s41598-018-28104-7. 

Torfstein, A., & Kienast, S. S. (2018). No Correlation Between Atmospheric Dust and 

Surface Ocean Chlorophyll‐a in the Oligotrophic Gulf of Aqaba, Northern Red Sea. Journal 

of Geophysical Research: Biogeosciences, 123(2), 391-405. doi:10.1002/2017JG004063. 

Villarreal, M. L., & Coronato, A. (2017). Characteristics and nature of pans in the semi-arid 

temperate/cold steppe of Tierra del Fuego, In Advances in Geomorphology and Quaternary 

Studies in Argentina (pp. 203-224). Springer, Cham. 

Wagner, C. D., Riggs, W. M., Davis, L. E., Moulder, J. F., & Muilenberg, G. E. (1997). 

Handbook of X-Ray Photoelectron Spectroscopy. Perkin-Elmer Corporation, Physical 

Electronics Division: Eden Prairie, MN. 

Walter, H. J., Hegner, E., Diekmann, B., & Kuhn, G. (2000). Provenance and transport of 

terrigenous sediment in the South Atlantic Ocean and their relations to glacial and interglacial 

cycles: Nd and Sr isotopic evidence. Geochimica et Cosmochimica Acta, 64(22), 3813-3827. 

doi:10.1016/S0016-7037(00)00476-2. 

Waza, A., Schneiders, K., May, J., Rodríguez, S., Epple, B., & Kandler, K. (2019). Field 

comparison of dry deposition samplers for collection of atmospheric mineral dust: results 

from single-particle characterization. Atmospheric Measurement Techniques, 12, 6647-6665. 

doi:10.5194/AMT-12-6647-2019. 

Westberry, T. K., Siegel, D. A., & Subramaniam, A. (2005). An improved bio‐optical model 

for the remote sensing of Trichodesmium spp. blooms. Journal of Geophysical Research: 

Oceans, 110(C6). doi:10.1029/2004JC002517. 

Wilson, S. A. (1998). Data compilation for USGS reference material GSP-2, Granodiorite, 

Silver Plume, Colorado. US Geological Survey Open File Rep. 

Young, R. W., Carder, K. L., Betzer, P. R., Costello, D. K., Duce, R. A., DiTullio, G. R., et 

al. (1991). Atmospheric iron inputs and primary productivity: Phytoplankton responses in the 

North Pacific. Global Biogeochemical Cycles, 5(2), 119-134. doi:10.1029/91GB00927. 

Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H., Hirabara, M., et al. 

(2012). A new global climate model of the Meteorological Research Institute: MRI-

CGCM3—model description and basic performance—. Journal of the Meteorological Society 

of Japan, 90, 23-64. doi:10.2151/jmsj.2012-A02. 


