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THE POLYNOMIAL METHOD OVER VARIETIES

MIGUEL N. WALSH

Abstract. We establish sharp estimates that adapt the polynomial
method to arbitrary varieties. These include a partitioning theorem,
estimates on polynomials vanishing on fixed sets and bounds for the
number of connected components of real algebraic varieties. As a first
application, we provide a general incidence estimate that is tight in its
dependence on the size, degree and dimension of the varieties involved.
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1. Introduction

The polynomial method is a powerful tool for establishing results in a
wide variety of areas by means of the construction of an adequate polynomial
[18, 37, 39]. By its very nature, many of the arguments involving this method
require us to inductively study what happens inside the varieties produced
by this polynomial. Because of this, one may be lead to the study of how the
polynomial method adapts to general algebraic varieties not only if this is
the natural setting of our problem, but even if the question originally takes
place in a fixed variety like R

n.
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The purpose of this article is to provide sharp versions over general alge-
braic varieties of the basic tools of the polynomial method. These include
a polynomial partitioning theorem, a form of Siegel’s lemma for general al-
gebraic sets, estimates on the irreducible components produced by families
of polynomials vanishing on fixed sets, a bound on the number of connected
components of real algebraic varieties and a bound for how many compo-
nents of the complement of a polynomial can be intersected by an algebraic
variety of given degree and dimension.

It should be noted that some of these results involve questions regard-
ing real algebraic varieties that certainly have a history of their own right,
independently of their connection to the polynomial method. That being
said, we are especially interested in how these estimates fit together in the
context of this method and in particular, we believe these results may prove
to be useful to extend its applications.

As a first example of how these results can be applied, we provide a
general incidence estimate for hypersurfaces of real varieties of arbitrary
dimension, that is expected to be sharp in its dependence on the size, degree
and dimension of the objects involved. This improves on the best known
bounds even in the case of Rn. In a separate article, we will further expand
on the tools developed in this article to show how these ideas can be applied,
both over R and over arbitrary fields, to obtain incidence estimates that
are sensitive to how the elements being studied concentrate on varieties of
smaller codimension [40].

We now provide a more detailed description of our results. Let us begin
with the polynomial partitioning theorem. Upon trying to adapt Dvir’s use
of the polynomial method in his solution of the Kakeya problem over finite
fields [14], Guth and Katz [22] applied the idea of partitioning a set of points
S ⊆ R

n by means of a polynomial P of adequate degree, in such a way that
each connected component of Rn \ Z(P ) contains few elements of S. This
idea has lead to a remarkable set of results [19, 21, 22], leading also to some
variations of this estimate being established [4, 17, 20, 31].

Of particular interest to us is a result of Basu and Sombra [4] that shows
that, for points lying in a variety V of codimension at most 2, stronger
partitionings can be produced as the degree of V gets larger, and conjectured
the same holds for varieties of arbitrary dimension [4, Conjecture 3.4]. Our
first result, Theorem 1.1, answers this affirmatively. Given an irreducible
variety V ⊆ C

n, we will write δ(V ) for the minimal integer such that V is an
irreducible component of Z(f1, . . . , fr) for some polynomials fi of degree at
most δ(V ) (we refer to Section 2 for some further notation and definitions,
including the asymptotic notation used below). We have the following result.

Theorem 1.1. Let V ⊆ C
n be an irreducible variety of dimension d and S

a finite set of points inside of V (R). Then, given any integer M ≥ δ(V ),
we can find some polynomial g ∈ R[x1, . . . , xn] of degree On(M) such that g
does not vanish identically on V and each connected component of Rn\Z(P )
contains

.n
|S|

Md deg(V )
,

elements of S.
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We deduce this from a more general result, Theorem 3.2, that is slightly
harder to state but gives a corresponding estimate without requiring the re-
striction M ≥ δ(V ) to be imposed. We should remark that the more general
form of Theorem 3.2 ends up being crucial in the subsequent applications.

To understand why an estimate of this kind could be relevant it helps to
first notice that an estimate of the form .n,deg(V ) |S|M

−d for the number
of elements in each connected component could be deduced from the parti-
tioning result for R

d. Theorem 1.1 does not just make the dependence on
deg(V ) explicit but also shows that it actually improves as the degree of V
gets larger. To emphasize that estimates of this kind may in fact improve as
the degree of the underlying variety gets larger is in fact one of the points
of this article.

The reason this can prove quite useful in practice is because, in many
circumstances, an optimal application of the polynomial method requires us
to construct a polynomial of large degree. When we subsequently want to
deal with the algebraic set that this produces, it forces us to study varieties
of high-degree and the general tools we have at our disposal may become
much weaker in this context, making the problem unmanageable. This is
the reason why many applications of the polynomial method proceed by
truncating what would be the optimal polynomial that the problem would
require us to construct, so that we only produce manageable low-degree
varieties (e.g. [5, 17, 23, 25, 35]). Unfortunately, even in the contexts where
this is possible, it tends to come at the cost of producing weaker results. By
showing that some estimates may actually become stronger when the degree
of the variety is large, results like Theorem 1.1 open the door to countering
those parts of the method that become less effective and thus make possible
the study of high-degree varieties and the corresponding application of the
method.

Our second result is in the same spirit. It deals with the basic problem
of finding a polynomial vanishing on a given algebraic set while preventing
some other variety from belonging to the resulting zero set.

Theorem 1.2. Let 0 ≤ l < d ≤ n be integers. Let V ⊆ C
n be a d-

dimensional algebraic set in C
n and τl > 0 a real number. Let T be an

l-dimensional algebraic set of Cn with deg(T ) ≥ τlδ(V )d−l deg(V ). Then,
there exists some polynomial P ∈ C[x1, . . . , xn] of degree at most

.n,τl

(

deg(T )

deg(V )

)
1

d−l

, (1.1)

vanishing at all elements of T without vanishing identically on V .

As with Theorem 1.1, this result is a particular instance of more general
results established in Section 4 that provide corresponding estimates without
any restriction on the degrees of the varieties and this becomes important
in applications. Because of the simple nature of their statements, we believe
some form of the results of Section 4 may already be present in the literature
in some way or another (we particularly refer the reader to [11] and our use
of Theorem 2.6). On the other hand, also by their simple nature and the
reasons previously discussed, we believe these results are likely to be useful
tools to have in this generality when applying the polynomial method in
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different contexts. In particular, it should be remarked that these results
hold over any algebraically closed field and will be used in a separate article
to obtain some general incidence estimates over arbitrary fields.

Theorem 1.2 can be used to establish a number of useful estimates. For
example, it yields the following asymptotic converse of Bezout’s inequality
(see Theorem 5.5 below), refining a result of Chardin and Philippon [11,
Theorem B].

Theorem 1.3. Let V ⊆ C
n be an irreducible variety of dimension d. Then

V is an irreducible component of Z(f1, . . . , fn−d) for some polynomials fi
with

∏n−d
i=1 deg(fi) .n deg(V ).

In Section 5 and Section 6 we build upon Theorem 1.2 and its variants to
establish some relevant generalisations of Theorem 1.3 that will be needed
later. Section 6 is in fact an important part of this article. There we
show how given a variety V of dimension d, upon allowing some further
flexibility in the upper bounds for the degrees of the polynomials fi that
appear in Theorem 1.3, we can obtain an important amount of control on
the higher-dimensional components of Z(f1, . . . , fn−d). In order to do this,
we introduce the concepts of envelopes and full covers associated with an
irreducible variety V ⊆ C

n and establish the pertinent estimates for these
sets. These ideas allow us to accurately model V by means of an algebraic
set defined by polynomials of the smallest possible degree we could expect.

We apply these results to the study of the 0-th Betti number of a real
variety V ⊆ R

n. The classical work of Milnor [30] and Thom [38] (see
also [32]) shows that if V ⊆ R

n is a real variety defined by polynomials
of degree at most D, then the number b0(V ) of connected components of
V is On(D

n). Unfortunately, it turns out this estimate is not suitable for
the study of the high-degree varieties arising when applying the polynomial
method in high-dimensional problems.

Let us briefly pause to discuss this. It is clear that the larger the degree of
V is, the larger the number of connected components we would expect it to
have, and so this constitutes an example of the kind of estimates that will
necessarily become less effective when studying high-degree varieties. We
have previously discussed how estimates like Theorem 1.1 and Theorem 1.2
are intended to be the tools that allow us to counter these losses. However,
the saving these results produce are only proportional to the algebraic degree
deg(V ) of V , while an estimate of the kind provided by Milnor and Thom
produces losses that are proportional to a power of the largest degree of the
polynomials needed to define V and of course, this product can be much
larger than deg(V ).

A result that is particularly important to our work is due to Barone and
Basu [2]. They show that given polynomials f1, . . . , fn−d ∈ R[x1, . . . , xn],
with deg(f1) ≤ . . . ≤ deg(fn−d), and provided the real dimension of the
algebraic set Z(f1, . . . , fi) is at most n − i for every 1 ≤ i ≤ n − d, the
number of connected components of Z(f1, . . . , fn−d)(R) is bounded by

.n

(

n−d
∏

i=1

deg(fi)

)

deg(fn−d)
d,
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see [2, Theorem 4]. By Theorem 1.3 this is closer to what we would like
to have and the fact that our variety of interest may only be one of many
irreducible components of Z(f1, . . . , fn−d) would not be detrimental in the
applications. On the other hand, the dimensionality assumptions this re-
sult places on Z(f1, . . . , fi) are indeed very restrictive in practice and for
a general variety stop us from obtaining any improvement over Milnor and
Thom’s bound.

Our next result addresses this problem. In Section 7 we show how the
results we have established on envelopes and full covers allow us to model
any variety accurately enough as to be able to carry the arguments of Barone
and Basu without any additional requirements being placed on the variety.
This produces the following result.

Theorem 1.4. Let V ⊆ C
n be an irreducible variety of dimension d. Then

there exists some algebraic set X ⊆ C
n, having V as an irreducible com-

ponent, with deg(X) .n deg(V ) and such that the number b0(X(R)) of
connected components of X(R) satisfies

b0(X(R)) .n δ(V )d deg(V ).

What this result accomplishes is, at the cost of replacing V by an algebraic
set of essentially the same degree that retains V as an irreducible component,
producing a bound that is substantially stronger in general than that of
Milnor and Thom.

We apply similar ideas to study the closely related problem of how many
connected components of the complement Rn \Z(P ) of a polynomial P can
be intersected by a variety V of given degree and dimension. Remember that
the idea of the partitioning theorem is, given a set S, to find an adequate
polynomial P such that each connected component of Rn \ Z(P ) contains
few elements of S. If we can show that a variety V only intersects a few
of these components, then both facts combined would limit the amount
of interaction S and V can have. The discussion preceding Theorem 1.4
regarding the nature of previously known bounds applies to this problem as
well. Our next result provides the desired sharp dependence on the degree
of V for a general variety.

Theorem 1.5. Let V ⊆ C
n be an irreducible variety of dimension d and

P ∈ R[x1, . . . , xn]. Then V (R) intersects .n deg(V ) deg(P )d connected
components of Rn \ Z(P ).

Since the original work of Milnor and Thom results like these have found
a large number of applications (see [3] for a general survey). This makes
it likely that Theorem 1.4 and Theorem 1.5 will prove to be useful beyond
the scope of the polynomial method. Let us also notice that these results
constitute a variant of [4, Conjecture 2.10] and it is likely that the same
methods can be adapted to yield that estimate.

We now provide some consequences of our results in incidence geometry.
Let V ⊆ R

n be an irreducible variety, S ⊆ V a set of points and T a family
of subvarieties of V . Incidence geometry is interested in the estimating the
number of incidences between S and T , given by

I(S, T ) = | {(s, t) ∈ S × T : s ∈ t} |.
5



There is a large body of work estimating this quantity for specific families
of varieties. Notice, however, that a non-trivial estimate cannot be obtained
in full generality. While it is clear for example that we cannot have a large
number of points, and a large number of lines, with all the lines intersecting
all the points, the same is not true for general varieties. Consider for instance
the case in which T is a set of planes. Then, if these planes are chosen so
that they all contain a given line L, placing all points of S inside of L we
see that we cannot improve upon the trivial bound I(S, T ) = |S||T |.

Nevertheless, just requiring that this particular degeneracy fails to occur,
a richer theory emerges. We say S is (k, b)-free with respect to T , for a
certain pair of integers k, b ≥ 1, if we cannot find k elements from S all of
them lying inside b different elements from T (see Definition 8.1). Under
this assumption, we will prove a sharp incidence estimate for hypersurfaces
over general varieties.

For (k, d) 6= (1, 1), let us write

αk(d) =
k(d− 1)

dk − 1
, βk(d) =

d(k − 1)

dk − 1
.

We set α1(1) = 0 and β1(1) = 1. Also, let

τd(b, k) = b1−βk(d)k1−αk(d).

We will establish the following result.

Theorem 1.6. Let V ⊆ C
n be an irreducible variety of dimension d. Let

T be a set of hypersurfaces of C
n and S ⊆ V (R) a set of points that is

(k, b)-free with respect to T . Then I(S, T ) is bounded by

c1|S|
αk(d) deg(T )βk(d) deg(V )1−αk(d) + k deg(T ) deg(V ) + (b− 1)|S|,

with c1 .n τd(b, k).

There are some aspects of this bound that warrant some discussion. We
begin by singling out the particular case in which V = C

n, all elements of T
have degree On(1), b = On(1) and where we ignore the precise dependence
of the constants.

Corollary 1.7. Let T be a set of hypersurfaces of Rn of degree On(1) and
S a set of points that is (k,On(1))-free with respect to T . Then

I(S, T ) .n,k |S|αk(n)|T |βk(n) + |T |+ |S|.

Corollary 1.7 answers a conjecture of Elekes and Szabó [16, Section 2]
and a conjecture of Basu and Sombra [4, Conjecture 4.1]. It improves on an
estimate obtained by Fox, Pach, Sheffer, Suk and Zahl [17]. When n = 2,
it recovers the Szemerédi-Trotter theorem when T is a set of lines [36] and
the Pach-Sharir theorem when T is a set of algebraic curves [33]. The case
n = 3 recovers the estimate given by Zahl in [41], while the case n = 4 gives
that of [4]. It also subsumes further results in [9, 12, 16, 27, 29].

However, Theorem 1.6 is a substantially stronger estimate than Corollary
1.7. In particular, it provides a very explicit dependence on the degrees of the
varieties involved and this aspect of the bound seems to be new in problems
of this kind. Furthermore, we will show in Section 8.3 how to conditionally
construct examples realising the main term of the bound, showing that we

6



expect this estimate to be tight in general. Theorem 1.6 is also very explicit
in its dependence of b and k and this makes it significant even when b and
k are not constrained to be uniformly bounded as the size of S and deg(T )
grow, as it is usually the case in the literature.

We have thus obtained a result that is effective on the degrees of both
T and V and there is a particular aspect of this dependence that is worth
discussing. Notice that we can see this as a problem involving a subvariety
of V of codimension one with respect to V and degree deg(V ) deg(T ). From
this point of view, it may seem surprising that deg(T ) and deg(V ) appear
with different exponents in the main term. In fact, one can check that
1−αk(d) = βk(d)/d and so this exponent is substantially smaller than that
of the factor deg(T ) in general.

This is part of a broader phenomenon along the lines that have been
discussed so far in the article. This has to do with the fact that incidence
estimates actually improve as the degree of the ambient variety V gets larger
and this turns out to happen in complete generality. The dependence on the
degrees in the main term of Theorem 1.6 should be seen as a factor of the
form (deg(T ) deg(V ))βk(d) relating to the varieties whose incidences with S
we are studying, divided by an additional power of deg(V ) that is a saving
factor coming from the high-degree nature of the ambient variety V . This is
made explicit in a separate article [40] where we allow the varieties T being
studied to have low degree inside of V .

We finish this introduction with one last remark regarding the term (b−
1)|S| in Theorem 1.6. This term is clearly necessary, since by requiring S to
be (k, b)-free with respect to T we have not excluded the possibility that T
is a set of b− 1 varieties, all of which contain a given subvariety L where all
the points of S lie. A nice consequence of ensuring it appears in this sharp
form is that it allows us to immediately deduce an estimate for the set of
r-rich points Pr(T ) of T in the optimal range. This is the set of points that
are incident to at least r elements of T and phrasing incidence estimates
in terms of this set can turn out to be useful in applications. Using that
βk(d)

1−αk(d)
= d and 1−βk(d)

1−αk(d)
= d−1

k−1 , we deduce from Theorem 1.6 the following

result.

Corollary 1.8. Let V ⊆ C
n be an irreducible variety of dimension d and

T a set of hypersurfaces of Cn. Let r ≥ b and let S be a maximal (k, b)-free
subset of Pr(T ) ∩ V (R). Then

|S| ≤ k deg(V )

(

2 deg(T )

r − b+ 1
+

c2b
d−1
k−1 deg(T )d

(r − b+ 1)
1

1−αk(d)

)

,

with c2 = On(1).

Acknowledgements. Part of this work was carried while the author was a
Clay Research Fellow and a Fellow of Merton College at the University
of Oxford. The author would like to thank Cosmin Pohoata and Martin
Sombra for pointing out some typos in an earlier version of this manuscript,
as well as an anonymous referee for some helpful suggestions.

7



2. Preliminaries

2.1. Notation. Given parameters a1, . . . , ar we shall use the asymptotic
notations X .a1,...,ar Y or X = Oa1,...,ar(Y ) to mean that there exists some
constant C depending only on a1, . . . , ar such that X ≤ CY . We write
X ∼a1,...,ar Y if X .a1,...,ar Y .a1,...,ar X. We shall write |A| for the
cardinality of a set A.

Given polynomials f1, . . . , fr ∈ C[x1, . . . , xn] we will write

Z(f1, . . . , fr) = {x ∈ C
n : f1(x) = · · · = fr(x) = 0} ,

for the corresponding zero set. For an irreducible variety V ⊆ C
n we write

deg(V ) for the degree of its projective closure with respect to the standard
embedding of Cn into P

n and more generally, for an algebraic set V with
irreducible components V1, . . . , Vs we write deg(V ) =

∑s
i=1 deg(Vi). By an

algebraic set of dimension d we mean an algebraic set all of whose irreducible
components have dimension d. Even though such a definition is not stan-
dard, we find it more convenient for our purposes. We will write I(V ) for
the ideal of an algebraic set V and write IR(V ) ⊆ I(V ) for its subset of real
polynomials. We shall also write V (R) for the real points of V .

2.2. Algebraic preliminaries. We will be using the following form of Be-
zout’s inequality [24, Theorem 7.7].

Lemma 2.1 (Bezout’s inequality). Let W ⊆ C
n be an irreducible variety

and f1, . . . , fs ∈ C[x1, . . . , xn] polynomials. Write Z1, . . . , Zr for the irre-
ducible components of Z(f1, . . . , fs) ∩W . Then

r
∑

i=1

deg(Zi) ≤ deg(W )
s
∏

j=1

deg(fj).

Given an irreducible variety V ⊆ C
n, a particularly important role will

be played by the following quantities.

Definition 2.2 (Partial degree). For an irreducible variety V ⊆ C
n and

every 1 ≤ i ≤ n − dim(V ) we let δi(V ) stand for the minimal integer δ for
which we can find a finite set of polynomials g1, . . . , gt ∈ C[x1, . . . , xn] of
degree at most δ such that V ⊆ Z(g1, . . . , gt) and the highest dimension of
an irreducible component of Z(g1, . . . , gt) containing V is equal to n− i. We
sometimes abbreviate δn−dim(V )(V ) as δ(V ) and call this the partial degree
of V . By convention we also write δ0(V ) = 0 and δi(V ) = ∞ for every
i > n− dim(V ).

Clearly, these quantities satisfy the following simple relation.

Lemma 2.3. For every irreducible variety V we have δi(V ) ≥ δi−1(V ) for
every i.

Proof. Let g1, . . . , gt be the polynomials in the definition of δi(V ), so in par-
ticular the irreducible components of Z(g1, . . . , gt) containing V of highest
dimension have dimension n − i. Then, by Krull’s Hauptidealsatz, there
exists some subset g1, . . . , gr of these polynomials such that the irreducible
components of Z(g1, . . . , gt) containing V of the highest dimension have di-
mension n− i+ 1. This clearly implies that δi(V ) ≥ δi−1(V ). �
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If V is not necessarily irreducible we will use the following variant of the
above definition of partial degree.

Definition 2.4. For an algebraic set V ⊆ C
n of dimension d we write δ(V )

for the smallest integer δ for which we can find polynomials g1, . . . , gt of
degree at most δ such that every irreducible component of V is also an
irreducible component of Z(g1, . . . , gt).

Consider an algebraic set V ⊆ C
n. To the ideal I(V ) of V we can associate

the affine Hilbert function

HI(V )(m) := dimC (C[x1, . . . , xn]≤m/I(V )≤m) .

where C[x1, . . . , xn]≤m is the vector space of polynomials of degree at most
m, while I(V )≤m are those members of I(V ) of degree at most m. Similarly,
writing IR(V ) for the ideal of R[x1, . . . , xn] consisting of the real polynomials
of I(V ), we can consider the function

HI(V ),R(m) := dimR (R[x1, . . . , xn]≤m/IR(V )≤m) ,

These functions are related by the following simple lemma.

Lemma 2.5. We have HI(V ),R(m) ≥ HI(V )(m) for every algebraic set V ⊆
C
n and every m ≥ 0.

Proof. Let p1, . . . , pr be a maximal subset of R[x1, . . . , xn]≤m projecting to
linearly independent elements of R[x1, . . . , xn]≤m/IR(V )≤m, so in particular
HI(V ),R(m) = r. Let q be any element of C[x1, . . . , xn]≤m, which we can
write as q = q1 + iq2 with q1, q2 ∈ R[x1, . . . , xn]≤m and i the imaginary
unit. We know we can find coefficients a1, . . . , ar, b1, . . . , br ∈ R, such that
both q1 −

∑r
i=1 aipi and q2 −

∑r
i=1 bipi belong to IR(V )≤m. It follows that

q −
∑r

i=1(ai + ibi)pi ∈ I(V )≤m and therefore HI(V )(m) ≤ r = HI(V ),R(m),
as desired. �

Similarly to [4], we will be using the following general lower bound for
Hilbert functions.

Theorem 2.6. Let V ⊆ C
n be an algebraic set of dimension d. Then, there

exists some constant c0 &n 1 such that, for every m ≥ 2(n − d)δ(V ), we
have the bound

HI(V )(m) ≥ c0m
d deg(V ).

Proof. This follows from [11, Corollaire 3]. �

3. Polynomial partitioning for varieties

Given an irreducible variety V ⊆ C
n of dimension d and an integer 0 ≤

i ≤ n− d, we write

∆i(V ) = max

{

deg(V )

δi+1(V ) · · · δn−d(V )
, 1

}

,

with the understanding that ∆n−d(V ) = deg(V ). Notice that we have

∆i+1(V ) ≤ δi+1(V )∆i(V ), (3.1)

with equality holding whenever ∆i(V ) > 1.
9



From now on we let c0 be as in Theorem 2.6. We say a non-negative
integer i is admissible with respect to V if δi+1(V ) > 2iδi(V ). Notice in
particular that if i is not admissible, then δi(V ) &n δi+1(V ). Writing

Ri(V ) = [c1δi(V )n−i∆i(V ),
c0
2
δi+1(V )n−i∆i(V )],

for every 0 ≤ i ≤ n−d and an appropriate c1 > 0, we then have the following
simple observation.

Lemma 3.1. We can choose c1 &n 1 such that, for every irreducible variety
V ⊆ C

n, every positive integer lies inside an interval of the form Ri(V ) with
i admissible with respect to V .

Proof. This follows from observing that for every 0 ≤ i ≤ n − d, either i
is admissible with respect to V or we have δs(V ) .n δi(V ) for the smallest
admissible s with s > i. Notice that 0 and n−d are always admissible, since
δ0(V ) = 0 and δn−d+1(V ) = ∞. Choosing c1 > 0 sufficiently small with
respect to n and using (3.1), we can then guarantee that Ri(V )∩Rj(V ) 6= 0
if i < j are both admissible with respect to V and there is no other admissible
integer in between them, yielding the result. �

Given an irreducible variety V and a positve integer M , we write iV (M)
for the smallest admissible i such that Mn−i∆i(V ) ∈ Ri(V ). Clearly, we
have

δiV (M)(V ) .n M .n δiV (M)+1(V ). (3.2)

We will prove the following more general form of Theorem 1.1.

Theorem 3.2 (Polynomial partitioning for varieties). Let V ⊆ C
n be an

irreducible variety of dimension d and S a finite set of points inside of
V (R). Then, given any integer M ≥ 1, we can find some polynomial
g ∈ R[x1, . . . , xn] \ I(V ) of degree On(M) such that each connected com-
ponent of Rn \ Z(P ) contains

.n
|S|

Mn−iV (M)∆iV (M)(V )

elements of S.

Notice that if M ≥ δ(V ) then, after multiplying M by a sufficiently large
On(1) constant if necessary, we have iV (M) = n − d. Since ∆n−d(V ) =
deg(V ), we see that Theorem 1.1 indeed follows from Theorem 3.2.

We say a polynomial g bisects a finite set S ⊆ R
n if we have

|{s ∈ S : g(s) > 0}| ≤ |S|/2,

and

|{s ∈ S : g(s) < 0}| ≤ |S|/2.

Notice this does not exclude the possibility that a lot of the points actually
lie on the zero set of g. Let us now state the well-known ham-sandwich
theorem.

Lemma 3.3 (Ham-sandwich theorem). Let S1, . . . , Sn be finite sets of points
in R

n. Then there exists a hyperplane bisecting every Si.
10



For the proof of Theorem 3.2 we will need to establish the following variant
of the polynomial ham-sandwich theorem for sets of points lying inside a
variety.

Theorem 3.4. Let V ⊆ C
n be an irreducible variety of dimension d and

let S1, . . . , Sk be finite subsets of V (R). Let s be an admissible integer with
respect to V such that k ∈ Rs(V ). Then there exists a real polynomial
g /∈ I(V ) of degree at most

.n

(

k

∆s(V )

)
1

n−s

(3.3)

that bisects every Si.

Proof. Since k ∈ Rs(V ) and s is admissible, we can find some positive integer

2sδs(V ) ≤ m < δs+1(V ) (3.4)

bounded above up to a constant by the expression (3.3) and satisfying the
bound

c0m
n−s∆s(V ) > k, (3.5)

with c0 as in Theorem 2.6. It will suffice to show that there exists some real
polynomial g /∈ I(V ) of degree at most m bisecting every Si.

Our first step will be to establish the following lemma, that we shall also
need later.

Lemma 3.5. Let V ⊆ C
n be an irreducible variety of dimension d and let

m be an integer satisfying (3.4) and (3.5). Then HI(V )(m) > k.

Proof. To see this let g1, . . . , gt be as in the definition of δs(V ). Let V1, . . . , Vr

be the nonempty set of all irreducible components of Z(g1, . . . , gt) of dimen-
sion n − s containing V . We claim there is some 1 ≤ j ≤ r such that
I(V )≤m = I(Vj)≤m. Clearly the inclusion I(Vj)≤m ⊆ I(V )≤m always holds,
so let us assume that for every 1 ≤ j ≤ r we can find some hj ∈ C[x1, . . . , xn]
such that hj ∈ I(V )≤m \ I(Vj)≤m. Then Z(hj) ∩ Vj will be an algebraic set
containing V having all its irreducible components of dimension less than
n − s. Hence Z(g1, . . . , gt, h1, . . . , hr) will be an algebraic set containing V
such that its irreducible components that contain V have dimension at most
n− s− 1. But all the polynomials g1, . . . , gt, h1, . . . , hr have degree at most
m. This implies that δs+1(V ) ≤ m, contradicting (3.4). This proves our
claim.

Let us then assume without loss of generality that I(V )≤m = I(V1)≤m.
Since m ≥ 2sδs(V ) ≥ 2(n − dim(V1))δ(V1), we can apply Theorem 2.6 to
conclude that

HI(V )(m) = HI(V1)(m) ≥ c0m
n−s deg(V1). (3.6)

We now claim that

deg(V1) ≥ ∆s(V ). (3.7)

To see this, recall that V1 is an (n− s)-dimensional irreducible variety con-
taining V . By definition of δs+1(V ) there must exist some polynomial fs+1

of degree at most δs+1(V ) vanishing on V that cuts V1 properly. In particu-

lar, there is some irreducible component V
(s+1)
1 of Z(fs+1)∩V1 of dimension

11



n − s − 1 and degree at most δs+1(V ) deg(V1) (by Lemma 2.1) that con-
tains V . Iterating this argument until we obtain an irreducible variety of
dimension d that contains V , and must therefore be equal to V , it follows
that

deg(V ) ≤ deg(V1)δs+1(V ) · · · δn−d(V ).

This establishes (3.7). Plugging this into (3.6) and using (3.5), it follows
that HI(V )(m) > k, as desired. �

We now proceed to show that we can find a real polynomial g /∈ I(V )
of degree at most m bisecting every Si. Let 1, p1, . . . , pt be a basis of
R[x1, . . . , xn]≤m/IR(V )≤m. Since we have established that HI(V )(m) > k,
it must be t ≥ k by Lemma 2.5. To each pi we associate a representa-
tive qi ∈ R[x1, . . . , xn]≤m, that is to say, an element whose projection to
R[x1, . . . , xn]≤m/IR(V )≤m is equal to pi. We consider the map φ : Rn → R

t

given by

φ(x) = (q1(x), . . . , qt(x)) .

If x and y are two different points inside of V (R), then we know there is
some 1 ≤ i ≤ n such that the linear projection πi to the ith coordinate
satisfies πi(x) 6= πi(y). Since the elements of I(V ) vanish on both x and
y, and 1, p1, . . . , pt is a basis for R[x1, . . . , xn]≤m/I(V )≤m, it follows that
there is some linear combination of the qi that takes different values on x
and y. This implies that the map φ is injective on V (R). In particular, it is
injective on each Si.

Consider now the sets φ(S1), . . . , φ(Sk) ⊆ R
t. By Lemma 3.3 and the

fact that k ≤ t, we know that there is some hyperplane in R
t bisecting each

φ(Si). This means that there are some coefficients a1, . . . , at+1 ∈ R, not all
equal to zero, such that for every Si we have

|{x ∈ Si : a1q1(x) + . . .+ atqt(x) + at+1 > 0}| ≤ |φ(Si)|/2 = |Si|/2,

and

|{x ∈ Si : a1q1(x) + . . .+ atqt(x) + at+1 < 0}| ≤ |φ(Si)|/2 = |Si|/2.

Choosing g = a1q1 + . . . + atqt + at+1, this concludes the proof of Theorem
3.4. �

Let us now turn to the proof of Theorem 3.2. We will use the notation

Πi(V ) = δi(V )n−i∆i(V ).

Proof of Theorem 3.2. Let S and V be as in the statement of the theorem.
By Theorem 3.4 we can find a real polynomial g1 /∈ I(V ) of degree O(1)
bisecting S. Let us write A1,1 for the points x ∈ R

n where g1(x) > 0 and
A1,2 for those with g1(x) < 0. Of course, g1 vanishes on the remaining
points. Clearly, each A1,i is the union of some open connected components
of Rn \Z(g1). We write S1,1 for those points of S inside of A1,1 and S1,2 for
those inside of A1,2. We know both sets have size at most |S|/2. The points
of S that do not belong to any of these two sets must be contained inside of
Z(g1).

We proceed recursively. Write

r = Mn−iV (M)∆iV (M)(V ), (3.8)
12



and suppose that given a positive integer i ≤ log2 r we have constructed a
real polynomial gi−1 /∈ I(V ) and disjoint open sets Ai−1,1, . . . , Ai−1,2i−1 , each
of them being the union of some open connected components of Rn\Z(gi−1).
Suppose we have also guaranteed that, writing Si−1,j for those points of S

inside of Ai−1,j , then |Si−1,j| ≤ |S|2−(i−1) and that all points of S outside of
these sets lie inside of Z(gi−1). We can now use Theorem 3.4 to find a real
polynomial hi /∈ I(V ) bisecting Si−1,j for every 1 ≤ j ≤ 2i−1. Notice that
choosing c1 &n 1 sufficiently small, we have by (3.1) that the intervals

[c1Πt(V ),
c0
2
Πt+1(V )] ⊆ Rt(V ), (3.9)

with t admissible cover the positive integers, as it is easy to verify. If t <
iV (M) is the smallest admissible integer with 2i−1 lying in an interval of the
above form, we can use Theorem 3.4 to bound the degree of hi by

deg(hi) .n 2
i−1
n−t∆t(V )−

1
n−t . (3.10)

Similarly, by definition of iV (M) and Theorem 3.4, we can take the remain-
ing hi to satisfy

deg(hi) .n 2
i−1

n−iV (M)∆iV (M)(V )
− 1

n−iV (M) .

Write B1 for those points of Rn where hi is strictly positive and B2 for
those where it is strictly negative. These are open sets with boundary in
Z(hi). Write gi = gi−1hi and notice in particular that gi /∈ I(V ) and gi is
a real polynomial. For every 1 ≤ j ≤ 2i−1 define Ai,j = Ai−1,j ∩ B1 and
Ai,2i−1+j = Ai−1,j ∩ B2, so we are simply separating the elements of each
Ai−1,j according to the sign of hi. The resulting sets are open sets which
are the union of some open connected components of Rn \Z(gi). Since each
Si−1,j is contained inside Ai−1,j and by construction of hi has at most half
its elements in B1 and half of them in B2, we conclude that writing Si,j for
those elements of S inside of Ai,j we obtain a collection of 2i sets, with each
Si,j having at most |S|2−i elements of S. All elements of S not lying inside
of Si,j for any j must lie inside of Z(gi).

Repeating this process up to i = log2 r, we have found a real polynomial
g /∈ I(V ) and a partition of Rn \ Z(g) into sets Aj , j = 1, . . . , r, such that
each Aj is the union of some open connected components of Rn \ Z(g) and
such that each Aj contains at most |S|/r elements of S. To finish the proof
of Theorem 3.2 it thus only remains to show that deg(g) .n M .

By our previous arguments we know that we can write g =
∏log2 r

i=1 hi,
where the polynomials hi have their degree bounded in the way described
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above. As a consequence, we have

1+log2
c0
2
ΠiV (M)(V )
∑

i=1

deg(hi) .n

iV (M)−1
∑

t=0

1+log2
c0
2
Πt+1(V )

∑

i=log2 c1Πt(V )

∆t(V )−
1

n−t 2
i−1
n−t

.n

iV (M)−1
∑

t=0

∆t(V )−
1

n−t

(

δt+1(V )n−(t+1)∆t+1(V )
)

1
n−t

.n

iV (M)−1
∑

t=0

δt+1(V )

.n M,

where we have used (3.1) and (3.2), and similarly

log2 r
∑

i=1+log2
c0
2
ΠiV (M)(V )

deg(hi) .n ∆iV (M)(V )
− 1

n−iV (M)

log2 r
∑

i=1+log2
c0
2
ΠiV (M)(V )

2
i−1

n−iV (M)

.n ∆iV (M)(V )
− 1

n−iV (M) r
1

n−iV (M)

.n M,

by (3.8). This concludes the proof of Theorem 3.2. �

4. Siegel’s Lemma for varieties

From Theorem 3.2 we can deduce the following estimate.

Corollary 4.1. Let S be a finite set of points inside V (R) for some irre-
ducible variety V ⊆ C

n of dimension d. Let s be an admissible integer with
|S| ∈ Rs(V ). Then, there exists some polynomial P of degree at most

.n

(

|S|

∆s(V )

)
1

n−s

,

vanishing on S without vanishing identically on V .

We can use a dimension counting argument to give a direct proof of this
result, which we now formulate in a slightly more general form. For every
0 ≤ s ≤ n − d, we shall extend the definition of the intervals Rs(V ) to
intervals of the form

Rl
s,τ (V ) = [τδs(V )n−(s+l)∆s(V ), τδs+1(V )n−(s+l)∆s(V )],

for every choice of real numbers τ > 0, integers 0 ≤ l < n−s and irreducible
varieties V ⊆ C

n.
As in the proof of Lemma 3.1, the following observation follows immedi-

ately from the definition of the ∆i and the fact that given a positive integer
s, if t is the smallest admissible integer with s ≤ t, then δs(V ) &n δt(V ).

Lemma 4.2. Let V ⊆ C
n be an irreducible variety. For any integers l < d

and 0 < ε < 1, we can find ε .n τ1, . . . , τn−d ≤ ε such that R≥0 is covered
by the sets Rl

s,τs(V ) with s admissible.

We have the following variant of Corollary 4.1 that does not require the
set of points S to be real or to lie inside of V .

14



Lemma 4.3. Let S be a finite subset of Cn and let V be a d-dimensional
irreducible variety V ⊆ C

n. Let τ > 0 be sufficiently small with respect to
n and let s be an admissible integer with |S| ∈ R0

s,τ (V ). Then, there exists
some polynomial P of degree at most

.n,τ

(

|S|

∆s(V )

)
1

n−s

, (4.1)

vanishing on S without vanishing identically on V .

Proof. Since |S| ∈ R0
s,τ (V ) and s is admissible, as long as τ is chosen suffi-

ciently small with respect to n, we can find some positive integer 2sδs(V ) ≤
m < δs+1(V ) bounded above by the expression (4.1) and satisfying the
bound

c0m
n−s∆s(V ) > |S|, (4.2)

with c0 &n 1 as in Theorem 2.6. By Lemma 3.5, we know in particu-
lar that HI(m) > |S|. This means that there exists a basis p1, . . . , pt of
C[x1, . . . , xn]≤m \I(V )≤m with t > |S|. If for each pi we let qi be an element
of C[x1, . . . , xn]≤m that projects to pi, the fact that t > |S| implies that
there is some nonzero linear combination over C of q1, . . . , qt that vanishes
on every element of S. Since by definition of the qi this linear combination
does not vanish on V , the result follows. �

Similarly, we have the following variant that does not require V to be
irreducible. Of course, in this case, the assertion that the polynomial P we
construct does not vanish identically on V does not prevent the possibility
that the zero set of P still contains many of the irreducible components of
V . It only guarantees that it does not contain all of them.

Lemma 4.4. Let V ⊆ C be a d-dimensional algebraic set and τ > 0 some
real number. Let S be a finite subset of Cn with |S| ≥ τδ(V )d deg(V ). Then,
there exists some polynomial P of degree at most

.n,τ

(

|S|

deg(V )

)1/d

, (4.3)

vanishing on S without vanishing identically on V .

Proof. We begin by noticing that by our assumptions, we have
(

|S|

deg(V )

)1/d

&τ δ(V ).

We see from this that by Theorem 2.6, we can find some integer m bounded
above by the expression (4.3) and satisfying HI(V )(m) > |S|. The proof
then follows exactly as in Lemma 4.3. �

We will need the following simple observation, that can be seen by con-
sidering a generic hyperplane intersecting t.

Lemma 4.5. Let t ⊆ C
n be an l-dimensional irreducible variety and let H

be a finite family of irreducible varieties of Cn of dimension l−1. Then there
exists some irreducible variety h ⊆ t of dimension l−1 with deg(h) ≤ deg(t)
and h /∈ H.
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Recall that given a set T of varieties of the same dimension, we write

deg(T ) =
∑

t∈T

deg(t).

We want to establish the following generalisation of Siegel’s lemma to vari-
eties of arbitrary dimension.

Theorem 4.6. Let 0 ≤ l < d ≤ n be integers and τl > 0 a sufficiently
small constant with respect to n. Let T be a finite set of l-dimensional
irreducible varieties in C

n and V a d-dimensional irreducible variety in C
n.

Let 0 ≤ s ≤ n − d be an admissible integer with deg(T ) ∈ Rl
s,τl

(V ). Then,
there exists some polynomial P ∈ C[x1, . . . , xn] of degree at most

.n,τl

(

deg(T )

∆s(V )

)
1

n−(s+l)

, (4.4)

vanishing at all elements of T without vanishing identically on V .

Proof. We proceed by induction on l, the case l = 0 being handled by
Lemma 4.3. Let R ≥ 1 be a parameter to be specified below. Given some
t ∈ T and some integer r ≥ 1 to be specified soon, we apply Lemma 4.5 to
find distinct irreducible subvarieties h1, . . . , hr of t of dimension l − 1 with
deg(hi) ≤ deg(t) for every i. Because of this last bound, we may choose r
so that

2R deg(t) ≤

r
∑

i=1

deg(hi) ≤ (2R + 1) deg(t).

We repeat this process for every element t ∈ T , applying Lemma 4.5 so that
there is no overlap in the varieties hi obtained from different t, leading to a
collection H of subvarieties with

2R deg(T ) ≤ deg(H) ≤ (2R + 1) deg(T ).

Let

R = B

(

deg(T )

∆s(V )

)
1

n−(s+l)

,

for some large B ∼n,τl 1 to be specified, so that

deg(H) = C1B
deg(T )

1+ 1
n−(s+l)

∆s(V )
1

n−(s+l)

, (4.5)

with C1 ∼ 1. Since deg(T ) ∈ Rl
s,τl

(V ), it follows that

τ
1

n−(s+l)

l δs(V ) ≤

(

deg(T )

∆s(V )

)
1

n−(s+l)

≤ τ
1

n−(s+l)

l δs+1(V ),

and so in particular

(τ
1+ 1

n−(s+l)

l C1B)δs(V )n−(s+l−1)∆s(V ) ≤ deg(H)

≤ (τ
1+ 1

n−(s+l)

l C1B)δs+1(V )n−(s+l−1)∆s(V ).
(4.6)
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Let now τl−1 ∼n 1 be a sufficiently small fixed constant. We let B0 ∼n 1
be a sufficiently large constant with respect to τl−1 and n. We then require
that τl is sufficiently small as to satisfy

τ
1+ 1

n−(s+l)

l C1B0 ≤ τl−1.

Finally, we choose B ≥ B0 such that

τ
1+ 1

n−(s+l)

l C1B = τl−1.

Notice that B .n,τl 1.

We thus see from (4.6) that deg(H) ∈ Rl−1
s,τl−1

(V ). Since the components
of H have dimension l − 1, we are in a position to apply the induction
hypothesis, provided τl−1 was chosen sufficiently small. This gives us a
polynomial P of degree at most

.n,τl−1

(

deg(H)

∆s(V )

)
1

n−(s+l−1)

,

vanishing at all elements of H, without vanishing identically on V . By (4.5)
it follows that

deg(P ) .n,τl−1
B

1
n−(s+l−1)

(

deg(T )

∆s(V )

)
1

n−(s+l)

. (4.7)

Since B ≥ B0 and B0 can be taken to be a sufficiently large On(1) quantity
and since n− (s+ l− 1) ≥ 2 and τl−1 .n 1, we can take (4.7) to be strictly
smaller than R. In other words, the polynomial P can be taken to have
degree less than R. If P were to cut any element t of T properly then
Z(P ) ∩ t would have degree at most deg(t)R. But this intersection would
contain the corresponding components of H ∩ t, which were chosen to have
degree at least 2R deg(t), leading to a contradiction. It follows that P must
vanish at all elements of T and this concludes the proof of Theorem 4.6. �

Corollary 4.7. Let the hypothesis and notation be as in Theorem 4.6. If
each t ∈ T is the complexification of a real irreducible variety, then the
polynomial P can be taken to have real coefficients.

Proof. Let P = P1 + iP2 be the polynomial provided by Theorem 4.6, with
P1, P2 having real coefficients. Then both P1 and P2 have to vanish at
every real point of every t ∈ T . But clearly both polynomials cannot be
contained in I(V ), since then P would also lie in I(V ). Assume without loss
of generality that P1 /∈ I(V ). The result follows by renaming P = P1 and
observing that, for every t ∈ T , since this polynomial vanishes at all points
of t(R), it must also vanish at its complexification. �

Proof of Theorem 1.2. The proof of Theorem 4.6 adapts almost verbatim to
this case. Our assumptions allow us to take the admissible integer s to be
equal to n−d. Therefore, ∆s(V ) = deg(V ) and the assertion that deg(H) ∈
Rl−1

s,τl−1
(V ), for the algebraic set H constructed in the proof, becomes the

assertion that deg(H) ≥ τl−1δ(V )d−l+1 deg(V ). This allows us to apply the
induction hypothesis, with the base case given by Lemma 4.4. Notice that
in the proof we can require τl to be sufficiently small since the result will
then obviously hold for all larger values of this parameter. �
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5. Estimating the partial degrees

The following lemma is clear upon taking a generic linear combination.

Lemma 5.1. Let S, V1, . . . , Vr be subsets of C
n. Let f1, . . . , fr be polynomials

such that they all vanish on S but each fi does not vanish identicaly on
Vi. Then, there is a linear combination f = c1f1 + . . . + crfr, with real
coefficients, such that f vanishes on S but does not vanish identically on
any Vi.

We will be needing the next definition in the rest of this article.

Definition 5.2. Let V ⊆ C
n be an irreducible variety and let 0 ≤ s ≤ n−d

be an integer. We say an irreducible variety V ′ ⊆ C
n containing V is an

(n − s)-minimal variety of V if dim(V ′) = n − s and every polynomial of
I(V ) \ I(V ′) has degree at least δs+1(V ).

We can deduce the following estimate from the definition of the partial
degree.

Lemma 5.3. Let V ⊆ C
n be an irreducible variety of dimension d. Then,

there exist polynomials P1, . . . , Pn−d such that, for every 1 ≤ i ≤ n − d, the
maximal dimension of an irreducible component of Z(P1, . . . , Pi) containing
V is n − i and Z(P1, . . . , Pi) contains an (n − i)-minimal variety of V .
Furthermore, they can be chosen so that

(deg(P1), . . . ,deg(Pn−d)) = (δ1(V ), . . . , δn−d(V )) ≤ (deg(P ∗
1 ), . . . ,deg(P

∗
n−d))

under lexicographical order, for any other set of polynomials P ∗
1 , . . . , P

∗
n−d

satisfying the same conclusions.

Proof. We construct the polynomials Pi recursively on i, taking P1 to be
any polynomial of degree δ1(V ) vanishing on V . Let V1, . . . , Vr be the irre-
ducible components of dimension n − i + 1 containing V that lie inside of
Z(P1, . . . , Pi−1). By definition of δi(V ), for each Vj we can find a polynomial
fj of degree at most δi(V ) that vanishes on V without vanishing on Vj. It
follows from Lemma 5.1 that we can find a linear combination f with real co-
efficients of these polynomials fj such that f vanishes on V and cuts each Vi

properly. We take Pi = f and assume for contradiction that deg(Pi) < δi(V ).
Let s ≤ i be the smallest integer with δs(V ) = δi(V ) and let W1, . . . ,Wt be
the irreducible components of Z(P1, . . . , Ps−1) of dimension n − s + 1 con-
taining V . Each Wm then contains one of the previously defined Vj and so
we see in particular that Pi cuts each Wm properly. But this means that
the maximal dimension of an irreducible component of Z(P1, . . . , Ps−1, Pi)
containing V is n − s while deg(P1), . . . ,deg(Ps−1),deg(Pi) < δs(V ), thus
contradicting the definition of the latter quantity. This argument shows
that (deg(P1), . . . ,deg(Pi)) ≤ (deg(P ∗

1 ), . . . ,deg(P
∗
i )), under lexicographi-

cal order, for any tuple of polynomials P ∗
i as in the statement of the lemma.

Notice also that we have shown there is some Vj with every polynomial of
I(V ) \ I(Vj) having degree at least δi(V ). Therefore Vj is an (n − i + 1)-
minimal variety of V . Iterating this procedure until i = n − d it only
remains to show that Z(P1, . . . , Pn−d) contains a d-minimal variety, but this
is of course V itself. The result follows. �
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From Lemma 2.1 and Lemma 5.3 we clearly get the following corollary.

Corollary 5.4. Every irreducible variety V of dimension d satisfies

deg(V ) ≤

n−d
∏

i=1

δi(V ).

It turns out that both sides of Corollary 5.4 are equal up to an On(1)-
constant. In fact, we have the following general result.

Theorem 5.5. Let V ⊆ C
n be an irreducible variety of dimension d and let

P1, . . . , Pn−d be the corresponding polynomials given by Lemma 5.3. Then,
for every 1 ≤ m ≤ n − d, every irreducible component W of Z(P1, . . . , Pm)
having dimension n − m and containing V has degree ∼n

∏m
i=1 δi(V ) and

satisfies δi(W ) ∼n δi(V ) for every 1 ≤ i ≤ m.

Proof. We fix V and induct on m, the result being obvious for m = 1 from
the definition of δ1(V ). Let W be as in the statement and write Z1, . . . , Zr

for the irreducible components of Z(P1, . . . , Pm−1) of dimension n −m+ 1
that contain V , so in particular we know by induction that the result holds
for them.

Since W is an irreducible component of Z(P1, . . . , Pm), we know that

deg(W ) ≤
m
∏

i=1

deg(Pi) =
m
∏

i=1

δi(V ).

Let now ε &n 1 be a sufficiently small constant with respect to n and assume
for contradiction that

deg(W ) ≤ ε

m
∏

i=1

δi(V ). (5.1)

We know by Theorem 4.6 (and Lemma 4.2) that for every Zj we can find a
polynomial Qj of degree at most

.n

(

deg(W )

∆sj(Zj)

)
1

m−sj

,

vanishing on W without vanishing on Zj , for an appropriate 0 ≤ sj < m.

Now notice that by induction we know that ∆sj(Zj) ∼n
∏sj

i=1 δi(V ) and
therefore, by (5.1) and Lemma 2.3, we have that

deg(Qj) .n

(

ε
∏m

i=1 δi(V )
∏sj

i=1 δi(V )

)
1

m−sj

.n ε
1

m−sj δm(V ).

This quantity is strictly less than δm(V ), provided ε was chosen sufficiently
small. We know from Lemma 5.1 that we can find some real linear combi-
nation Q of the Qj such that Q vanishes on W without vanishing on any
Zj. But this means that Z(P1, . . . , Pm−1, Q) contains W , and in particular
V , while each of its irreducible components containing V has dimension at
most n−m. Since deg(Q) < δm(V ) = deg(Pm), this gives us a contradiction
by the definition of the polynomials P1, . . . , Pn−d. We have thus shown that

deg(W ) ∼n

m
∏

i=1

δi(V ). (5.2)
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Finally, for every 1 ≤ i ≤ m, we have that V ⊆ W ⊆ Z(P1, . . . , Pi), from
where we know that δi(W ) ≤ δi(V ). Combining this with (5.2) and Corollary
5.4 applied to W , we conclude that it must be δi(W ) ∼n δi(V ) for every
1 ≤ i ≤ m, as desired. �

Although we shall not need it, the following is an easy consequence of
Theorem 5.5 for real varieties.

Corollary 5.6. Let V ⊆ C
n be an irreducible variety of dimension d. If V is

the complexification of V (R), then there exist real polynomials f1, . . . , fn−d

with
∏n−d

i=1 deg(fi) .n deg(V ) such that V is an irreducible component of
Z(f1, . . . , fn−d).

Theorem 5.5 also allows us to deduce the following lower bound for the
degree of an (n− k)-dimensional variety containing V .

Corollary 5.7. Consider an irreducible variety V ⊆ C
n of dimension d

and let W be an irreducible variety of dimension n− k containing V . Then
deg(W ) &n δ1(V ) · · · δk(V ).

Proof. By definition of the quantities δs(V ) and Lemma 5.1 we can find
polynomials fk+1, . . . , fn−d such that for every k < s ≤ n− d it is deg(fs) ≤
δs(V ) and the maximal dimension of an irreducible component of W ∩
Z(fk+1, . . . , fs) containing V is equal to n − s. In particular, we have that
W ∩Z(fk+1, . . . , fn−d) contains V as an irreducible component and therefore

must have degree at least deg(V ) ∼n
∏n−d

i=1 δi(V ) by Theorem 5.5. On the
other hand, by Lemma 2.1 the degree of this algebraic set is bounded by

deg(W )

n−d
∏

i=k+1

δi(V ).

The result follows. �

6. Envelopes and full covers

6.1. Envelopes. We know by Lemma 5.3 and Theorem 5.5 that, given an
irreducible variety V of dimension d, we can find polynomials f1, . . . , fn−d

satisfying a good upper bound on their degrees and with V an irreducible
component of Z(f1, . . . , fn−d). On the other hand, the methods of Barone
and Basu [1, 2] are well suited to study the number of connected components
of Z(f1, . . . , fn−d)(R) as long as the points of these components have local
real dimension at most n− i in Z(f1, . . . , fi) for every i. In order to be able
to obtain a result in the general case, we therefore need to be able to keep
track of those irreducible components of Z(f1, . . . , fi) that have dimension
strictly larger than n − i. Our aim is to show that as long as we allow
some further flexibility in the upper bound for the degrees of the fi, we can
obtain a good amount of control on these higher dimensional components.
Of course, the flexibility we wish to allow has to be limited if we expect to
obtain optimal bounds. This motivates the following definition.

Definition 6.1 (Admissible tuples). Let V ⊆ C
n be an irreducible variety

of dimension d and 1 ≤ K1 ≤ . . . ≤ Kn−d real numbers. We say an ordered
tuple of polynomials Q = {Q1, . . . , Qn−d} is (K1, . . . ,Kn−d)-admissible for

20



V if, for every 1 ≤ i ≤ n− d, we have that deg(Qi) ≤ Kiδi(V ), the maximal
dimension of an irreducible component of Z(Q1, . . . , Qi) containing V is
equal to n − i and Z(Q1, . . . , Qi) contains an (n − i)-minimal variety of V .
If Q is (K1, . . . ,Kn−d)-admissible for V and K ≥ Kn−d then we may simply
say Q is K-admissible for V .

We have the following observation.

Lemma 6.2. Let V ⊆ C
n be an irreducible variety of dimension d and

Q = {Q1, . . . , Qn−d} a (K1, . . . ,Kn−d)-admissible tuple of polynomials for
V . Let W be an irreducible component of Z(Q1, . . . , Qi) of dimension n− i,
for some 1 ≤ i ≤ n − d. Then, if deg(W ) ≥ cδ1(V ) · · · δi(V ), it must be
δj(W ) ∼Ki,c,n δj(V ) for every 1 ≤ j ≤ i.

Proof. This follows from the fact that deg(W ) ∼n
∏i

j=1 δj(W ) by Theorem
5.5 and that by construction, for every 1 ≤ j ≤ i, the maximal dimension
of an irreducible component of Z(Q1, . . . , Qj) containing W must be equal
to n− j, implying that δj(W ) .Kj,n δj(V ). �

In order to keep track of the higher-dimensional components arising from
an admissible tuple, we introduce the following definitions.

Definition 6.3 (Envelopes). Let V ⊆ C
n be an irreducible variety of di-

mension d and Q = {Q1, . . . , Qn−d} a K-admissible tuple of polynomials for
V , for some K ≥ 1. For each 1 ≤ j ≤ n − d, we define the j-th envelope
of V over Q to be the union of all irreducible components of Z(Q1, . . . , Qj)

of dimension strictly greater than n− j and write E
(j)
V (Q) for this algebraic

set. We also write

EV (Q) =

n−d
⋃

j=1

E
(j)
V (Q),

and call this algebraic set the envelope of V over Q. Finally, for every

1 ≤ j ≤ n − d, we write S
(j)
V (Q) for the algebraic set given by the union of

the irreducible components of Z(Q1, . . . , Qj) of dimension n− j.

We begin with some immediate consequences of these definitions.

Lemma 6.4. If W is an irreducible component of EV (Q) of dimension i,

then it is also an irreducible component of S
(n−i)
V (Q).

Proof. By construction of EV (Q) we know that W must be an irreducible
component of Z(Q1, . . . , Qj) for some j > n − i. In particular, W ⊆
Z(Q1, . . . , Qn−i). But any irreducible component of Z(Q1, . . . , Qn−i) con-
taining W properly has dimension strictly greater than i and therefore be-

longs to E
(n−i)
V (Q) ⊆ EV (Q), contradicting the fact that W is an irreducible

component of this last algebraic set. The result follows. �

Lemma 6.5. Let W1, . . . ,Wr be the irreducible components of S
(i)
V (Q) for

some 1 ≤ i ≤ n− d. Then
r
∑

j=1

deg(Wj) .K,n δ1(V ) · · · δi(V ).
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Proof. By Lemma 2.1, this follows immediately from the fact that each irre-

ducible component of S
(i)
V (Q) is also an irreducible component of Z(Q1, . . . , Qi)

and deg(Qj) ≤ Kδj(V ) for every 1 ≤ j ≤ i. �

Corollary 6.6. Let W1, . . . ,Wr be the irreducible components of EV (Q) of
dimension n− k. Then

r
∑

i=1

deg(Wi) .K,n δ1(V ) · · · δk(V ).

Proof. This follows from Lemma 6.4 and Lemma 6.5. �

The following result shows how we are able to gain control on the irre-
ducible components of an envelope of V at the cost of increasing the allowed
upper bound on the degree of the associated admissible tuple.

Proposition 6.7. Let V ⊆ C
n be an irreducible variety of dimension d and

let 1 = ε0 ≥ ε1 ≥ . . . ≥ εn−d−1 > 0 be given. Then, there exist constants
C1, . . . , Cn−d with Ci = On,εi−1(1) and a (C1, . . . , Cn−d)-admissible tuple of
polynomials Q = {Q1, . . . , Qn−d} for V , such that, for every 1 ≤ i < n− d,
the union of all irreducible components of EV (Q) of dimension n − i has
degree less than εiδ1(V ) · · · δi(V ).

Proof. Let P1, . . . , Pn−d be polynomials of the form given by Lemma 5.3.
We know that for every 1 ≤ i ≤ n − d there is an irreducible component of
Z(P1, . . . , Pi) of dimension n− i containing V that is an (n− i)-minimal va-
riety of V . Using Lemma 6.4 we see that it suffices to recursively construct
the elements of a tuple of polynomials Q = {Q1, . . . , Qn−d} such that, for
every 1 ≤ i ≤ n − d, it is deg(Qi) ≤ Ciδi(V ), the maximal dimension of
an irreducible component of Z(Q1, . . . , Qi) containing V is equal to n − i,
Z(Q1, . . . , Qi) contains every (n−i)-dimensional component of Z(P1, . . . , Pi)
containing V and Qi does not vanish identically on any union of components

of S
(i−1)
V (Q) having degree at least εi−1δ1(V ) · · · δi−1(V ). Notice that this

last requirement is well-defined for recursive purposes since S
(i−1)
V (Q) de-

pends only on the first i− 1 elements of the tuple Q.
We set Q1 = P1, which clearly satisfies the required conditions. Recur-

sively, suppose we have constructed elements Q1, . . . , Qi−1 with the prop-
erties specified in the previous paragraph. By Lemma 5.1 we know there
is some real linear combination f of the polynomials P1, . . . , Pi such that
the maximal dimension of an irreducible component of Z(Q1, . . . , Qi−1, f)
containing V is equal to n − i and such that Z(Q1, . . . , Qi−1, f) contains
every (n− i)-dimensional irreducible component of Z(P1, . . . , Pi) containing
V .

LetA be the algebraic set of all irreducible components of Z(Q1, . . . , Qi−1, f)
of dimension n − i containing V . Notice that by Lemma 2.1 we know
that deg(A) ≤ (

∏i−1
j=1Cj)δ1(V ) · · · δi(V ) while Corollary 5.7 implies that

deg(A) &n δ1(V ) · · · δi(V ). Let W1, . . . ,Wr be the set of irreducible compo-

nents of S
(i−1)
V (Q). Consider an arbitrary subset J ⊆ {1, . . . , r} and let

WJ =
⋃

j∈J

Wj .
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Assume deg(WJ) ≥ εi−1δ1(V ) · · · δi−1(V ). Notice that since each Wj is
an irreducible component of Z(Q1, . . . , Qi−1) we have in particular that
δ(WJ ) .n,εi−2 δi−1(V ). Furthermore, since

deg(WJ) ≤

i−1
∏

j=1

deg(Qj) .n,εi−2

i−1
∏

j=1

δj(V ),

we conclude that

deg(A) &n,εi−2 deg(WJ)δi(V ) &n,εi−2 deg(WJ)δ(WJ ).

We can therefore apply Theorem 1.2 to find a polynomial fJ of degree

.n,εi−2

deg(A)

deg(WJ)
.n,εi−1 δi(V ),

vanishing on A without vanishing identically on WJ . By Lemma 5.1 we
can then find a real linear combination Qi of the polynomials fJ over all J
with deg(WJ) ≥ εi−1δ1(V ) · · · δi−1(V ) such that Qi vanishes on A without
vanishing identically on any such WJ . The result follows. �

We now deduce from Proposition 6.7 that we can find an envelope of
V whose irreducible components lie on the zero set of some appropriate
polynomials of small degree.

Lemma 6.8. Let V ⊆ C
n be an irreducible variety of dimension d. Then

there exists an On(1)-admissible tuple Q = {Q1, . . . , Qn−d} of polynomials
for V and polynomials F1, . . . , Fn−d−1 with deg(Fk) < δk(V ) for every 1 ≤
k ≤ n − d − 1, such that Fk vanishes on all the irreducible components of
EV (Q) of dimension n− k without vanishing identically on V .

Proof. Let ε1 > . . . > εn−d−1 > 0 be real numbers such that each εi is
sufficiently small with respect to n and εi−1. Let Q = {Q1, . . . , Qn−d} be
the tuple given by Proposition 6.7 with respect to these parameters. Let us
write Ak for the union of the irreducible components of EV (Q) of dimension
n − k. By Proposition 6.7 we know that deg(Ak) ≤ εkδ1(V ) · · · δk(V ). Let
now Vn−k+1 be an (n − k + 1)-minimal variety of V contained inside of
Z(Q1, . . . , Qk−1), which we know to exist by definition of an admissible
tuple. By Theorem 4.6 (and Lemma 4.2) we can find a polynomial Fk of
degree

.n

(

deg(Ak)

∆s(Vn−k+1)

)
1

k−s

,

vanishing on Ak without vanishing identically on Vn−k+1, for some 0 ≤ s < k.
Since ∆s(Vn−k+1) ∼n,εk−1

δ1(V ) · · · δs(V ) by Corollary 5.7 and Lemma 6.2,
it follows that the above quantity is

.n,εk−1
ε
1/(k−s)
k δk(V ).

This is strictly less than δk(V ) provided εk > 0 was chosen sufficiently small
with respect to n and εk−1. Since Vn−k+1 is an (n− k+1)-minimal variety,
this means that Fk cannot vanish identically on V and the result follows. �
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6.2. Full covers. We have seen how we can obtain some control on the
irreducible components of an envelope of V . In order to take advantage of
this, we will need to find an admissible tuple of polynomials for each of these
irreducible components and, once again, control the higher-dimensional com-
ponents that they produce. In order to handle this recursive procedure, we
introduce the following definition.

Definition 6.9 (Full cover). Let V ⊆ C
n be an irreducible variety and

K > 0. If dim(V ) = n − 1, we say an algebraic set F(V ) is a K-full cover
of V if F(V ) = V . Recursively, let dim(V ) = d < n − 1. We say an
algebraic set F(V ) is a K-full cover of V if there exists a K-admissible tuple
of polynomials Q for V such that

F(V ) = S
(n−d)
V (Q) ∪

⋃

Wi⊆EV (Q)

F(Wi),

where the last union runs through all the irreducible components Wi of
EV (Q) and each F(Wi) is a K-full cover of Wi.

The next lemma shows an appropriate bound for the degree of a full cover.

Lemma 6.10. Let F(V ) be a K-full cover of V and let W1, . . . ,Wr be the
irreducible components of F(V ). Then

r
∑

i=1

deg(Wi) .K,n deg(V ).

Proof. We proceed by induction on the codimension, the claim being trivial
for hypersurfaces. So let dim(V ) ≤ n − 2 and assume the result holds
for all varieties of strictly larger dimension. The irreducible components of

F(V ) that are also irreducible components of S
(n−d)
V (Q) satisfy the bound by

Lemma 6.5. Every other irreducible component is an irreducible component
of a K-full cover F(W ) of some irreducible component W of EV (Q), so in
particular dim(W ) > dim(V ). For a fixed choice ofW , we know by induction
that the degrees of the irreducible components of F(W ) sum up to at most
.K,n deg(W ). The result then follows, by Corollary 6.6, upon summing
over all irreducible components W of EV (Q). �

We now show how the bounds we have attained on the envelopes allow
us to obtain an appropriate full cover.

Proposition 6.11. Let V ⊆ C
n be an irreducible variety of dimension d

and let ε > 0 be given. Then V admits an Oε,n(1)-full cover F(V ) such that,
for every 1 ≤ k < n− d, every irreducible component of F(V ) of dimension
n− k has degree at most εδ1(V ) · · · δk(V ).

Proof. We proceed by induction on the codimension, the result being clear
when d = n − 1. Let ε = ε0 > ε1 > · · · > εn−d−1 > 0 be chosen so that εi
is sufficiently small with respect to n and εi−1. Let Q be a (C1, . . . , Cn−d)-
admissible tuple of polynomials for V of the form given by Proposition
6.7 with respect to the parameters εi we have just defined. Since every

irreducible component of S
(n−d)
V (Q) has dimension d, it suffices to show

that for every irreducible component W of EV (Q) we can find a full cover
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F(W ) with all its irreducible components of dimension n − k ≥ dim(W )
having degree at most εδ1(V ) · · · δk(V ). Fix such a choice of W . By Lemma
6.4 we know that W is an irreducible component of Z(Q1, . . . , Qn−dim(W ))
and from this it follows that δi(W ) .εi−1,n δi(V ) for all 1 ≤ i ≤ n−dim(W ).
Let now εW &n,εn−dim(W )−1

1 be a sufficiently small constant with respect to

εn−dim(W )−1 and n. By induction, we know that we can find an OεW ,n(1)-
full cover F(W ) of W such that, if n − k > dim(W ), then all irreducible
components of F(W ) of dimension n− k have degree at most

εW δ1(W ) · · · δk(W ) .n,εk−1
εW δ1(V ) · · · δk(V )

≤ εδ1(V ) · · · δk(V ),
(6.1)

upon choosing εW sufficiently small with respect to n and εn−dim(W )−1.
Finally, the irreducible components of F(W ) having dimension dim(W ) have
degree at most .n,εW deg(W ) by Lemma 6.5 and, since W is an irreducible
component of EV (Q) and we have chosen the tuple Q to satisfy Proposition
6.7, this is at most

.n,εW εn−dim(W )δ1(V ) · · · δn−dim(W )(V ) ≤ εδ1(V ) · · · δn−dim(W )(V ),

upon choosing εn−dim(W ) sufficiently small with respect to εW &n,εn−dim(W )−1

1 and therefore with respect to εn−dim(W )−1 and n. The result follows. �

We get the following important consequence of the previous proposition.

Corollary 6.12. Every irreducible variety V ⊆ C
n admits an On(1)-full

cover F(V ) such that V is an irreducible component of F(V ).

Proof. Let ε > 0 be sufficiently small with respect to n. Let F(V ) be an
Oε,n(1)-full cover of V of the form provided by Proposition 6.11 with respect
to ε and suppose F(V ) has some irreducible component W of dimension n−
k > dim(V ) containing V . Then we have that deg(W ) ≤ εδ1(V ) · · · δk(V ),
but this contradicts Corollary 5.7 if ε was chosen sufficiently small with
respect to n. �

7. Bounding the number of connected components

7.1. A result of Barone and Basu. In the proofs of Theorem 1.4 and
Theorem 1.5 given below, a crucial role will be played by a result of Barone
and Basu [2]. We begin this section by introducing some notation that will
help us state this result.

Given an algebraic set X ⊆ C
n and a point x ∈ X(R), we write dimR

x X
for the local real dimension of X(R) at x [6, §2.8]. If Q = {Q1, . . . , Qm},
Q1, . . . , Qm ∈ C[x1, . . . , xn], is a tuple of polynomials with m ≤ n, then for
every 1 ≤ j ≤ m we shall write

Zj(Q) = Z(Q1, . . . , Qj),

and if x ∈ Zj(Q)(R), we let

dimR

Q,(j)(x) =
(

dimR
x Z1(Q), . . . ,dimR

x Zj(Q)
)

.

Given two tuples of non-negative integers τ = (τ1, . . . , τj) and σ = (σ1, . . . , σj),
we will write τ ≤ σ if τi ≤ σi for every 1 ≤ i ≤ j. Given a j-tuple
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τ of non-negative integers with 1 ≤ j ≤ m and a set of polynomials
Q = {Q1, . . . , Qm} we can consider the set

Zτ (Q) =
{

x ∈ Zj(Q)(R) : dimR

Q,(j)(x) = τ
}

,

where the closure is taken with respect to the Euclidean topology of Rn.
Clearly Zτ (Q) ⊆ Zj(Q)(R) for every j-tuple τ .

We have the following result of Barone and Basu [2].

Proposition 7.1. Let Q = {Q1, . . . , Qm}, Q1, . . . , Qm ∈ C[x1, . . . , xn], 1 ≤
m ≤ n, be a set of polynomials and d1 ≤ . . . ≤ dm integers with deg(Qi) ≤ di
for every i. Let 1 ≤ j ≤ m and let τ = (τ1, . . . , τj), τ1 ≥ . . . ≥ τj , be a j-
tuple of non-negative integers satisfying τi ≤ n − i for every 1 ≤ i ≤ j.
Then, the number of connected components of Zj(Q)(R) intersecting Zτ (Q)

is at most .n (
∏j

i=1 di)d
n−j
j .

Proof. Let us write Qi = pi + iqi with pi, qi real polynomials and i the
imaginary unit and consider the real polynomial |Qi|

2 = QiQi = p2i + q2i .
Notice that Z(Qi)(R) = Z(|Qi|

2)(R) and in particular, writing |Q|2 =
{

|Q1|
2, . . . , |Qm|2

}

, it is Zj(Q)(R) = Zj(|Q|2)(R) and Zτ (Q) = Zτ (|Q|2)
for every j-tuple τ . It therefore suffices to establish the result with the tuple
of real polynomials |Q|2 instead of Q. Let now W ′

τ be as in [2, Corollary
3.19], so that we have Zτ (|Q|2) ⊆ W ′

τ ⊆ Zj(|Q|2)(R) in our setting. In par-
ticular, to each connected component of Zj(|Q|2)(R) intersecting Zτ (|Q|2)
we can assign a connected component of W ′

τ intersected by it. Such an as-
signment will be injective, since W ′

τ ⊆ Zj(|Q|2)(R). Therefore, it suffices to
obtain the corresponding estimate for W ′

τ and this follows from Corollary
3.25, Lemma 3.27 and Lemma 3.28 of [2]. Notice that strictly speaking, the
cited results from [2] assume boundedness over a real closed field, which can
be accomplished as in Section 3.3 of that article. �

We will use the following observation.

Lemma 7.2. Let V ⊆ C
n be an irreducible variety of dimension d and Q a

K-admissible tuple of polynomials for V . Let x ∈ Zj(Q)(R) \ E
(j)
V (Q). Then

dimR

Q,(j)(x) ≤ (n− 1, n− 2, . . . , n − j).

Proof. This follows from the fact that the complex dimension of a variety

bounds the real dimension and the definition of E
(j)
V (Q). �

We can deduce the following result from Proposition 7.1.

Corollary 7.3. Let V be an irreducible variety of dimension d and Q a
K-admissible tuple of polynomials for V . Let 1 ≤ j ≤ n − d and let τ =
(τ1, . . . , τj), τ1 ≥ . . . ≥ τj , be a j-tuple of non-negative integers satisfying
τi ≤ n − i for every 1 ≤ i ≤ j. Then, the number of connected components
of Zj(Q)(R) intersecting Zτ (Q) is at most .n,K δ(V )d deg(V ).
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Proof. By Proposition 7.1 we know that the number of such components is
at most

.n,K

(

j
∏

i=1

δi(V )

)

δj(V )n−j

.n,K (δ1(V ) · · · δn−d(V ))δn−d(V )d

.n,K deg(V )δ(V )d,

(7.1)

as desired. �

7.2. Proof of Theorem 1.4. Theorem 1.4 follows from Lemma 6.10, Corol-
lary 6.12 and the following result.

Theorem 7.4. Let V ⊆ C
n be an irreducible variety of dimension d and let

F(V ) be a K-full cover of V . Then the number b0(F(V )(R)) of connected
components of F(V )(R) satisfies

b0(F(V )(R)) .K,n deg(V )δ(V )d.

Proof. We know the result holds for hypersurfaces by [30], so we may assume
d < n− 1 and that the result holds for all irreducible varieties of dimension
strictly larger than dim(V ). Let Q = (Q1, . . . , Qn−d) be the K-admissible
tuple of polynomials for V associated to F(V ). Write

Y =
⋃

Wi

F(Wi), (7.2)

with the union going through all irreducible components of EV (Q) and where
F(Wi) is the K-full cover of Wi associated to F(V ), so

F(V ) = S
(n−d)
V (Q) ∪ Y.

Write X = S
(n−d)
V (Q) \ Y . If x ∈ X(R), since EV (Q) ⊆ Y , we know by

Lemma 7.2 that

dimR

Q,(n−d)(x) ≤ (n− 1, n − 2, . . . , d).

In particular, if C is a connected component of F(V )(R) that intersects X,
then it also intersects Zτ (Q) for some (n− d)-tuple τ ≤ (n− 1, n− 2, . . . , d).
Since

Zτ (Q) ⊆ Zn−d(Q) ⊆ F(V ),

we see that the number of connected components of F(V )(R) that intersect
X is at most the sum over all τ ≤ (n − 1, n − 2, . . . , d) of the number of
connected components of Zn−d(Q)(R) that intersect Zτ (Q). By Corollary
7.3 this quantity is at most .K,n deg(V )δ(V )d.

It remains to estimate the number of connected components of F(V )(R)
that do not intersect X. These are all contained inside of Y ⊆ F(V ) and
so it suffices to estimate the number of connected components of Y (R). By
(7.2) and the induction hypothesis, this quantity is at most

.K,n

∑

Wi

deg(Wi)δ(Wi)
dim(Wi), (7.3)

where again the sum runs along all irreducible components of EV (Q). Sup-
pose that Wi has dimension n − k. Then by Lemma 6.4 we know that it
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is an irreducible component of S
(k)
V (Q), and therefore of Zk(Q), and so in

particular satisfies δ(Wi) .K,n δk(V ). Combining this fact with Corollary
6.6, we conclude that the sum (7.3) restricted to all Wi of dimension n− k
is at most

.K,n δ1(V ) · · · δk(V )δk(V )n−k .K,n deg(V )δ(V )d.

Summing this among all O(1) choices of k, we obtain the desired result. �

7.3. Proof of Theorem 1.5. We will establish Theorem 1.5 by induction
on d, the result being clear when d = 0. Assume first that deg(P ) ≤ δ1(V ).
Then we already know by [32] that the number of connected components of
R
n \ Z(P ) itself is bounded by

.n deg(P )n .n δ1(V ) · · · δn−d(V ) deg(P )d

.n deg(V ) deg(P )d,
(7.4)

so we are done in this case. Let then δj(V ) be the largest integer 1 ≤ j ≤
n− d satisfying deg(P ) ≥ δj(V ). Let Q be an On(1)-admissible tuple for V
of the form provided by Lemma 6.8.

Let us deal first with the points inside of (V ∩ E
(j)
V (Q))(R). Notice that

by definition every point of E
(j)
V (Q) lies inside an irreducible component

of EV (Q) of dimension strictly larger than n − j. Since the tuple Q was
chosen to satisfy Lemma 6.8, we then know that we can find a polynomial

F =
∏j−1

i=1 Fi of degree

.n δj−1(V ) .n deg(P ),

vanishing on E
(j)
V (Q) without vanishing identically on V . In particular,

it suffices to estimate the number of connected components of Rn \ Z(P )
intersected by V ∩ Z(F ). Let W1, . . . ,Wr be the irreducible components of
this intersection, all of which have dimension d − 1 since Z(F ) intersects
V properly. We therefore know by induction that the number of connected
components of Rn \ Z(P ) intersected by V ∩ Z(F ) is at most

.n

r
∑

i=1

deg(Wi) deg(P )dim(Wi) .n deg(V ) deg(F ) deg(P )d−1

.n deg(V ) deg(P )d.

(7.5)

It therefore only remains to bound the number of connected components
of Rn \ Z(P ) intersected by V (R) \ Z(F ). In particular, writing |F |2 for
the real polynomial FF and f = P |F |2, it will suffice to bound the number
of connected components of Rn \ Z(f) intersected by Zj(Q). It will also
suffice without loss of generality to bound the number of such components
where f is positive. Let us write Z1, . . . , Zm for the irreducible components
of Zj(Q) of dimension n − j that are not contained inside of Z(f). We
will bound first the size of the set C of all connected components C of
R
n \ Z(f) that contain an element x ∈ Zj(Q) with f(x) > 0 that can be

joined to Z(f) through a path πC in Zj(Q)(R). We may assume without
loss of generality that only the endpoint of this path lies inside of Z(f).

Notice that since E
(j)
V (Q) ⊆ Z(F ), every point but at most the endpoint

of this path πC lies inside of (Z1 ∪ . . . ∪ Zm) ∩ Zτ (Q) for some j-tuple
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τ ≤ (n − 1, . . . , n − j) that may depend on the specific point. Also, by
the existence of the path πC , we have that for each such C there exists
some εC > 0 such that the image of (Z1 ∪ . . . ∪ Zm) ∩ C under f contains
the interval (0, εC ). In particular, since there are finitely many connected
components C of Rn \ Z(f) and finitely many components Z1, . . . , Zm, we
can find some ε > 0 such that f − ε does not vanish identically on any Zi

and X = (Z1∪ . . .∪Zm)∩Z(f−ε) intersects every element of C. Notice that
an element of X belongs to Zσ({Q1, . . . , Qj, f − ε}) for some (j + 1)-tuple
σ ≤ (n − 1, . . . , n − j − 1) that may again depend on the specific point.
In particular, |C| is bounded by the number of connected components of
Z(Q1, . . . , Qj , f − ε) intersecting some Zσ({Q1, . . . , Qj, f − ε}) of the above
form. By Proposition 7.1 we therefore conclude that

|C| .n δ1(V ) · · · δj(V ) deg(f)n−j .n deg(V ) deg(P )d,

so we are done in this case.
It remains to bound the number of connected components C of R

n \
Z(f) intersected by Zj(Q) but such that no element of Zj(Q) ∩ C can be
joined to Z(f) through a path inside of Zj(Q)(R). Clearly, this means that
these components of Rn \ Z(f) properly contain a connected component of
Zj(Q)(R). This component intersects Zτ (Q) for some τ ≤ (n− 1, . . . , n− j)

since it contains an element of Zj(Q)(R) \ E
(j)
V (Q). Therefore, by Corollary

7.3, the number of such components is at most

.n δ1(V ) · · · δj(V )δj(V )n−j .n deg(V )δ(V )d.

The result follows.

8. The incidence geometry of hypersurfaces

8.1. Free configurations. Let S be a finite set of points in R
n and T a

finite set of varieties in R
n. Given a point s ∈ S we write Ts for those

elements of T containing s and similarly, given t ∈ T , we write St for those
points of S lying inside of t. Notice that

I(S, T ) =
∑

s∈S

|Ts| =
∑

t∈T

|St|. (8.1)

We will use the following definition.

Definition 8.1. We say S is (k, b)-free with respect to T if, for every choice
of k distinct elements s1, . . . , sk from S and b distinct elements t1, . . . , tb
from T , we have si /∈ tj for some 1 ≤ i ≤ k, 1 ≤ j ≤ b.

Notice that if S is (k, b)-free with respect to T , then for every choice of
subsets S′ ⊆ S, T ′ ⊆ T , we have that S′ is (k, b)-free with respect to T ′. We
will need the following well-known lemma (see the Kövári-Sós-Turán bound
[28], which is a slight refinement of this).

Lemma 8.2. Let k, b ≥ 1 be integers such that S is (k, b)-free with respect
to T . Then

I(S, T ) ≤ b1/k|S||T |1−1/k + (k − 1)|T |.
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Proof. If k = 1 then we clearly have the bound I(S, T ) ≤ b|S|. Inductively,
let S be (k, b)-free with respect to T and suppose the result has already been
established for all smaller values of k. Notice that if s ∈ S then S \ {s} is
(k − 1, b)-free with respect to Ts. By induction and (8.1), it follows that

∑

s∈S

I(S, Ts) ≤
∑

s∈S

I(S \ {s} , Ts) +
∑

s∈S

|Ts|

≤ b
1

k−1

∑

s∈S

|S||Ts|
1− 1

k−1 +
∑

s∈S

(k − 1)|Ts|

≤ b
1

k−1 |S|1+
1

k−1I(S, T )1−
1

k−1 + (k − 1)I(S, T ),

(8.2)

where the last bound follows from Hölder’s inequality. On the other hand,
given t ∈ T and (not necessarily distinct) elements s, s′ ∈ S incident to t,
we see that (s′, t) is an incidence counted in I(S, Ts) and therefore

∑

s∈S

I(S, Ts) ≥
∑

t∈T

|St|
2

≥
1

|T |

(

∑

t∈T

|St|

)2

=
I(S, T )2

|T |
,

(8.3)

where we have used the Cauchy-Schwarz inequality. The result follows upon
comparing (8.2) and (8.3). �

Notice that the proof of this result does not use any algebraic property
of S or T and so is valid in the more general context of abstract bipartite
graphs [28].

8.2. Proof of Theorem 1.6. Assume first d = 1. If |S| < k, then clearly
I(S, T ) ≤ (k − 1) deg(T ). Otherwise, since S is (k, b)-free with respect to
T , it follows that there are at most b − 1 elements of T containing all of
V , thus contributing at most (b− 1)|S| incidences. The remaining elements
t ∈ T intersect V in at most deg(t) deg(V ) points and therefore contribute
at most deg(T ) deg(V ) incidences. This gives the result in this case.

Let now d > 1 and assume the result holds for every smaller dimension.
By the same argument as before either I(S, T ) ≤ (k − 1) deg(T ) or the
subset TV ⊆ T of those elements of T containing all of V satisfies |TV | = b′

for some 0 ≤ b′ ≤ b− 1. These elements contribute at most b′|S| incidences,
so we will restrict attention to the set T ′ = T \TV . Notice that every t ∈ T ′

satisfies dim(t ∩ V ) < d. For every integer 0 ≤ s ≤ n − d we will consider
the parameters

Ms =

(

b|S|k

kk deg(T )(
∏s

i=1 δi(V ))k

)

1
k(n−s)−1

.

Notice that if Mn−d is sufficiently small with respect to n this implies that

|S| ≤ kb−1/k deg(T )1/k deg(V ).
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Plugging this into Lemma 8.2 we get the bound

I(S, T ) ≤ k deg(T ) deg(V ),

which is acceptable. We may therefore assume from now on thatMn−d &n 1.
This allows us to apply Theorem 3.2 to find a real polynomial P /∈ I(V )
with deg(P ) .n Mn−d, such that, writing s = iV (Mn−d), each connected
component of Rn \ Z(P ) contains

.n
|S|

Mn−s
n−d∆s(V )

.n
|S|

Mn−s
n−d

∏s
i=1 δi(V )

,

elements from S. Notice now that since Mn−d .n δs+1(V ) we have that

Mn−d =

(

b|S|k

kk deg(T )(
∏s

i=1 δi(V ))k

)

1
k(n−s)−1

+
(

1
dk−1

− 1
k(n−s)−1

)

(

n−d
∏

i=s+1

δi(V ))−
k

dk−1

= Ms

(

b|S|k

kk deg(T )(
∏s

i=1 δi(V ))k

)

(

1
dk−1

− 1
k(n−s)−1

)

(

n−d
∏

i=s+1

δi(V ))−
k

dk−1

= Ms

(

b|S|k

kk deg(T )(
∏n−d

i=1 δi(V ))k

)

(

1
dk−1

− 1
k(n−s)−1

)

(

n−d
∏

i=s+1

δi(V ))
− k

k(n−s)−1

.n Msδs+1(V )
1− dk−1

k(n−s)−1
− (n−d−s)k

k(n−s)−1 = Ms.
(8.4)

Let Vn−s be an (n−s)-minimal variety of V , so in particular S ⊆ V ⊆ Vn−s,
dim(Vn−s) = n− s, Vn−s is irreducible and deg(Vn−s) ∼n

∏s
i=1 δi(V ). Write

Ω1, . . . ,Ωg for the connected components of Rn\Z(P ), Si for those elements
of S lying inside of Ωi and Ti for those elements t ∈ T ′ such that t ∩ Vn−s

intersects Ωi. Notice that since the irreducible components of t∩ Vn−s have
dimension n− s− 1 and their degrees sum up to at most deg(t) deg(Vn−s),
it follows from Theorem 1.5 that each element t ∈ T ′ belongs to Ti for at
most .n deg(t) deg(Vn−s) deg(P )n−s−1 values of 1 ≤ i ≤ g.

Using Lemma 8.2 we therefore see that the sum of the incidences occurring
in each cell is at most

≤

g
∑

i=1

b1/k|Si||Ti|
1−1/k + (k − 1)|Ti|

.n b1/k
|S|

(Mn−s
n−d deg(Vn−s))1−1/k

(deg(T ) deg(Vn−s)M
n−s−1
n−d )1−1/k

+ k deg(T ) deg(Vn−s)M
n−s−1
n−d

.n b1/k
|S|deg(T )1−1/k

M
1−1/k
n−d

+ k deg(T )(
s
∏

i=1

δi(V ))Mn−s−1
n−d .

(8.5)

If Mn−d = Ms then both terms are equal. Since 1 .n Mn−d .n Ms it
follows that the left-hand side dominates up to at most a On(1)-constant.
ExpandingMn−d on the left-hand side then shows that the above expression
is bounded by

.n τd(b, k)|S|
αk(d) deg(T )βk(d) deg(V )1−αk(d). (8.6)
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It remains to deal with the incidences coming from Z(P ) ∩ V . Let

Z(P ) ∩ V = W1 ∪ . . . ∪Wr,

be the decomposition into irreducible components, so in particular dim(Wi) =

d− 1 for every 1 ≤ i ≤ r. Write S(i) for those elements s ∈ S ∩Wi that do
not lie inside of Wj for any j < i. This gives us a partition of S. Notice
now that since each element of TV contains all elements of S and |TV | = b′

it follows that S is (k, b− b′)-free with respect to T ′ = T \TV . By induction,
we then have that the number of incidences inside of Z(P ) ∩ V is bounded
by

r
∑

i=1

I(S(i), T ′)

≤C
r
∑

i=1

τd−1(b, k)|S
(i)|αk(d−1) deg(T )βk(d−1) deg(Wi)

1−αk(d−1)

+ (b− b′ − 1)
r
∑

i=1

|S(i)|+ k
r
∑

i=1

deg(T ) deg(Wi)

≤Cτd−1(b, k)|S|
αk(d−1) deg(T )βk(d−1)(Mn−d deg(V ))1−αk(d−1)

+ (b− b′ − 1)|S| + Ck deg(T ) deg(V )Mn−d

≤Cτd(b, k)|S|
αk(d) deg(T )βk(d) deg(V )1−αk(d) + (b− b′ − 1)|S|,

(8.7)

where C = On(1) is a constant whose precise value may change at each
occurrence and where have used that, since Mn−d &n 1 and d ≥ 2, we have

Ck deg(T ) deg(V )Mn−d .n Ck deg(T ) deg(V )Md−1
n−d

.n τd(b, k)|S|
αk(d) deg(T )βk(d) deg(V )1−αk(d).

(8.8)
Combining this with (8.6) and the estimate I(S, TV ) ≤ b′|S|, we get the
desired result.

8.3. Sharp constructions. As remarked in Section 8.1, Lemma 8.2 is valid
for an abstract set of elements S and an arbitrary family T of subsets of
S, as long as S is (k, b)-free with respect to T . This is a slightly weaker
form of the Kövári-Sós-Turán bound [28]. On the other hand, constructing
examples with the largest possible number of incidences in this abstract
setting is a difficult task and is known as the Zarankiewicz problem [42].
In particular, it is conjectured that for every choice of positive integers
b, k it is possible to find a set of elements X and a family Y of subsets of
X, for general choices of sizes |X| and |Y |, such that X is (k, b)-free with

respect to Y and I(X,Y ) &b,k |X||Y |1−1/k. This is currently known for
k ≤ 3 [8]. We also refer the reader to [9] for some recent progress. We
now show a straightforward construction that would allow us to embed such
examples into our algebraic setting, showing that the exponents and the
dependency on the degrees in Theorem 1.6 are tight in general. However,
we remark that in some cases of Theorem 1.6, like the case of points and lines
corresponding to the Szemerédi-Trotter theorem, lower bounds are known
by different constructions (see also [13]).
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Proposition 8.3. Let b, k and 1 ≤ d ≤ n be positive integers. Suppose
there exists a set of elements X and a family Y of subsets of X such that X
is (k, b)-free with respect to Y and I(X,Y ) &b,k |X||Y |1−1/k. Then, given
any irreducible variety V ⊆ C

n of dimension d with V (R) an irreducible real

variety of dimension d and with deg(V )δ(V )d ≤ cI(X,Y )
|Y | for some sufficiently

small c > 0 depending on n and k, we can find a family of hypersurfaces
T ⊆ R

n and a set of points S ⊆ V (R) such that S is (k, b)-free with respect
to T and

I(S, T ) &b,k,n |S|αk(d) deg(T )βk(d) deg(V )1−αk(d).

Proof. Our first step will be to modify Y slightly so that each of its members
is incident to the same number of elements of X without affecting the (k, b)-

free nature of the configuration. With this in mind, write σ = I(X,Y )
|Y | &k,b

|X||Y |−1/k for the average number of incidences of an element of Y . Clearly,
if Y1 ⊆ Y consists of those elements contributing < σ/2 incidences and Y2 =
Y \ Y1, we have that I(X,Y2) ≥ |Y |σ/2. Since |y| ≥ σ/2 for every y ∈ Y2,
we can associate to every such y a family of disjoint subsets ay1, . . . , a

y
r ⊆ y,

each of size ⌊σ/4⌋ and with
∑r

i=1 |a
y
i | ≥ |y|/2. Let Y3 be the family of

subsets ayi of X obtained in this way, with y ranging over all elements of Y2.
Notice that choosing the constant c in the statement sufficiently small with
respect to k, we can guarantee that ⌊σ/4⌋ > k. As a consequence, since
X is (k, b)-free with respect to Y , we see that each member of Y3 can only
have appeared as one of the subsets ayi for at most b choices of y ∈ Y2. We
conclude that

I(X,Y3) ≥
1

b

∑

y∈Y2

|y|/2 =
1

2b
I(X,Y2) ≥ |Y |

σ

4b
&k,b |X||Y |1−1/k,

so if |Y | ≥ |Y3|, we have I(X,Y3) &k,b |X||Y3|
1−1/k. On the other hand, if

|Y3| > |Y |, then by construction of the members of Y3 we know that

I(X,Y3) ≥ |Y3|⌊σ/4⌋ &k,b |X||Y3|
1−1/k.

Now suppose x1, . . . , xk are elements of X and y1, . . . , yb are elements of Y3

such that xi ∈ yj for all 1 ≤ i ≤ k, 1 ≤ j ≤ b. This implies that the yj have
non-empty intersection and so arise in our construction of Y3 from subsets
ayi corresponding to different elements y ∈ Y2. However, since Y2 ⊆ Y , this
contradicts that X is (k, b)-free with respect to Y . We have thus shown
that X is (k, b)-free with respect to Y3. Therefore, renaming Y3 as Y , we
see that we may assume that all elements of Y are incident to the same
number of elements of X. We write K for this number of incidences, so
I(X,Y ) = K|Y |.

Let now V be as in the statement. In particular, sinceK & σ = I(X,Y )
|Y | , we

have that deg(V )δ(V )d ≤ c′K for some c′ > 0 that we may take sufficiently
small with respect to n. By deleting a few elements from each member of Y
as to reduce the value of K slightly if necessary, we may then assume there
is some D such that

dim(C[x1, . . . , xn]≤D/I(V )≤D) = K + 1.
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Indeed, since the bound in Theorem 2.6 is known to be an asymptotic iden-
tity [10], this can be accomplished reducing K by at most an On(1) constant

and with D ∼n

(

K
deg(V )

)1/d
. Write X =

{

x1, . . . , x|X|

}

. We define a set

S =
{

s1, . . . , s|S|
}

⊆ V (R) with |S| = |X| by choosing its elements generi-
cally from V (R). Precisely, letting g1, . . . , gK+1 be polynomials of degree at
most D projecting to a basis of C[x1, . . . , xn]≤D/I(V )≤D, we require that
for all choices of 1 ≤ i1 < . . . < ir ≤ |X| and 1 ≤ j1 < . . . < jr ≤ K + 1,
we have det((gjp(siq ))1≤p,q≤r) 6= 0. Since this only requires us to recursively
chose the elements outside of a proper algebraic subset of V (R), it can al-
ways be ensured. This guarantees that we cannot find a nontrivial linear
combination of the gj vanishing on K + 1 elements of S.

Each element y ∈ Y contains elements xi ∈ X for every i in a certain
subset Iy ⊆ {1, . . . , |X|} with |Iy| = K. If we consider the corresponding
subset of S consisting of those si with i ∈ Iy, since |Iy| < K + 1, we know
we can find a nontrivial linear combination Py of g1, . . . , gK+1 vanishing on
these elements. Notice that by the construction of S given in the previous
paragraph we know that Py does not vanish on any other element of S. This
gives rise to a family of hypersurfaces T of Cn of degree at most D, with
|T | = |Y | and so in particular deg(T ) ≤ D|Y |, and such that the incidence
graph of S and T coincides with the incidence graph of X and Y . We
therefore conclude that S is (k, b)-free with respect to T and

I(S, T ) &b,k,n |X||Y |1−1/k

&b,k,n |X|αk(d)|Y |βk(d)
(

|X||Y |−1/k
)βk(d)/d

&b,k,n |S|αk(d)(
deg(T )

D
)βk(d)Kβk(d)/d

&b,k,n |S|αk(d) deg(T )βk(d) deg(V )1−αk(d).

(8.9)

�
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