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Abstract: Tendons have unique mechanical properties, contributing in the 

transmission, amplification and recycling of muscle energy. In this 

light, anuran tendons are especially interesting due to their highly 

mechanically demanding locomotor modes. Herein we aim to investigate the 

relation between tendons and muscles from two perspectives: (1) the 

tendinous area in relation to the potential force produced by associated 

muscles, and how this relation varies for different tendons of the anuran 

body; (2) the tendinous proportion of a tendo-muscle unit in relation to 

different locomotor modes and habitat uses in a monophyletic unranked 

anuran clade (Diphyabatrachia) which includes Leptodactylids and 

Centrolenids, two highly diverse frog family groups of the Neotropics. 

Our data suggests a significant and positive relation between tendon 

dimensions and potential muscle force for most of the analyzed elements. 

We also found that species of different locomotion and habitat uses show 

divergence of tendinous proportions for tendo-muscle units of the 

pectoral girdle and hindlimb. Notably, jumper-arboreal species 

differentiate from all others in all tendo-muscle units tested. Finally, 

optimization of tendinous proportions showed a great phylogenetic 

correspondence. These results are in agreement with the hypothesis that 

morphological variation is related to a combination of phylogenetic, 

functional and ecological factors. 
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Abstract 

Tendons have unique mechanical properties, contributing in the transmission, amplification 

and recycling of muscle energy. In this light, anuran tendons are especially interesting due to 

their highly mechanically demanding locomotor modes. Herein we aim to investigate the 

relation between tendons and muscles from two perspectives: (1) the tendinous area in 

relation to the potential force produced by associated muscles, and how this relation varies for 

different tendons of the anuran body; (2) the tendinous proportion of a tendo-muscle unit in 

relation to different locomotor modes and habitat uses in a monophyletic unranked anuran 

clade (Diphyabatrachia) which includes Leptodactylids and Centrolenids, two highly diverse 

frog family groups of the Neotropics. Our data suggests a significant and positive relation 

between tendon dimensions and potential muscle force for most of the analyzed elements. We 

also found that species of different locomotion and habitat uses show divergence of tendinous 

proportions for tendo-muscle units of the pectoral girdle and hindlimb. Notably, jumper-

arboreal species differentiate from all others in all tendo-muscle units tested. Finally, 

optimization of tendinous proportions showed a great phylogenetic correspondence. These 

results are in agreement with the hypothesis that morphological variation is related to a 

combination of phylogenetic, functional and ecological factors. 

 

Key words: tendon; locomotion; habitat use; neotropical frogs; Leptodactylidae; 

Centrolenidae  

 

Abbreviations 

AT – Achilles tendon 

CS – coccygeosacralis  
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FDC –  flexor digitorum communis (forelimb) 

FL – fascia latae 

FT-IV – flexor tendon of digit IV (hindlimb) 

LD – longissimus dorsi 

PIB – puboischiofemooralis internus B 

SC – supracoracoideus-coracoradialis 

TB – triceps brachii 

TEN – tenuissimus 

TM – tendo-muscle 

 

1 Introduction 

Tendons are viscoelastic elements with unique mechanical properties (Biewener 2003; 

Lis et al. 2012; Hessel & Nishikawa 2017). Tightly integrated with muscles, tendons are part 

of a functional unit that promotes movement and enables a diverse range of locomotor 

activities, contributing in the transmission, amplification and recycling of energy (Roberts 

2002; Biewener 2003; Benjamin et al. 2008; Azizi & Roberts 2009; Konow & Roberts 2015). 

Specific tendinous morphologies related to structure-function specializations of the locomotor 

system have been found throughout Tetrapod groups (e.g. Manzano et al. 2008; Abdala et al. 

2009, 2018; Azizi & Roberts 2010; Tulli et al. 2012, 2016; Astley & Roberts 2014; Astley 

2016). Anurans are an especially interesting study group due to their highly mechanically 

demanding locomotor modes. While jumps are short burst events with high power generation, 

hopping and swimming implie less explosive and regularly repeated movements (Navas et al. 

1999; Nauwelaerts et al. 2007). Habitat use also has an impact on locomotion, since more 

Highlight

Sticky Note
check oo



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

4 

complex habitats such as the arboreal requires more precision in movement (Sustaita et al. 

2013). 

Tendinous contribution to locomotor performance of anuran species have been so far 

identified mainly on limb elements (Manzano et al. 2008; Astley & Roberts 2014). The 

Achilles tendon has been widely studied and participates on a mechanism of loading followed 

by a rapid release of energy which allows the ankle to extend using elastic recoil during the 

propulsive phase of the jump (Roberts & Azizi 2011; Roberts et al. 2011; Astley & Roberts 

2014). On the forelimb, higher independence of hand flexor tendons is related to arboreality 

(Manzano et al. 2008; Sustaita et al. 2013). A more general overview provided by Fratani et 

al. (2018ab) described tendinous variation of the pelvis and limbs of leptodactylid species, 

and found a combination of allometry, phylogeny and function related to tendon morphology.  

There are morphological and mechanical variations among tendons of different parts of 

an organism, and these differences are related to the intensity of inflicted tension (Birch 

2007). Based on previous studies on tendon-muscle mechanics, the relation between tendon 

and the force produced by its associated muscle is expected to be direct and positive (Abdala 

& Ponssa 2012; Ponssa & Abdala 2016; Azizi & Roberts 2010; Astley & Roberts 2014). 

However, this hypothesis remains to be tested on a gross morphology level of anuran 

specimens. If confirmed, a tendo-muscle direct relation can be applicable to broader 

morphology studies based on collection specimens, as well as for refining inference of muscle 

size and movement in fossil material. Another example of an assumed direct relation is the 

case of muscle and bone insertion, since muscle force is known to promote skeletal growth 

(Chamay & Tschantz 1972). Nonetheless, Ponssa et al. (2018) revealed that the expected 

correlation between the potential force produced by a muscle and its insertion areas on bone 

crests is not always true for anurans. Therefore, the assumed direct relation between tendon 
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and muscle might also not be that certain, especially when taking into account the variety of 

tendinous forms and functions. 

Another possible approach to investigating tendo-muscle (TM) relationship is looking at 

their relative lengths, i.e. using tendinous proportion as a variable. High tendinous proportions 

of a TM unit can be related to high energetic requirements and/or movement precision 

(Roberts 2002; Manzano et al. 2017), and these functional demands will vary across different 

locomotor modes. Variation is also expected regarding different tendons of the anuran body, 

since they participate in different phases of the jump cycle. The pelvic girdle and hindlimb 

elements are mainly related to the propulsive phase (Emerson 1988; Nauwelaerts & Aerts 

2006; Fabrezi et al. 2014). While pectoral girdle and forelimb elements are responsible for 

supporting and stabilizing the frog as it lands (Emerson 1983; Peters et al. 1996; Reilly et al. 

2016). Herein, we analyze pectoral and pelvic girdle, as well as limbs tendo-muscle units of a 

monophyletic anuran clade – Dyphiabatrachia – that includes two neotropical family groups, 

Leptodactylidae and Centrolenidae (sensu Frost 2006). We selected Dyphiabatrachia as our 

model group because of its great ecological diversity, encompassing over 350 species of 

jumper and hopper species, ranging from arboreal to terrestrial and semi-aquatic habitats 

(Guayasamin et al. 2009; De Sá et al. 2014; Frost, 2019). 

The goal of this study was to investigate the variation between tendons and their 

associated muscles, under the hypothesis that morphological variation is related to a 

combination of phylogenetic, functional and ecological factors. Our first question is how 

tendon morphology relates to the force produced by their associated muscles, inferred by their 

cross sectional area, and how this relation varies for different tendons of the anuran body. We 

expect that both elements act as a unit, and this would be evidenced by a significant and 

positive relation, in other words, bigger tendons would associate to muscles that potentially 
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produce higher forces. Second, we ask if the tendinous relative proportion of tendo-muscle 

units can be related to locomotion and habitat use in the Diphyabatrachia clade. Taking into 

account the group’s diversity, we expect to find differences in tendinous proportions in 

relation to the locomotor challenges of displacement in arboreal, terrestrial and semi-aquatic 

environments. As a complementary hypothesis, the phylogenetic relatedness may influence 

tendon morphology, resulting in tendon variability constrained to phylogenetic topology. 

2 Material and Methods 

To investigate the diversity of tendo-muscle units we analyzed 99 species and 188 

specimens of Diphyabatrachia, which represents approximately 30% of the group`s diversity 

(Frost 2019). Three additional species were included as outgroup for the polarization of 

variables in the optimization: Odontophrynus americanus (Odontophrynidae), Rhinella major 

(Bufonidae) and Scinax nasicus (Hylidae). Hydrolaetare schmidti (Leptodactylidae) is the 

only case of a strictly aquatic species in the group (Rodrıguez & Duellman 1994), which 

would cause a low representation of this locomotor category for statistical analysis, therefore 

this species was included only for the optimization of tendon proportions. Full details on 

specimens can be found in Supplementary Data S1. Specimens were dissected and 

photographed with a Leica M205A stereomicroscope. Measurements were taken in 

millimeters using a digital caliper (0.01 mm; Mitutoyo, Kawasaki, Japan) and using the 

software ImageJ (Schneider et al. 2012). The anatomical nomenclature used in this study 

follows that presented in Gaupp (1896) for trunk and pelvic structures, and Abdala & Diogo 

(2010), Diogo & Abdala (2010), Diogo & Ziermann (2014), Diogo & Molnar (2014) for 

pectoral and limb structures. 

To test the relation between tendon dimensions and the potential force produced by its 

associated muscle we selected the most conspicuous tendo-muscles units of the postcranium, 
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described previously by Fratani et al. (2018). We selected the superficial tendon area as a 

proxy of the collagen matrix of each element, and the maximum diameter cross-sectional 

muscle area since it is directly related to force (Josephson, 1975; Biewener, 1998; Azizi & 

Roberts, 2010). The following elements were included: longissimus dorsi (LD), 

coccygeosacralis (CS), puboischiofemooralis internus B (PIB), supracoracoideus-

coracoradialis (SC), triceps brachii (TB), flexor digitorum communis – forelimb (FDC), 

tenuissimus (TEN), and flexor digitorum communis – hindlimb (for clarity this element is 

referred as Achilles tendon in the text, AT) (Fig. 1). For the remaining question, regarding the 

relation between tendinous proportion of a tendo-muscle unit and locomotion/habitat use 

categories, the fascia latae (FL) and the flexor tendon of digit IV – hindlimb (FT-IV) were 

also included (Fig. 1). The mean species values for tendon area, muscle cross-sectional area 

and tendinous proportions and the number of studied individuals/species are detailed in 

Suppelemtary Data S2. 

Prior to the main analyses we explored for sexual dimorphism effects on a subset of 

Leptodactylus bufonius specimens, both for tendon areas and TM units, by performing an 

analysis of covariance (ANCOVA). It was significant for LD (F2,96=6.8, P<0.01) and TB 

(F2,17=3.6, P=0.05) tendon areas. In this case, subsequent analyses were performed using 

exclusively male specimens, since they represent most part of the dataset. For all other 

elements analyzed (CS, PIB, SC, FDC, TEN, TA, FL, and FT-IV) there was no significant 

sexual dimorphism effect, therefore both male and female specimens were included in other 

analyses. 

All tendon and muscle morphometric variables were log10 transformed to meet the 

requirements of normality and homoscedasticity (Zar 1999). A linear regression was 

performed to address the relation between tendon and muscle area variables, including size 
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(snout-vent length) as a covariable. For testing the relation between morphology and 

locomotor mode (LM) we calculated the relative lengths of tendon and muscles to get a tendo-

muscle (TM) unit index. A TM bigger than 1 (TM>1) corresponds to higher tendinous 

proportions, while TM<1 corresponds to lower tendinous proportion in a TM unit. We 

adopted the same categorization of locomotor modes and habitats used in Fratani et al. 

(2018ab) and Ponssa et al. (2018) for leptodactylids (Fig. 2). The authors subcategorized the 

jumping species to best represent their locomotor diversity based on literature information on 

species natural history, field observations and morphological characters (Fratani et al. 2018ab; 

Ponssa et al. 2018). All centrolenid species were categorized as jumper-arboreal based on 

documented natural history information (Lynch & Duellman 1973; McDiarmid & Adler 1974; 

Greer & Wells 1980; Drake & Ranvestel 2005; Cisneros-Heredia & McDiarmid 2007; 

Guayasamin et al. 2009; Delia et al. 2010; Cabanzo-Olarte et al. 2013; Guevara-Molina & 

Vargas-Salinas 2014; Lehtinen et al. 2014; among others). See Supplementary Data S3 for 

detailed information on literature references and locomotor modes/habitat uses of each 

species. 

As data for species are not independent because of shared phylogenetic history 

(Blomberg et al. 2003), a phylogenetic framework was included for all statistical analyses. 

We built a composite tree based on the general topology of the latest large-scale amphibian 

trees (Pyron & Wiens 2011; Jetz & Pyron 2018), and specific phylogenies for relationships 

within each genera (Faivovich et al. 2012; Castroviejo-Fisher et al. 2014; Fouquet et al. 2014; 

de Sá et al. 2014; Veiga-Menoncello et al. 2014; Lourenço et al. 2015) (Fig. 2). As branch 

lengths were not available for all species included in this study, so we tested three different 

types of arbitrary branch lengths: constant (all branch lengths equal to 1), Grafen’s (1989), 

and Pagel’s (1992) methods. To test for the statistical adequacy of the branch lengths we 
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performed an independent contrasts analysis (Garland et al. 1992) using the PDTREE module 

of Mesquite 3.04 (Midford et al. 2005; Maddison & Maddison, 2015). Constant branch 

lengths gave the best results for the standardization of phylogenetically independent contrasts, 

as indicated by the absence of statistically significant trends in diagnostic plots for most traits 

(Garland et al. 1992). 

We applied the phylogenetic generalized least squares method (PGLS) to estimate the 

relationship between each TM variable and locomotor modes while taking phylogeny into 

account (Grafen 1989; Garland & Ives 2000). We tested three different evolutionary models 

to investigate the processes that could best explain the evolution of these morphological traits: 

Brownian motion (BM), Ornstein-Uhlenbeck (OU), and early burst (EB). The BM model 

supposes that the evolution of a trait results from random fluctuations through time 

(Felsenstein 1988; Harmon et al. 2010). The OU model focuses on sections of lineages where 

a trait varies in relation to an optimum or stabilizing selection (Butler & King 2004; Harmon 

et al. 2010). Finally, the Early Burst (EB) model predicts variation in a trait’s evolutionary 

rates (Harmon et al. 2010). We included an accelerated model (EB+) and a decelerated model 

(EB-) in our analyses. Akaike’s information criterion (AIC) was used as a heuristic indicator 

for the fit of the different evolutionary models (Akaike 1974) together with the weights 

(wAIC) as a measure of strength for each model, and indicating the probability that a given 

model is the best among a series of candidate models (Burnham & Anderson 2002). These 

analyses were conducted using the APE (Paradis et al. 2004) and Geiger (Harmon et al. 2010) 

packages in R 3.2.3 (R Core Team 2018). TM indexes were also optimized onto the 

composite phylogenetic tree using Mesquite 3.04 (Maddison & Maddison 2015) and 

parsimony as optimization criteria. 

3 Results 
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A significant and positive relation between tendon area and the potential force produced 

by the associated muscle areas was detected for SC, TB, FDC, PIB, TEN, and AT (Fig. 3). 

While LD and CS tendon and muscle showed no significant association. 

Considering a global average for tendinous proportion of each tendo-muscle unit, FL, 

FT-IV, FDC, and SC showed the highest values, which overpass muscle length (Table 1). 

While CS, LD and PIB had tendinous proportions of approximately half of muscle length and 

AT, TB, and TEN units had the lowest tendinous proportions (Table 1). 

The relation between tendinous proportions of tendo-muscle units and locomotion 

revealed the differentiation of jumper-arboreal from other species under most of the models 

analyzed (Table 2). All species of different locomotion/habitat use categories were 

significantly differentiated for SC, TEN, FL, and FT-IV units under Ornstein-Uhlenbeck 

model, and for the FL unit under accelerated Early Burst model as well (Table 2). At least two 

of the locomotion/habitat use categories were differentiated for CS, PIB, and TB (Table 2). 

Ornstein-Uhlenbeck and accelerated early burst had the best fits among the evolutionary 

models tested (Table 3). 

Jumper-arboreal species showed the highest values of TM for SC, FDC, LD, FL and 

TEN, and the lowest values for CS, TB, AT y FT-IV (Fig. 4). Among other categories of 

locomotion/habitat use, the jumper-burrower species had the highest TB and the lowest FL 

tendinous proportions, the jumper-terrestrials had higher CS and lower FL, SC, PIB and TEN 

values, and hopper-terrestrials had the higher values for PIB. Lastly, Jumper and hopper-

terrestrials share the higher values for FT-IV. 

Ancestral state reconstruction of tendo-muscle units reveals a pattern of low and 

intermediate values for group nodes (Fig. 5). High tendinous proportion of tendo-muscle units 

seem to have been independently acquired by non-related lineages throughout the phylogeny. 
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A possible exception for this pattern is the FL reconstruction, in which high values are shared 

by Hyalinobatrachium species (Fig. 5G). Shifts in tendo-muscle values mainly reflect a 

phylogenetic pattern in which low and intermediate tendo-muscle ratio is plesiomorphic for 

the main clades (Centrolenidae, Leptodactilinae and Leiuperinae), with some non-related 

shifts in distant related lineages (Fig. 5). 

4 Discussion 

The goal of this study was to explore the relation of tendon dimension and the force 

produced by their associated muscles, as inferred by their cross-sectional area. Second, we 

aimed to test whether there is specialization of tendinous proportion of tendon-muscle units 

among anuran species with different locomotor modes and habitat uses, taking phylogeny into 

account. Our data suggests a significant and positive relation between tendon dimension and 

muscle cross-sectional area for most of the elements analyzed. We also found that four of the 

ten tendo-muscle units analyzed in this study could be differentiated among all locomotion 

and habitat use categories. Notably, jumper-arboreal species differentiate from all others in all 

tendo-muscle units tested. Complementing these results, optimization of tendinous 

proportions showed plesiomorphic low and intermediate tendo-muscle ratio and shifts for 

higher values in distant related lineages.  

Tendons and muscles have a deep functional and morphological relation which starts 

early on development (Kardon 1998; Huang 2017). Although these tissues have independent 

cell precursors, subsequent elongation and differentiation of tendon depends on attachment to 

muscle (Huang et al. 2015). Even with fully formed components, movement stimuli is still 

essential to the proper assembly and maintenance of functionality of the locomotor system of 

anuran juveniles (Abdala & Ponssa 2012; Ponssa & Abdala 2016). Our analysis focused on 

adult individuals also showed a significant and positive correlation of tendons and their 
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associated muscles, in which broader tendons relate to stronger muscles (higher values for 

cross-sectional area). This general pattern has two exceptions, the longissimus dorsi and the 

coccygeosacralis tendons, both inserting on the posterodorsal region of the body. The lack in 

correspondence between the former tendons area and their respective associated muscles 

potential force reflects other possibly more complex power managing mechanisms. Although 

based on external gross morphology alone, we theorize that other subtle characteristics of the 

two elements can be influencing the results. The longissimus dorsi has extra anchoring spots 

on the vertebral processes through its extension along the axial column (Fratani et al. 2018a), 

which might also contribute to elastic activity. Regarding the other case, the origin of 

coccygeosacralis is only partially tendinous, therefore the direct muscle insertion on bone also 

plays an important role on force transmission. These results highlight the risks of 

generalizations and the importance of taking into account the particularities of each element, 

as pointed out by Ponssa et al. (2018) in their study of muscles and bone crests.  

Tendinous proportions of tendo-muscle units from the pectoral girdle (SC) and from the 

hindlimb (TEN, FL and FT-IV) were significantly different for all locomotor/habitat use 

categories. Forelimbs and pectoral girdle play an important role on the stabilization of the 

body and energy dissipation during landing (Akella & Gillis 2011). Simultaneous contraction 

of both extensors and flexor elements protects the joints, and the resulting forces are directed 

medially through the pectoral girdle (Emerson 1983; Kardong 2009). The supracoracoideus-

coracoradialis muscle extends from the epicoracoides, the medial-most elements of the 

pectoral girdle, has its interface between muscle and tendon on the ventral shoulder region, a 

long tendinous extension throughout the humerus and inserts on the proximal radioulna 

(Fratani et al. 2018a). Akella & Gillis (2011) found a positive relation between jump distance 

and SC muscle activity, pointing to a central role of this unit on the dissipation of landing 
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forces. Surprisingly, jumper species such as Leptodactylus chaquensis and L. latinasus 

showed lower values for SC tendinous proportion when compared to hopper-terrestrials. 

However, previous data on a hand flexor tendon ultrastructure of the former Leptodactylus 

species showed impressive high values of collagen fibril diameter associated to the absorption 

of landing forces (Abdala et al. 2018). Thus, other properties of the SC tendon might be 

contributing to its functionality on species with more demanding locomotor modes. 

Hindlimb elements, in turn, participate mostly on the take-off phase of jumping (Přikryl 

et al. 2009). Among the tendo-muscle units with significant relation with locomotion/habitat 

use, the tenuissimus is a leg extensor (Přikryl et al. 2009); the fascia latae does not have a 

clear function but it is thought to promote optimal function of thigh elements by increasing 

the overall tension (Fairclough et al. 2007); and the flexor tendon of digit IV (hindlimb) is 

mostly related to the propulsion for take-off (Nauwelaerts & Aerts 2006). Our results indicate 

that jumper-arboreal species have a higher tendinous proportion of FL and TEN, while 

species of other locomotor/habitat use categories showed lower and similar values of 

tendinous proportions. The opposite pattern was observed for FT-IV, in which all 

locomotor/habitat use categories have similar tendinous proportions but the jumper arboreal 

species showed a relatively lower value. 

Jumper-arboreal taxa distinguished themselves from all others species, with higher 

tendinous proportions for half of the tendo-muscle units tested. Locomotion on arboreal 

habitats requires precise movement in a complex three-dimensional stratus with the additional 

challenge of gravity (Sustaita et al. 2013). In anurans, anatomical traits such as intercalary 

skeletal elements, adhesive sub-digital pads, and forelimb tendon patterns have been related to 

arboreality (Manzano et al. 2007, 2008, 2018; Sustaita et al. 2013). The higher tendinous 

proportions on limb and girdle tendo-muscle units shown by jumper-arboreal species in our 
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data can be related to more jump power and precision in movement while allowing the 

possibility of a lighter body, favoring vertical habitat occupation. It should be also considered 

that power amplification improves jumping activity (Roberts & Azizi 2011). Power 

amplification is achieved through elastic elements such as tendons, which slowly stores 

energy from muscle work and releases it rapidly (Roberts & Azizi 2011; Roberts et al. 2011; 

Astley & Roberts 2012, 2014). This unique feature of tendons can explain their increased 

proportion in tendo-muscle units that requires energy storage to fulfill an efficient jump. This 

power amplification can be especially relevant in those tendons such as the Achilles tendon, 

which act as a catapult during take-off in jumping (Astley & Roberts 2012). 

Another interesting result is the differentiation between jumper-terrestrial and jumper-

arboreal species from all others, with the highest and the lowest tendinous proportion of 

coccygeosacralis, respectively. This muscle-tendon unit originates mainly on the sacral 

diapophysis and stabilizes the urostyle on a horizontal plane during locomotion (Emerson & 

De Jongh 1980; Fratani et al. 2018a). Jumper-terrestrial species included in this study, such as 

some species of Leptodactylus and Pseudopaludicola have a very specific sacral morphology, 

characterized by rod-like diapophysis (IIB of Emerson 1979, 1982). While jumper-arboreal 

taxa, represented mainly by Centrolenidae species, have broader diapophyses enveloped by 

wide ligaments (IB of Emerson 1979, 1982). The two morphologies are related to different 

jump mechanisms, respectively vertical rotation and fore-after sliding of the pelvic girdle in 

relation to the main axis of the body (Emerson 1982, Reilly & Jorgensen 2011). Our results 

suggest a stronger tendinous participation of the CS tendon on the locomotion of terrestrial 

jumpers, and offers evidence that new tendinous traits could possibly be useful for the 

diagnosis of pelvic types. 
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Tendinous proportions of the triceps brachii were significantly different for jumper-

arboreal and jumper-burrower species, with higher values for the latter. This tendo-muscle 

unit is a forelimb extensor and, during locomotion, is related to energy dissipation of landing 

forces (Duellman & Trueb 1986; Cox & Gillis 2015). Tendons can act as dampers, serving as 

a power attenuation mechanism by absorbing mechanical energy and releasing it more slowly 

(Azizi & Roberts 2010; Konow & Roberts 2015). A high tendinous proportion of TB in 

jumper-burrowers is unexpected, since these species burrow using hindlimbs and snout 

(Heyer 1978; Ponssa & Medina 2016). The jumper-burrower species included in this study 

are mainly part of the Leptodactylus fuscus group, in which burrowing behavior is related to 

reproduction and males build incubation chambers for clutch deposition (Heyer 1969, 1974). 

Thus, we speculate that this result could be related to other ecological factors not included in 

this study, such as reproductive behavior. Forearm muscles are directly involved in the 

clasping mechanism during amplexus (Oka et al. 1984; Liao et al. 2012), and TB was one of 

the few tendinous elements in which we have found significant differences between males and 

females. This outcome is especially interesting and should be further investigated since sexual 

dimorphism was not found in other morphological traits of the L. fuscus group by previous 

studies (Ponssa & Medina 2016; Ponssa et al. 2018). 

Among the evolutionary models included in the analysis, Ornstein-Uhlenbeck had a 

better fit for most models. It is important to highlight, however, that differences in wAIC 

among the tested models are not strong enough to come to a definite conclusion. This low 

resolution of the adaptive optimum model might be explained by recent microhabitat 

transitions in Anura (Moen et al. 2016). Consequently, species may not have been in their 

current microhabitat long enough to reach its estimated morphological optimum (Moen et al. 

2016). Still, our results are consistent with previous studies which have also estimated a 
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phenotypic optimum for morphological traits in tetrapods (Soliz et al. 2017; Tulli et al. 2016; 

Moen et al. 2016; Fratani et al. 2018ab; Ponssa et al. 2018). Additionally, optimization 

showed a distribution of tendo-muscle values highly correspondent to the greater clades 

(Leiuperinae, Leptodactylinae and Centrolenidae). It is possible that these results derive from 

the coincidence between locomotion/habitat use categories and monophyletic clades for most 

cases in our study group (e.g. all jumper-arboreal species are centrolenids). 

4.1 Conclusions 

In summary, our main findings support the hypothesis that tendon variables respond to 

mechanical demands and are also affected by the shared history among species. Overall, our 

results indicate a correlation between tendons and muscles, a divergence of tendinous 

morphology related to locomotion and habitat use, and congruence with phylogeny. It also 

provides a framework for testing other potential cases of tendinous phenotypic evolution in 

Anura. More generally, it adds evidence to a pattern of an interconnected effect between 

environment and shared phylogenetic history both influencing phenotypic diversity. This 

pattern has been consistently found in vertebrates (e.g. Muschick et al. 2012; Moen et al. 

2016). 
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Figure captions 

Fig. 1. Schematic representation of the studied tendons (colored) and muscles (dashed lines) 

in dorsal (A) and ventral (B) view. Tendons highlighted in orange were used exclusively for 

tendon x muscle force analysis, and all tendons (both orange and brown) were used in the TM 

x locomotion and habitat use analysis. Abbreviations: coccygeosacralis (CS); flexor digitorum 

communis (FDC); fascia latae (FL); longissimus dorsi (LD); puboischiofemooralis internus B 

(PIB); supracoracoideus-coracoradialis (SC); Achilles tendon (AT); triceps brachii (TB); 

flexor tendon of digit IV (TD-IV); tenuissimus (TEN). 

Fig. 2. Composite tree representing the phylogenetic relationship of the analyzed taxa. 

Categories of locomotor mode and habitat use: jumper-arboreal (JA); hopper-terrestrial (HT); 

jumper-burrower (JB); jumper-swimmer (JS); jumper-terrestrial (JT); swimmer (SW). 

Fig. 3. Relationships of (log-transformed) tendons and muscle areas with p-values, 

highlighted with asterisks (*) when significant. 

Fig. 4. Boxplots comparing tendinous proportions among different categories of locomotion 

and habitat use. Boxes represent the 25%/75% quartiles, and the median is shown with a 

horizontal line. Significantly different groups are highlighted with an asterisk (*). 

Abbreviations: jumper-arboreal (JA); hopper-terrestrials (HT); jumper-burrowers (JB); 

jumper-swimmers (JS); jumper-terrestrial (JT). 

Fig. 5. Optimization of tendinous proportion of each tendon-muscle unit. Low values are 

represented in blue, intermediate values in green, and high values in yellow. 
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Table 1. Summary of tendinous proportions for each tendo-muscle (TM) unit. 

Abbreviations: coccygeosacralis (CS); flexor digitorum communis (FDC); fascia latae 

(FL); longissimus dorsi (LD); puboischiofemoralis internus B (PIB); supracoracoideus-

coracoradialis (SC); Achilles tendon (AT); triceps brachii (TB); tenuissimus (TEN); 

flexor tendon of digit IV (FT-IV). 

 CS FDC FL LD PIB SC AT TB TEN FT-IV 

Mean 0.41 1.53 3.14 0.48 0.72 1.21 0.15 0.23 0.34 2.34 

Standard deviation 0.12 0.20 1.43 0.15 0.21 0.26 0.04 0.06 0.08 0.49 

Maximum value 0.89 2.70 9.97 1.21 1.54 2.82 0.33 0.47 0.69 4.21 

Minimum value 0.08 0.89 0.23 0.09 0.24 0.58 0.07 0.09 0.18 1.01 

 

Table 1



Table 2. Locomotion/habitat use categories with significant differences in tendo-muscle 

(TM) under different evolutionary models (evol models). Abbreviations: TM units: 

coccygeosacralis (CS); flexor digitorum communis (FDC); fascia latae (FL); 

longissimus dorsi (LD); puboischiofemoralis internus B (PIB); supracoracoideus-

coracoradialis (SC); Achilles tendon (AT); triceps brachii (TB); tenuissimus (TEN); 

flexor tendon of digit IV (FT-IV). Evolutionary models: BM: brownian motion; OU: 

Ornstein-Uhlenbeck; EB: accelerated (+) and deaccelerated (-) early burst. 

Locomotion/habitat use: jumper-arboreal (JA); hopper-terrestrial (HT); jumper-

burrowers (JB); jumper-swimmers (JS); jumper-terrestrial (JT). 

TM/ 

Evol models 
BM OU EB+ EB- 

CS JA JA - JT JA - 

FDC JA JA JA JA 

FL JA 

JA - HT  

JB - JS 

JT 

JA - HT 

JB - JS 

 JT 

JA 

LD JA JA JA - 

PIB JA 
JA - HT 

JB - JT 
JA JA 

SC JA 

JA - HT 

JB - JS 

JT 

JA - JB 

JS - JT 
JA 

AT JA JA JA - 

TB JA JA - JB JA - 

TEN JA 

JA - HT 

JB - JS  

JT 

JA JA 

FT-IV JA 

JA - HT 

JB - JS 

JT 

JA - JB 

JS 
-  

 

Table 2



Table 3. Akaike (AIC) and weighted Akaike (wAIC) values for each evolutionary 

model included in the analysis. Abbreviations: coccygeosacralis (CS); flexor digitorum 

communis (FDC); fascia latae (FL); longissimus dorsi (LD); puboischiofemoralis 

internus B (PIB); supracoracoideus-coracoradialis (SC); Achilles tendon (AT); triceps 

brachii (TB); tenuissimus (TEN); flexor tendon of digit IV (FT-IV). The best model for 

each tendo-muscle unit are highlighted in bold. 

 

BM OU EB+ EB- 

AIC wAIC AIC wAIC AIC wAIC AIC wAIC 

CS -90 0.08 -93 0.33 -94 0.57 -18 <0.01 

FDC 64 <0.01 47 0.99 58 <0.01 66 <0.01 

FL 327 0.16 328 0.09 324 0.65 328 0.08 

LD -20 0.01 -28 0.84 -25 0.143 -18 <0.01 

PIB 21 <0.01 7 0.97 14 0.019 23 <0.01 

SC 60 <0.01 43 0.99 54 0.004 62 <0.01 

AT -227 <0.01 -261 0.99 -234 <0.01 -224 <0.01 

TB -169 <0.01 -200 0.99 -176 <0.01 -166 <0.01 

TEN -127 <0.01 -149 0.99 -133 <0.01 -125 <0.01 

FT-IV 180 <0.01 153 0.99 173 <0.01 183 <0.01 

 

Table 3
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