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ABSTRACT. — We classify infinite-dimensional decomposable braided vector spaces arising from
abelian groups whose components are either points or blocks such that the corresponding Nichols
algebras have finite Gelfand—Kirillov dimension. In particular we exhibit examples where the
Gelfand—Kirillov dimension attains any natural number greater than one.
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1. INTRODUCTION

The study of Hopf algebras with finite Gelfand—Kirillov dimension (abbreviated
GKdim) received considerable attention in the last years, see e.g. [AAH]I, Bl, B2,
BG, B+, EG, G, R] and references therein, or [A] for GKdim = 0. By the lifting
method [AS], one is naturally led to consider the problem of classifying Nichols
algebras with finite Gelfand—Kirillov dimension.

Let k be an algebraically closed field of characteristic 0, let I" be an abelian
group and let V e (LYD such that dim V is infinite and countable. In this paper
we contribute to the following question: when GKdim #(V) < «0?

We first show that the underlying braided vector space is locally finite, see
Theorem 3.7. Then we consider two classes of braided vector spaces with infinite
basis: those of diagonal type, and those that are sums of points and blocks. The
classification of those V of diagonal type with connected diagram such that
GKdim Z(V) = 0 follows a well-known pattern, see Proposition 4.1. We have
proposed in [AAH1, 1.2]:

CONJECTURE 1.1. If V is a finite-dimensional braided vector space of diagonal
type such that GKdim Z(V) < oo, then it has an arithmetic root system.

In other words, such ¥ should belong to the classification in [H2]. Some evi-
dence on the validity of this Conjecture is offered in [AAH2], where we show that
it is valid for rank 2 and for affine Cartan type. Assuming this Conjecture, it is
not difficult to prove:

PROPOSITION 1.2. Let V be infinite-dimensional and of diagonal type with con-
nected diagram. If GKdim #(V) < oo, then GKdim Z(V) = 0.
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We omit the proof which is analogous to the proof of Proposition 4.1.
Thus the classification of the braided vector spaces with infinite basis of diagonal
type whose Nichols algebra has finite GKdim would be the list in Proposition
4.1.

Our main result, Theorem 5.5, provides the classification of those V in the
second class (braided vector spaces whose components are blocks or points de-
scribed in §5.2) such that GKdim #(V) < oo. This result generalizes, and is based
on, [AAHI1, Theorem 1.10] — in particular it assumes the validity of Conjecture
1.1. In fact, the class considered here is an extension of that in [AAH1, Definition
1.8]. As illustration, we describe examples of Nichols algebras of infinite rank
with GKdim = n for all n € N>,.

We also observe that [AAHI1, Theorem 1.10] does not conclude the classifi-
cation of finite-dimensional braided vector spaces arising as Yetter—Drinfeld
modules over abelian groups whose Nichols algebra has finite GKdim, since the
determination of those containing a pale block is still open, see [AAHI, §8.1].
Correspondingly our Theorem 5.5 does not conclude the classification of those
V as above whose Nichols algebra has finite GKdim.

Finally, we explain how to obtain for some of these examples new pointed
Hopf algebras with finite GKdim (albeit not finitely generated).

2. PRELIMINARIES

2.1. Conventions

If / < 0e Ny, thenwesetl, g={/,/+1,...,0}, 1y =1 9. Let Gy be the group
of roots of unity of order N in k and G}, the subset of primitive roots of order N;
Gy = Upyen Gu. All the vector spaces, algebras and tensor products are over k.

By abuse of notation, {a; : i € Iy denotes either the group, the subgroup or
the vector subspace generated by the «;’s, the meaning being clear from the
context.

All Hopf algebras in this paper have bijective antipode. Let H be a Hopf
algebra We refer to [AS] for the definitions of braided vector spaces and the cat-
egory #YD of Yetter-Drinfeld modules over H. As customary, we go back and
forth between Hopf algebras in Z/ VD and braided Hopf algebras — that is, rigid
braided vector spaces with compatible algebra and coalgebra structures [T]. If
V,W e };’yD, then ¢y : V® W — W ® V denotes the corresponding braid-
ing. If R is a Hopf algebra in {1 VD, then R#H is the bosonization of R by H.

We denote by G the group of multiplicative characters (one—dimensional rep-
resentations) of a group G. Let I be an abelian group. The objects in {LYD are
the same as I'-graded I'-modules, the I'-grading is denoted V = (—D Vy If
g € I and y e T, then the one-dimensional vector space k, with action and coac-
tion given by g and y, is in # uYD.

Nichols algebras are graded Hopf algebras in ZYD, or also braided graded
Hopf algebras, coradically graded and generated in degree one. See [AS] for
alternative characterizations.
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2.2. Convex PBW-bases and Gelfand—Kirillov dimension

Our reference for the notion and properties of Gelfand—Kirillov dimension is
[KL].

Let 4 be an algebra. A PBW-basis of A is a k-basis B= B(P,S,<,h) of A
that has the form

B={ps{'...s{:teNg,s;€S,peP, s> >s,0<e <h(s)},

where P and S are non-empty subsets of 4; < is a total order on S and / is
a function /4 : S — N U {0} called the height. The elements of S are called the
PBW-generators.

From now on we assume that P = {1} and that S is finite or countable with
a numeration S = {sy,s,...} such that i < j iff 5; <s;. Then we may express
any be B, b #1, as b=sy ...s7" where 0 <e¢; < h(s;), i € ly, and ey # 0; we
set

degh = (e1,...,en,0,...) € Ny

Let < be the lex1cograph1cal order, reading from the right, on the set N ) of ele-
ments of finite support of Ny’ and let 5 € N< ) be the element with all 0 s except
1 in the place j. We cons1der the N( -ﬁltratlon on A given by

Af:<ssn"'sfl EB: (817827"'> j (ﬁ,ﬁ,)>7
S=U 1) € Thatls Ar =<be B:degh = f).

The following Deﬁmtlon Lemma 2.2 and Remark 2.3 are inspired by
[DCK].

—

DEerFINITION 2.1. The PBW-basis B is convex if (Af)feN(N)
filtration. Y

s an algebra

LEMMA 2.2. The PBW-basis B is convex if and only if

(a) for every i, j e N withi < j, there exists J;; € ls such that

(2.1) sisp = Zysisi+ Y Ari
S <0i+6;
(b) for every i € N such that h(s;) € N,
(2.2) e N4y

S <h(si)o;

PrOOF. If Bis convex, then (a) and (b) follow directly.
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Now assume that (a) and (b) hold. We claim that
(2.3) sidy C Apys, forall f=(fi, fo,...) e NV iel

Let N(f) = max{i € N : f; # 0}. We prove the claim by induction on N(f).

If N(f) =1, then f =no, for some n e N. By (2.2) we have that sf’(sl) €
Ans)-1)s, if h(s1) € N. Hence the subalgebra generated by s is either isomorphic
to k(7] if i(sy) = oo or else to k(t]/<{my, > if h(s;) € N (where my, is the minimal
polynomial of s;), and the claim follows for i = 1. If i > 1, then s;s{ € 45,15, by
definition.

Now assume that N := N(f) > 1 and the claim holds for all e such that
N(e) < N. We have to prove that

s,s{,". 51 € Arys, forall fi e Ng, i e l.

Now we use induction on fy. Set [/ = [ —dy € NSN). Hence N(f') < N.

We assume that fy > 1 and the claim holds for all e such that either N(e) < N
or else N(e) = N and ey < fy. The case fy =1 follows as the recursive step.
We have three cases. If either i > N or else i =N and h(sy) > fy + 1, then
s,s{, 51{1—1 51 € Ay, by definition.

If i = N and h(sy) = fy + 1, then we use (2.2) and the inductive hypothesis:

sy Vi slie DD Al s
e<h(sn)oy

h (SN) -1

— Z Z shAasPt ]

c Dy > skAa C Aoy € Arioy-

Finally, let i < N. By (2.1),

s,s,’&”s{,‘ | slf‘ € /liNsNS,s{,“ ls/(,“’ll .Sf‘
+ Z Aes{," ! f’“ slfl
e<0;i+on
By inductive hypothesis sls]f\,V ls]fv’vi s1 € Asiys,. Thus, by definition,

Sv—=1 Sy
SNSISN Sy - s1 € Aris,.

On the other hand, if e < J; +Jy, then either ey =0 or else ey =1 and
e; =+ =ey_1 = 0. In the first case, by inductive hypothesis,

Sv—1

AP sl YT YT s A € Aoy € Apio
d:N(d)<N j=0
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In the second case, Ae C 3,y (a)<; SNAa; by inductive hypothesis again,

A, sf“ lsj(,” 1. g Z sNAdsf’V 1s{}" 1. {1
d:N(d)<i
C Z sNApiia C snApiys, C© Arys,-
d:N(d)<i
Finally, from (2.3), A.Ay C A,y foralle, f € N(()N). O

REMARK 2.3. Assume that in (2.1), 4; # 0 for all i < j. Then the associated
graded algebra gr A4 is a (truncated) quantum linear space: gr 4 is the algebra pre-
sented by generators s; and relations

. h(si
8i8j = Aysjsi, 1< J, S; () — 0, h(s;) < o0.

If S is finite, then GKdim A = GKdimgr4 = |{s € S : i(s) = o0 }|, hence S is a
GK-deterministic subspace of 4, cf. [AAH1, Lemma 3.1].

REMARK 2.4. Let 4, A’ be subalgebras of an algebra C which have convex
PBW bases with PBW-generators S and S’ respectively. Assume that for each
s € S, t e S’ there exists 4y, € ks such that st = 4,5, and that the multiplication
induces a linear isomorphism C ~ 4 ® A’. Then C also has a convex PBW basis
with PBW-generators Su S’.

REMARK 2.5. Let 4 be a pre-Nichols algebra of a braided vector space of
diagonal type. Then % has a convex PBW basis by [Kh, Theorem 2.2]. Here we
use the deg-lex order [Kh, §1.2.3].

REMARK 2.6. By inspection, every Nichols algebra %(1) with finite GKdim
appearing in [AAH1, §4, 5, 7] has a convex PBW basis.

3. LOCALLY FINITENESS

Recall that a family & of elements of a partially ordered set (%, <) is filtered if
given U, W € §, there exists Z € Fsuchthat U < Z, W < Z.

For instance, the set of Yetter—Drinfeld submodules of a given Yetter—
Drinfeld module is partially ordered by inclusion; and the family of its finite-
dimensional submodules is filtered. A Yetter—Drinfeld module is locally finite if
it is the union of its finite-dimensional submodules.

However the family of finite-dimensional braided subspaces of a braided vec-
tor space is not necessarily filtered (in the set of braided subspaces ordered by
inclusion).

ExXAMPLE 3.1. Let>:Z x Z — Z be the map given by i>j=2i—j, i,j € Z.
Let V' be a braided vector space with a basis (x;);., and braiding c(x; ® x;) =
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Xjnj @ Xi, I, j € Z. Then the braided subspace generated by xo and x; is V, thus
the family of finite-dimensional braided subspaces is not filtered.

DEFINITION 3.2. A braided vector space is locally finite if it is the union of its
finite-dimensional braided subspaces and these form a filtered family (of the set
of braided vector subspaces).

REMARK 3.3. A braided vector space is locally finite if and only if every finite-
dimensional subspace is contained in a finite-dimensional braided one.

If W e YD is a locally finite Yetter—Drinfeld module, then W is a locally fi-
nite braided vector space, but the converse is not true even if GKdim Z(W) < oo.

EXAMPLE 3.4. Let [ =72 g=(1,0), h=(0,1). Let W e LYD with basis
(Wi);ey such that W = W,, g-w; = —w; and h-w; = w;; for all i e Z. Then
the action of I' on W is not locally finite, but W is a locally finite braided
vector space, Z(W) = AW and GKdim Z(W) = 0. Furthermore, Z(W)#kI” =
k{g*!, ht! wy) is a finitely generated graded algebra. By [AAH1, Example 2.4]
(compare with [AAH1, Lemma 2.2]),

GKdim(B(W)#kI') = oo > 2 = GKdim Z(W) + GKdim kI".

QUESTION 1. Let (V,c¢) be a braided vector space with GKdim #(V') < co. Is
(V,¢) alocally finite braided vector space?

The defining relations of Nichols algebras of locally finite braided vector
spaces could be determined from their finite-dimensional counterparts by the fol-
lowing fact. If (7, ¢) is a braided vector space, then set 7 (V') = the ideal of T'(V)
of relations in Z(V).

LemMaA 3.5. Let (V,c¢) be a braided vector space and let & be a filtered family
of braided subspaces such that V =y, .o W. Then

(3.1) Jwy= gm,
Weg

(32) BV)=J 2m),
Weg

(3.3) GKdim Z(V) = sup GKdim Z4(W).
Weg

PRrOOF. Since § is filtered, the right-hand side Z of (3.1) is a homogeneous Hopf
ideal of T'(V) that intersects k@ V' trivially, hence Z C J(V'). Conversely, let
re J(V). Then there exists W € § such that re T(W). Now J(V)nT(W)
is a homogenous Hopf ideal of T(W) that intersects k@ W trivially, hence
TJWVnT(W)CcTJ(W) and re J(W). Thus Z D J(V). The contention C
in (3.2) is immediate as #(V) is generated by V/, and we also know that
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B(W) — (V) for any braided subspace W. Finally (3.2) implies (3.3) using
again that § is filtered. O

COROLLARY 3.6. Let (V,c¢) be a locally finite braided vector space. Then

(3.4) JV) = U JWw),
W braided subspace
dim W<w
(3.5) GKdim4(V) = sup GKdim Z(W).
W braided subspace
dim W<w

PrOOF. Apply Lemma 3.5 to the family of finite-dimensional braided subspaces
of V. O

3.1. Local finiteness over an abelian group

Let now I" and V be as in the Introduction. Then V =P .V, € [LVD.

gel’
THEOREM 3.7. If GKdim #(V) < o, then V is a locally finite braided vector
space.

ProoF. If v =73 v, € V, where v, € V,, then suppv := {g € I" : v, # 0}. Also,
suppV ={geI':V, #0}.

Step 1. Let V be a I'-module. If the action of h € T on V' is not locally finite, then
there is v € V such that (v,), ., is linearly independent, v, = h" - v.

Let ve V and v, :=h"-v. Assume that there is a non-trivial relation
Zq <n<p@nvn = 0 with p — ¢ minimal; applying 47, we may assume that ¢ = 0.
Then (v, : 0 <n < p—1) is both stable by the action of & and h~ L If this
happens for all v € V, then the action of / is locally finite.

Step 2. Let g € supp V. Then the action of g on V, is locally finite.

Otherwise, by Step 1, there is v € V, such that (v,), ., is linearly independent,
v, :=¢g"-v. Now U :=<v,:ne Z) is a braided vector subspace of V, since
(v, ® Uyy) = Vet ®v,. Then Z(U) = T(U). Indeed, let Qn = qug M, e
End 7"(U) be the quantum symmetrizer, so that j"(U ) = T"(U)/kerQ,, and
consider the Z-grading in 7'(U) given by U,, = {v,,», m € Z. Then M,(T"(U),,)
=T"(U),,14(» for all m € Z, where / is the usual length. Since S, has a unique
element of maximal length, Q, is injective, proving our claim. Whence 4(U) and
a fortiori (V) have infinite GKdim.

Let g € suppV and 4 € k™. As usual we set\/; ={veV,:g-v= v}, \/
{veV,:(g—1)" v—Oforn>>0} ByStepl V=@, 1 V. i Slncerlsabe-
lian, its action preserves V and \/ ) for all /.
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Step 3. Let g,h € suppV and 4 € &*. Then the action of h on \/; is locally finite.

Otherwise, by Step 1, thereis v € \/Cf such that (x,), ., is linearly independent;
here x,, := 1" - v. Now ¢(x, ® X;) = AX;y ® X, so that A = —1 by [AAH2, Propo-
sition 3.1]. We distinguish two cases:

(A) The action of g on Vj is locally finite.
(B) The action of g on Vj is not locally finite.

Assume (A). By Step 2, there are y € V;, and x4, ¢ € k™ such that

g-y=umy, h-y=qy.

We may assume that V=V, ®V,, V,=<x;:ieZ) and V, =y). Let
n € Nxy. Then K[n| = {x, — x,4, : 7 € Z) is a Yetter—Drinfeld submodule of
V and Uln] = V/K[n] = U[n], @ Uln],, where {¥;},_, is a basis of Uln|, and
Uln], = Vi We fix { € G) and set z; = >, _; {7/x;. Thus

iel,

. A
g-z=-z, h-z=) (% =Uz

iel,
and the braiding of U[n| satisfies

(zi®z) = -z ®z, c(z®@y) =w® z,
c(Y®z)=Uz®y, (y®y)=qr®y.

That is, U[n] is of diagonal type with diagram

We consider five cases:

® g ¢ G,. Suppose that GKdim #(U[n]) < oo. By [AAH2, Lemma 3.3] there
exist /1, j € No such that ¢"(ul) = 1 = ¢/u, so ¢/ € G/, a contradiction.

® g e Gy, N > 24. Suppose that GKdim Z(U[2N]) < co. By [AAH2, Theorem
4.1], each subdiagram of rank two appears in [H2, Table 1]. Thus, for each
i € lay there exists a¢; € {—3,—2,—1,0} such that ¢%(ul') =1. Hence { =
q“~*“ € Gy, a contradiction.

® g e Gy, 3 < N < 24. Suppose that GKdim 4(U[100]) < co. By [AAH2, Theo-
rem 4.1], each subdiagram of rank two appears in [H2, Table 1]: By inspection
the labels of the edges belong to Uy, ,, Gk. Thus { = (ul)u~" € Uyey,,, Gk
a contradiction.
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e ¢ = —1. Suppose that GKdim #(U[n]) < oo for all n > 2. If u # +1, then the
braided vector space R,(U[n]) obtained by reflection at the vertex x, has
diagram

A similar work as in the previous cases shows that GKdim #(R,(U[n])) = oo
for some n, depending on the case. When u = +1, we consider R;(U[n]) and
conclude that GKdim #(R,(UJn])) = oo by an analogous analysis. But this is
a contradiction with [AAH2, Theorem 2.4].

e g = 1. Here GKdim #(U[2]) = oo, since either x # 1 or else —u # 1, and then
[AAHI1, Lemma 2.8] applies for a subspace of U[2].

In any case there exists n >2 such that GKdim #(U[n|) = oo, hence
GKdim 4(V) = 0.

Assume (B). Then, by Step 1, there is w € V! such that (y,),., is linearly
independent; here y, :=g"-w. Thus we may assume that V =V, ®V,, V, =
{xj:ieZy and V, =<y, :reZy. Now K =y, — y,y1 :r € Z) is a Yetter—
Drinfeld submodule of V and U=V/K=U, ® U,, where U, =V, and
dim Uj, = 1. So, we are in the situation (A).

Lemma 3.8. Let Y =<y,,...,7,» be a finitely generated abelian group and let
00— W — W — W" — 0 be an exact sequence of Y-modules. If the actions of
Y on W' and W' are locally finite, then so is the action of X on W.

PROOF. Let w+— w denote the projection W — W". Pick w € W. Then there
is a Y-stable submodule U = {ivy, ..., Ww,) of W" such that w € U. That is, there
are scalars o;, f;; € k such that

_ — _ F—
w= E Wi, Vg W= E ﬂkjw,».
i i

Hence there are vy, vy; € W' such that
w:Zoc,»w,~+vo, yk'w,-:Zﬂ,ijw,~+vk,», jels, kel,.
i i

Let Z be a finite-dimensional Y-submodule of W’ containing vy, and all the
vg’s. Then Z + {(wi);, > is a finite-dimensional Y-submodule of W that con-
tains w. O

From now on, we assume without loss of generality that I" is generated by
supp V.
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Step 4. The action of any finitely generated subgroup of T on V is locally finite.

Let Y = {hy,...,h» be a finitely generated subgroup of I'; we may assume
that hy,...,h € supp V. We first claim that the action of Y on V, is locally finite
for any g € I'. Indeed, by Zorn there is a maximal locally finite Y-submodule w’
of V,. If W' # V,, then consider U, = V,/ W', U, = V), for h € suppV n Y and
U= [U &) (‘Bha Uy By induction on the number r of generators and using Step
3, there exists y € Y such that UZ #0. Pick we UZ — 0 and set W" = k. Let
W be the submodule of V, generated by W’ and a pre image of w. Then W is a
locally finite Y-submodule of V,, contradicting the max1mahty of W', by Lemma
3.8. This shows the claim and a standard argument gives the Step.

Step 5. V is a locally finite braided vector space.

By Remark 3.3, it is enough to consider a vector subspace V = {vy,..., 0y ).
Let S={h,....n} =Uqy, suppvi, Y =<I,....h» and Vg=@@, V.
Then Vg is a locally finite Yetter—Drinfeld module over kY by Step 4, hence it
is a locally finite braided vector space, and V is a contained in a finite-dimensional
braided vector space. O

3.2. Decompositions

As in [Gr, Definition 2.1], a decomposition of a braided vector space V" is a fam-
ily (V3);; of subspaces such that

(3.6) V=@V, c(Vi®V)=V,®V, ijel.

iel
Ifi;éjel,thenwesetcij:qy@yj:V,~®Vj—>Vj®V,~.

UESTION 2. Assume that ¢jic; = idy,gy, for all i # j € I. Is it true that
Jjicj = ® J

(3.7) GKdim (V) = ) ~ GKdim #(V;)?

iel

If yes, then GKdim #(V') < oo implies GKdim #(V;) =0 for all but finitely
many i € I.

If FC I, then Vp =(P,_, Vi is a braided subspace of V. Hence

ieF
F={Vp:FCI,|F| < x}

is a filtered family of braided subspaces of V; by Lemma 3.5, we have

(3.8) Jm = U Jwe),
FCI,|F|<w
(3.9) GKdim#% (V)= sup GKdim%(Vr).

FclI,|F|<wo
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Let F C I, |F| < oo; fix an ordering iy, ..., i of F. By the proof of [Gr, 2.2],
the multiplication induces a monomorphism of graded vector spaces

(3.10) BV)@BV) @ - @ B(Vy) — AV).

QUESTION 3. Is it true that

(3.11) GKdim Z(V) = > GKdim 2(V;)?

ieF

Assuming that dim V; < oo for all i € F? Assuming this and that the Hilbert
series of #(V;) is rational for all i € F?

4. DIAGONAL TYPE

A point of label g € k™ is a braided vector space (V,¢) of dimension 1 with
¢ =gqid. Let V be a braided vector space of diagonal type; that is there are
(xi);cr @ basis of V and q = (gy), ;s € k'*" such that g; # 0 and ¢(x; ® x;) =
g;x; ® x; for all 7, j e I. It turns out that there are interesting examples of
infinite-dimensional braided vector spaces of diagonal type with GKdim = 0, so
we also ask:

QUESTION 4. Classify all braided vector spaces (V,¢) of diagonal type with
matrix (¢;); jo;» where I is infinite countable such that GKdim #(}) < .

We first describe two classes of infinite-dimensional braided vector spaces
(V,¢) of diagonal type. Let / = N = {1,2,...} or Z. First, consider a = (a;); ;,
with Dynkin diagram as in Table 1. Then (gy); ;.; is of Cartan type a if g; # 1
and ¢;iq;; = g; holds for all i # j € lj.

To describe the second class, we recall from [H2] that the generalized Dynkin
diagram of a matrix (¢;), ;, such that g; # 1 is a graph with set of points 7, with
the following decoration:

o The vertex i is decorated with ¢; above; when the numeration of the vertex is
needed, it is stated below.

o Leti# jel. If gjq; =1, there is no edge between i and j, otherwise there is
an edge decorated with g;q;;.

Table 1. Infinite Dynkin diagrams

A, -~ —0—0-0—0—0—=--

Ay 0—0w0—0—0—-"--
BT 0<=0— 0 0—O0—-=--

C:x‘ 0=0—0 ~0—O0—---

D, 0—0—0-0—0—0—---
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Table 2. Some generalized Dynkin diagrams

Label 1 Diagram Parameter
Ai(pg) N o—on O_E)/lio_"'

A.(pq) Z ...70707‘81L07...

B.(p,v) N Jat o oo g=

B,(p,0) N et oo o——... gegg,q:_g
Co(pg) N L8 oo—o0— gt #1

All the diagrams in Table 2 obey the following conventions:

o qgelk™, qg+# +l.
o p:I— Gyisa function, p# 1;if 7 =N, then d =min{i € I : p= —1}. Then
—1, if p;=—1, .
i = o 1 licitl .
q { gorg~ ifp =1, (unless explicitly stated)
o They are locally of the following forms (unless explicitly stated)

The following matrices (¢;); ;; give rise to braided vector spaces (V,¢) with
GKdim (V') = 0, being unions of finite-dimensional Nichols algebras:

(@) (qi); je; of Cartan type as in Table 1, and g € G, — 1 forall i e 1.
(b) (9i); ;< of super type as in Table 2, and g € G, — 1 forall i e I.

Conversely, let V' be a braided vector space of diagonal type with connected
braiding, with a basis (x;),_; such that ¢(x; ® x;) = ¢;x; ® x;, where ¢;; € k™ for
alli,jel.

ProrosITION 4.1. If GKdim #(V) = 0, then either of the following holds:

(@) (qi); jeq is of Cartan type Ao, (I = Z), A+oo, By, Cop, 0or Doy (I =N), see
Table 1, and q;; € G, — 1 for all i € I.

(b) (44); jep is of super type Ayoo(P,q), A (P, 4), B (P, 4), Coo (P, q), 0r Do (p, q),
see Table 2, and g € G, — 1 for all i € I.

PrOOF. The argument is standard [K, Ex. 4.14]. Suppose that V7" is of Cartan
type. If the Dynkin diagram contains a point P with three concurrent edges, then
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V' contains a connected braided subspace U of dim m > 7 whose diagram con-
tains P; hence U is of Cartan type D,, by [H2]. Now since V" has a connected
braiding, one constructs recursively a braided subspace W of Cartan type D...
If W # V, then there is a point out of W connected to a point in D, but this
contradicts [H2]. So, V' = W is of Cartan type D.,. The argument in all other
cases is analogous. O

EXAMPLE 4.2. B, (p,{), { € G}, g = —(*. A set of defining relations of %(V) is
the union of those of the various By(p,{) described in [AA, 6.1.4], see also [An],
using Lemma 3.5.

5. DECOMPOSITIONS WHOSE COMPONENTS ARE BLOCKS OR POINTS
5.1. Blocks

Let ¢ € k™ and 7/ € Nsjy. Let V(¢,/) be the braided vector space with a basis
(Xi);cq, such that

c(xi®x1) =ex1 ®x;, (X, Qx)) = (ex;+x-1)®x;, i€l jel,.
This braided vector space is a called a block.

THEOREM 5.1 ([AAHI, Theorem 1.2]). GKdim Z(V(¢,/)) < oo if and only if
/=2 and ¢ € {+1}, in which case GKdim Z(V(e,/)) = 2.

5.2. A class of braided vector spaces

We consider in this Subsection braided vector spaces (7, ¢) of the following sort.
Let I be an infinite subset of @ such that 7 N (I + %) = (). We suppose that

(A) V has a decomposition V' =@, _, Vi as in (3.6). Furthermore, there exists
0 # J C I such that V; ~ V(¢g;,/;) is a block, j € J. Also, if i € [ — J, then V;
is a g;-point, with ¢;; e k*; we fix x; e V; —0,ie I — J.

LetJ, ={jeJ:¢g=+l,/; =2} By Theorem 5.1, we may (and will) assume
that J = J, uJ_. Given j € J, we fix a basis B; = {x;, x;,,} of V; such that the
braiding is given by

5% @ X (%1 %) ®x;
(c(xr ®xS))r,s€Bj = < e .

&% @ X1 (g1 +X7) ® X4

If i,hel—J, then the braiding ¢y is uniquely determined by g € k™:
cin = ¢inT, where t is the usual flip. Let

Vdiag: (‘D Vz
iel-J

Our next assumption deals with the braidings between blocks and points.
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(B) Forevery j € Jandi e I —J, there exist ¢;;, ¢;; € k™ and g;; € ks such that the
braiding between V; and V; is given by

(5.1) (¥ ®x;) = qjixi ® x;, c(xH% ® xi) = qjixi @ Xji1s
(52) cxi®x;) =qix; @ xi,  ¢(xi ® x;11) = qyi(x;41 + a5;) @ x;.
Then ¢jic; = id iff gj;g; = 1 and a; = 0. The interaction between the block j and

the point 7 is .#; = ¢;iq;. If g;;q;; = 1, then we say that the interaction is weak.
Also the ghost between j and i as

A

If 4; € N, then we say that the ghost is discrete.
We next impose the form of the braidings between two different blocks.

(C) For every j,k € J, j #k, there exist gy, qi; € k™ and ay, ay; € k such that
the braiding between V; and V. with respect to the basis B; and By as above
is given by

the braiding of V; @ lkx is given by (5.1) and (5.2);
same for the braldmg of Vi @ kx;;

(X1 @ X4 11) = i (Xpep L + apeXic) @ x5

C(xk+% ® xj+%) = ij(ijr% + agx;) ® Xt d-

Set r ~ s when ¢,5¢y # 1dy,g1,, ¥ # 5 € I. Let & be the equivalence relation on
I generated by ~. The last assumption is:

(D) V is connected, i.e. r ~ s for all r,s € 1.
5.3. Infinite flourished graphs

A flourished graph is a graph D with an infinite set [ of vertices and the following
decorations:

o The vertices have three klnd of decorations +, — and ¢ € k™; they are depicted
respectively as (H, H and 8. The set of all vertices of the first kmd is denoted by
J., and those of the second kind by J_. The vertices in J := J, U J_ are called
blocks, the remaining are called points.

o Ifi# h are points, and there is an edge between them, then it is decorated by
some Gy, € k* —1: 6 4%,

o If jisa block and i is a pomt, then an edge between j and i is decorated by ¥
for some ¥;; € k*; or not decorated at all.

The full (decorated) subgraph with vertices | — J is denoted Dgiy; it is a gen-
eralized Dynkin diagram [H2] whose set of vertices is possibly infinite.
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The set of connected components of Dg;,e is denoted by X'; we also set
Xin={XeX:|X|< o}, X,=X—Xgn.

Let V' be as in §5.2. We attach a flourished graph D to V' by the following
rules. The set of vertices of D is the infinite set /. The decoration obeys the fol-
lowing rules:

e If j € J., respectively j € J_, then the corresponding vertex is decorated as H,
respectively 5. Thus J, =J,, J = J. )
e If i e I — J, then the corresponding vertex is decorated as 3.
e There is an edge between r and s € [ iff r ~ 5.
olf jeJ,iel—J, qjqi =1 and a; #0, then the edge between i and ; is
{ ~2ay, jel.,
labelled by %;; = . .
ajj, jedJ_.
e Ifihel—J, i+#hand gyq, # 1, then the corresponding edge is decorated
by @i = qingni-

5.4. Infinite admissible graphs

The infinite flourished graphs arising from Nichols algebras in the class above
with finite GKdim are described in the following definition.

DEFINITION 5.2. An infinite flourished graph is admissible when the following
conditions hold.

(a) The set J is finite and non-empty.

(b) There are no edges between blocks.

(c) The only possible connections between a block and a connected component
X € Xjy, are described in Tables 3 and 4 (the point connected with the block
is black for emphasis). Here % € N, o € Gj.

Table 3. Connecting finite components and blocks; r ¢ G, .

1 @ 1 @ -1 1 -1 1 r

H—2—e B2 g2 @

Table 4. Connecting finite components and blocks; r € G, — Gs.

@ 1 [0} -1 )
H——e H——0:" B—— -5
—1 2 w -1 —1
° w % 1 s s 1 ° [} o
1 =l S 1 =l e 0, o
H ° o H ° o ° o o
S | -1 _ -1 —1 »? 2w
2 1 ° 1 o ... o 1 o 1 ° w 2 w @
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(d) There are only a finite number of connections between blocks and connected
components X € X, as in Table 3.

(e) Let X € Xg,. Then there is a unique i € X connected to a block.

(f) If X € X4, has |X| > 1, then it is connected to a unique block.

(g) If X = {i} € Xp, and ¢;; € G;, then it is connected to a unique block.

(h) D is connected.

(i) Given a connected component X € X, there is a unique block V; connected
to Vx and the corresponding flourished diagram is

-1 -1 -1 1 -1

1 -1
° o o o

(5.3) &

REMARK 5.3. This Definition extends [AAH1, Definition 1.9] to graphs with in-
finite sets of vertices. Besides this, the main difference is that only weak interac-
tions between blocks and points are allowed. Indeed, the only possible admissible
graphs in [AAH]1, Definition 1.9] having mild interaction are €; and €,, the for-
mer included in the latter, but neither contained in another admissible graph.

Another difference is that [AAH1, Definition 1.9] does not require connected-
ness but we deal with this in Corollary 5.7.

REMARK 5.4. Let V be asin §5.2; let j € J, i.e. V; is a block, and let X e X set
Vy =@,y Vi- Then B(V; @ V) ~ K#2%(V;) for a suitable Nichols algebra K,
see [AAH1, §4.1.4], and

GKdim Z(V; ® Vy) = GKdim K + GKdim #(V;) = GKdim K + 2.
Let T3, respectively T4, be the set of flourished diagrams in Table 3, resp. 4.

a) If the diagram of V; @ Vy belongs to 73, then GKdim #(V; @ Vy
j j

b) If the diagram of V; @ Vy belongs to T4, then GKdim #(V; @ Vy
J J

v

3.
2.
See [AAHI, Tables 2 and 3], and references therein.

THEOREM 5.5. Let V be a braided vector space as in §5.2 and let D be its infinite
flourished graph. The following are equivalent:

(I) GKdim#(V) < oo,
(I1) D is admissible.

Prookr. (I)= (II): First, (b) follows from [AAHI, Theorem 6.1]. Now J # 0
in (a) is part of the assumption (A). Let jj,...,Jj, be different blocks. Then
GKdim#(V;, @ --- @ Vj,) = 2t by the proof of [AAH]I, Theorem 7.1]. Hence J
is finite.

Let j € J be a block and X € Xy, connected to j. Then the interaction be-
tween them is weak as explained in Remark 5.3. By [AAHI1, Theorem 1.10], (c),
(e), (f) and (g) follow.

Let V; :(—Djej V; and let Xi,..., X, € X5, be such that the connection
between X; and a block is as in Table 3, for every /el,. Let V, =
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@Picx,o-oy, Vi- Then
GKdim 4(V) > GKdim Z(V, @ V,) > 2|J| + m,

by the formula at the end of the proof of [AAHI, Theorem 7.1], together with
Remark 5.4. This shows (d).
Also, (h) is the assumption (D). Finally, if X € X, then it is connected to a
block j by (D). Then (c) and (f) say that X and j should have the form in (i).
(II) = (I): By (c), we have a splitting X, = X3 [ [ X4 where

X3 = {X € Xp, : I € J such that V; @ Vy has diagram in 73},
Xy = {X € Xpn : 3j € J such that V; @ Vy has diagram in 74}.

By (a) and (d), the braided vector subspace

=(@) (@,

jEJ XekXs

has finite dimension. By [AAH]1, Theorem 7.1], cf. Remark 5.3,
d := GKdim #(Vy) < 0.

Given Y € X, and n € N, we denote by Y|n| the connected subdiagram of Y
with n vertices starting at the black point. Let us now consider finite subsets
F c Xy and G C X, together with a functionn: G — N, Y +— ny. We set

Vian =Y ® (D Vx) @ (D Vyp):

XeF YeG
By the proof of [AAHI, Theorem 7.1], cf. Remark 5.3,
GKdim(@(VRG,n) =d.

Since V is the filtered union of all the V¢ ¢ a’s, we conclude by Lemma 3.5 that
GKdim%(V) =d. O

Let now V' be a braided vector space as in 5.2 except that we do not assume
(D), i.e. connectedness. Let 2K be the set of connected components of J (do not
confuse with the set X' of connected components of Vyiae). Given K C I, we set as
above Vg = @, _, Vi. Let

Koo = {x e K : GKdim (V%) > 0}.

LEMMA 5.6. Let I} be a proper non-empty subset of I and I =1—1,. If
chicin = dyp,gy, for all i € I and h € I, then

GKdim (V) = GKdim B(V;,) + GKdim B(V7,).

PrOOF. We may assume that GKdim #(V},) < oo and GKdim #(V,) < 0.
Let F be a finite subset of / and F, = Fn 1, a=1,2, thus F = F; U F>. Then
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GKdim Z(Vr) = GKdim #(Vp,) + GKdim #(Vy,) since B(Vr) ~ B(VE) ®
#(VFE,) and both have convex PBW-basis, hence GK-deterministic subspaces,
see Remark 2.3 and [AAH]1, Lemma 3.1]. Hence Lemma 3.5 applies. O

COROLLARY 5.7. The following are equivalent:

(I) GKdim#(V') < .
(II) XK is finite; and for each x € XK, GKdim #(Vy) < co, either Vy is of
diagonal type or else it has an admissible flourished diagram.

Proor. (I)= (II): If xi,...,%, are different components in .o, then
GKdim 4(V) > d by Lemma 5.6. The second statement is evident and the third
follows from Theorem 5.5.

(I) = (I): By Lemma 5.6, GKdim 93(@“)1(>0 Vi) < o0; call it d. Then
GKdim #(@),, . Vx) < oo for any finite subset F of JK that contains XK.y by
the same result. By Lemma 3.5, the claim follows. |

5.5. Examples

We illustrate the previous result describing some examples of Nichols algebras of
infinite rank and finite GKdim.

EXAMPLE 5.8. Letl’ =N u {3}. Let £(4.,) be the braided vector space defined
by a matrix (¢;); ;. in such a way that it has a flourished diagram

0 1 —.1 1 —Ol —Ol -1 —Ol
1 2 3 J J+1

By Corollary 3.6 and [AAHI1, Proposition 5.31], the algebra #(2(A4.,)) has
GKdim = 2. Also it is presented by generators x;, i € ﬂ; with relations as in
[AAHI, Proposition 5.31], replacing 0 by co. A PBW basis is obtained by union
of PBW-basis of the algebras #(L(4y)), 0 € N.

EXAMPLE 5.9. Let (mg), ., be a family of natural numbers and [ =
Usken, ({&} x 0,) u {1,3}. Let ¥ be the braided vector space with flourished
diagram

] o
(2,2) (2,m)
—1 -1 -1
[0 NN le)
(3,2) (3,m3)
-1 -1




NICHOLS ALGEBRAS WITH FINITE GELFAND—KIRILLOV DIMENSION 99

By Corollary 3.6 and [AAH1, Proposition 5.31] the algebra %(V) is presented by
generators Xx;, i € H;, with the relations of the various subalgebras #(2(A4,,-1))
together with ¢g-commuting relations between the points in different 4,,_;’s (but
with various ¢’s). It has GKdim = 2 and a PBW-basis is constructed along the
lines of the proof of [AAH1, Theorem 7.1].

Variation: replace some (or all) the n;’s by oo.

EXAMPLE 5.10. Let I" = NU {3,3}. Let (%), (92);cn., be two families of
natural numbers and q = (g;), ;. giving rise to the flourished diagram

Gisin

H
2 Y1)
Let V' be the braided vector space with this diagram; notice that the subdiagram
spanned by {1,2,i} corresponds to a Poseidon braided subspace ;, as in [AAH],
§7], for every i € N>3. By Corollary 3.6, the algebra (V) is presented by gener-
ators x;, i € I, with the defining relations of the various %(B,), cf. [AAH1, Prop-
osition 7.7|, together with the ¢;-commuting relations for i # & € Nxj. It has
GKdim = 4 and a PBW-basis by collecting together those of the various %4(‘5;),
cf. the proof of [AAHI1, Theorem 7.1].

Variations of the preceding examples give rise to Nichols algebras with
GKdim any natural number distinct to 1 and 3. Allowing various connected com-
ponents, any natural number greater than one could be attained, see Lemma 5.6.

5.6. Hopf algebras with finite GKdim

Let 7 be a braided vector space as in §5.2; assume that its flourished diagram is
admissible.
A principal realization of V' over an abelian group I consists of

(i) a family (g;),., of elements of I,
(i) a family (y;);., of characters of I,
(i) a family (#,); ., of derivations of T,

such that

(54) Xh(gi) = {qin, l7h € Iv
(5.5) ni(gi) = ay, iel,jel.
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Given a principal realization the braided vector space V is realized in LYD,
hence we get a Hopf algebra by bosonization #(V)#kI". Notice that the realiza-
tion depends not only on the Dynkin diagram but actually on all the ¢;’s. For
convenient choices of the last, one can find an abelian group I' which is finitely
generated modulo its torsion. Then GKdim #Z(V)#kI” would be finite. We leave
to the reader the exercise of working out these ideas.
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