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Abstract. — We classify infinite-dimensional decomposable braided vector spaces arising from

abelian groups whose components are either points or blocks such that the corresponding Nichols
algebras have finite Gelfand–Kirillov dimension. In particular we exhibit examples where the

Gelfand–Kirillov dimension attains any natural number greater than one.
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1. Introduction

The study of Hopf algebras with finite Gelfand–Kirillov dimension (abbreviated
GKdim) received considerable attention in the last years, see e.g. [AAH1, B1, B2,
BG, B+, EG, G, R] and references therein, or [A] for GKdim ¼ 0. By the lifting
method [AS], one is naturally led to consider the problem of classifying Nichols
algebras with finite Gelfand–Kirillov dimension.

Let k be an algebraically closed field of characteristic 0, let G be an abelian
group and let V a kG

kGYD such that dimV is infinite and countable. In this paper
we contribute to the following question: when GKdimBðVÞ < l?

We first show that the underlying braided vector space is locally finite, see
Theorem 3.7. Then we consider two classes of braided vector spaces with infinite
basis: those of diagonal type, and those that are sums of points and blocks. The
classification of those V of diagonal type with connected diagram such that
GKdimBðVÞ ¼ 0 follows a well-known pattern, see Proposition 4.1. We have
proposed in [AAH1, 1.2]:

Conjecture 1.1. If V is a finite-dimensional braided vector space of diagonal
type such that GKdimBðVÞ < l, then it has an arithmetic root system.

In other words, such V should belong to the classification in [H2]. Some evi-
dence on the validity of this Conjecture is o¤ered in [AAH2], where we show that
it is valid for rank 2 and for a‰ne Cartan type. Assuming this Conjecture, it is
not di‰cult to prove:

Proposition 1.2. Let V be infinite-dimensional and of diagonal type with con-
nected diagram. If GKdimBðVÞ < l, then GKdimBðVÞ ¼ 0.



We omit the proof which is analogous to the proof of Proposition 4.1.
Thus the classification of the braided vector spaces with infinite basis of diagonal
type whose Nichols algebra has finite GKdim would be the list in Proposition
4.1.

Our main result, Theorem 5.5, provides the classification of those V in the
second class (braided vector spaces whose components are blocks or points de-
scribed in §5.2) such that GKdimBðVÞ < l. This result generalizes, and is based
on, [AAH1, Theorem 1.10] – in particular it assumes the validity of Conjecture
1.1. In fact, the class considered here is an extension of that in [AAH1, Definition
1.8]. As illustration, we describe examples of Nichols algebras of infinite rank
with GKdim ¼ n for all n a Nb2.

We also observe that [AAH1, Theorem 1.10] does not conclude the classifi-
cation of finite-dimensional braided vector spaces arising as Yetter–Drinfeld
modules over abelian groups whose Nichols algebra has finite GKdim, since the
determination of those containing a pale block is still open, see [AAH1, §8.1].
Correspondingly our Theorem 5.5 does not conclude the classification of those
V as above whose Nichols algebra has finite GKdim.

Finally, we explain how to obtain for some of these examples new pointed
Hopf algebras with finite GKdim (albeit not finitely generated).

2. Preliminaries

2.1. Conventions

If l < y a N0, then we set Il;y ¼ fl; lþ 1; . . . ; yg, Iy ¼ I1;y. Let GN be the group
of roots of unity of order N in k and G 0

N the subset of primitive roots of order N;
Gl ¼

S
N AN GN . All the vector spaces, algebras and tensor products are over k.

By abuse of notation, 3ai : i a I4 denotes either the group, the subgroup or
the vector subspace generated by the ai’s, the meaning being clear from the
context.

All Hopf algebras in this paper have bijective antipode. Let H be a Hopf
algebra. We refer to [AS] for the definitions of braided vector spaces and the cat-
egory H

HYD of Yetter–Drinfeld modules over H. As customary, we go back and
forth between Hopf algebras in H

HYD and braided Hopf algebras – that is, rigid
braided vector spaces with compatible algebra and coalgebra structures [T]. If
V ;W a H

HYD , then cV ;W : V nW ! W nV denotes the corresponding braid-
ing. If R is a Hopf algebra in H

HYD, then RaH is the bosonization of R by H.
We denote by bGG the group of multiplicative characters (one-dimensional rep-

resentations) of a group G. Let G be an abelian group. The objects in kG
kGYD are

the same as G-graded G-modules, the G-grading is denoted V ¼ 0
g AG Vg. If

g a G and w a bGG, then the one-dimensional vector space kw
g , with action and coac-

tion given by g and w, is in H
HYD.

Nichols algebras are graded Hopf algebras in H
HYD, or also braided graded

Hopf algebras, coradically graded and generated in degree one. See [AS] for
alternative characterizations.
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2.2. Convex PBW-bases and Gelfand–Kirillov dimension

Our reference for the notion and properties of Gelfand–Kirillov dimension is
[KL].

Let A be an algebra. A PBW-basis of A is a k-basis B ¼ BðP;S; <; hÞ of A
that has the form

B ¼ fpse11 . . . sett : t a N0; si a S; p a P; s1 > � � � > st; 0 < ei < hðsiÞg;

where P and S are non-empty subsets of A; < is a total order on S and h is
a function h : S 7! NA flg called the height. The elements of S are called the
PBW-generators.

From now on we assume that P ¼ f1g and that S is finite or countable with
a numeration S ¼ fs1; s2; . . .g such that i < j i¤ si < sj. Then we may express
any b a B, bA 1, as b ¼ seNN . . . se11 where 0a ei < hðsiÞ, i a IN , and eN A 0; we
set

deg b ¼ ðe1; . . . ; eN ; 0; . . .Þ a NN
0 :

Let � be the lexicographical order, reading from the right, on the set N
ðNÞ
0 of ele-

ments of finite support of NN
0 and let dj a N

ðNÞ
0 be the element with all 0’s except

1 in the place j. We consider the N
ðNÞ
0 -filtration on A given by

Af ¼ 3senn . . . se11 a B : ðe1; e2; . . .Þ � ð f1; f2; . . .Þ4;

f ¼ ð f1; f2; . . .Þ a N
ðNÞ
0 . That is, Af ¼ 3b a B : deg b � f 4.

The following Definition, Lemma 2.2 and Remark 2.3 are inspired by
[DCK].

Definition 2.1. The PBW-basis B is convex if ðAf Þf ANðNÞ
0

is an algebra
filtration.

Lemma 2.2. The PBW-basis B is convex if and only if

(a) for every i; j a N with i < j, there exists lij a k such that

sisj ¼ lijsjsi þ
X

f0diþdj

Af ;ð2:1Þ

(b) for every i a N such that hðsiÞ a N,

s
hðsiÞ
i a

X
f0hðsiÞdi

Af :ð2:2Þ

Proof. If B is convex, then (a) and (b) follow directly.
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Now assume that (a) and (b) hold. We claim that

siAf � Afþdi for all f ¼ ð f1; f2; . . .Þ a N
ðNÞ
0 ; i a I:ð2:3Þ

Let Nð f Þ ¼ maxfi a N : fi A 0g. We prove the claim by induction on Nð f Þ.
If Nð f Þ ¼ 1, then f ¼ nd1 for some n a N. By (2.2) we have that s

hðs1Þ
1 a

Aðhðs1Þ�1Þd1 if hðs1Þ a N. Hence the subalgebra generated by s1 is either isomorphic
to k½t� if hðs1Þ ¼ l or else to k½t�=3ms14 if hðs1Þ a N (where ms1 is the minimal
polynomial of s1), and the claim follows for i ¼ 1. If i > 1, then sis

n
1 a And1þdi by

definition.
Now assume that N :¼ Nð f Þ > 1 and the claim holds for all e such that

NðeÞ < N. We have to prove that

sis
fN
N . . . s f11 a Afþdi for all fi a N0; i a I:

Now we use induction on fN . Set f 0 ¼ f � dN a N
ðNÞ
0 . Hence Nð f 0ÞaN.

We assume that fN > 1 and the claim holds for all e such that either NðeÞ < N
or else NðeÞ ¼ N and eN < fN . The case fN ¼ 1 follows as the recursive step.
We have three cases. If either i > N or else i ¼ N and hðsNÞ > fN þ 1, then
sis

fN
N s

fN�1

N�1 . . . s
f1
1 a Afþdi by definition.

If i ¼ N and hðsNÞ ¼ fN þ 1, then we use (2.2) and the inductive hypothesis:

s
hðsN Þ
N s

fN�1

N�1 . . . s
f1
1 a

X
e0hðsN ÞdN

Aes
fN�1

N�1 . . . s
f1
1

¼
X

d:NðdÞ<N

XhðsN Þ�1

j¼0

s
j
NAds

fN�1

N�1 . . . s
f1
1

�
X

d:NðdÞ<N

XhðsN Þ�1

j¼0

s
j
NAd � AhðsN ÞdN � AfþdN :

Finally, let i < N. By (2.1),

sis
fN
N s

fN�1

N�1 . . . s
f1
1 a liNsNsis

fN�1
N s

fN�1

N�1 . . . s
f1
1

þ
X

e0diþdN

Aes
fN�1
N s

fN�1

N�1 . . . s
f1
1 :

By inductive hypothesis, sis
fN�1
N s

fN�1

N�1 . . . s
f1
1 a Af 0þdi . Thus, by definition,

sNsis
fN�1
N s

fN�1

N�1 . . . s
f1
1 a Afþdi .

On the other hand, if e0 di þ dN , then either eN ¼ 0 or else eN ¼ 1 and
ei ¼ � � � ¼ eN�1 ¼ 0. In the first case, by inductive hypothesis,

Aes
fN�1
N s

fN�1

N�1 . . . s
f1
1 �

X
d:NðdÞ<N

XfN�1

j¼0

s
j
NAd � AfNdN � Afþdi :

84 n. andruskiewitsch, i. angiono and i. heckenberger



In the second case, Ae �
P

d:NðdÞ<i sNAd ; by inductive hypothesis again,

Aes
fN�1
N s

fN�1

N�1 . . . s
f1
1 �

X
d:NðdÞ<i

sNAds
fN�1
N s

fN�1

N�1 . . . s
f1
1

�
X

d:NðdÞ<i

sNAf 0þd � sNAf 0þdi � Afþdi :

Finally, from (2.3), AeAf � Aeþf for all e; f a N
ðNÞ
0 . r

Remark 2.3. Assume that in (2.1), lij A 0 for all i < j. Then the associated
graded algebra grA is a (truncated) quantum linear space: grA is the algebra pre-
sented by generators si and relations

sisj ¼ lijsjsi; i < j; s
hðsiÞ
i ¼ 0; hðsiÞ < l:

If S is finite, then GKdimA ¼ GKdimgrA ¼ jfs a S : hðsÞ ¼ lgj, hence S is a
GK-deterministic subspace of A, cf. [AAH1, Lemma 3.1].

Remark 2.4. Let A, A 0 be subalgebras of an algebra C which have convex
PBW bases with PBW-generators S and S 0 respectively. Assume that for each
s a S, t a S 0 there exists ls; t a k such that st ¼ ls; tts, and that the multiplication
induces a linear isomorphism CUAnA 0. Then C also has a convex PBW basis
with PBW-generators SAS 0.

Remark 2.5. Let B be a pre-Nichols algebra of a braided vector space of
diagonal type. Then B has a convex PBW basis by [Kh, Theorem 2.2]. Here we
use the deg-lex order [Kh, §1.2.3].

Remark 2.6. By inspection, every Nichols algebra BðVÞ with finite GKdim
appearing in [AAH1, §4, 5, 7] has a convex PBW basis.

3. Locally finiteness

Recall that a family F of elements of a partially ordered set ðX;�Þ is filtered if
given U ;W a F, there exists Z a F such that U 0Z, W 0Z.

For instance, the set of Yetter–Drinfeld submodules of a given Yetter–
Drinfeld module is partially ordered by inclusion; and the family of its finite-
dimensional submodules is filtered. A Yetter–Drinfeld module is locally finite if
it is the union of its finite-dimensional submodules.

However the family of finite-dimensional braided subspaces of a braided vec-
tor space is not necessarily filtered (in the set of braided subspaces ordered by
inclusion).

Example 3.1. Let . : Z� Z ! Z be the map given by i . j ¼ 2i � j, i; j a Z.
Let V be a braided vector space with a basis ðxiÞi AZ and braiding cðxi n xjÞ ¼
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xi.j n xi, i; j a Z. Then the braided subspace generated by x0 and x1 is V , thus
the family of finite-dimensional braided subspaces is not filtered.

Definition 3.2. A braided vector space is locally finite if it is the union of its
finite-dimensional braided subspaces and these form a filtered family (of the set
of braided vector subspaces).

Remark 3.3. A braided vector space is locally finite if and only if every finite-
dimensional subspace is contained in a finite-dimensional braided one.

If W a H
HYD is a locally finite Yetter–Drinfeld module, then W is a locally fi-

nite braided vector space, but the converse is not true even if GKdimBðW Þ < l.

Example 3.4. Let G ¼ Z2, g ¼ ð1; 0Þ, h ¼ ð0; 1Þ. Let W a kG
kGYD with basis

ðwiÞi AZ such that W ¼ Wg, g � wi ¼ �wi and h � wi ¼ wiþ1 for all i a Z. Then
the action of G on W is not locally finite, but W is a locally finite braided
vector space, BðW Þ ¼ LW and GKdimBðWÞ ¼ 0. Furthermore, BðW ÞakG ¼
k3ge1; he1;w04 is a finitely generated graded algebra. By [AAH1, Example 2.4]
(compare with [AAH1, Lemma 2.2]),

GKdimðBðWÞakGÞ ¼ l > 2 ¼ GKdimBðW Þ þGKdim kG:

Question 1. Let ðV ; cÞ be a braided vector space with GKdimBðVÞ < l. Is
ðV ; cÞ a locally finite braided vector space?

The defining relations of Nichols algebras of locally finite braided vector
spaces could be determined from their finite-dimensional counterparts by the fol-
lowing fact. If ðV ; cÞ is a braided vector space, then set J ðVÞ ¼ the ideal of TðVÞ
of relations in BðVÞ.

Lemma 3.5. Let ðV ; cÞ be a braided vector space and let F be a filtered family
of braided subspaces such that V ¼

S
W AF W. Then

J ðVÞ ¼
[

W AF

J ðW Þ;ð3:1Þ

BðVÞ ¼
[

W AF

BðW Þ;ð3:2Þ

GKdimBðVÞ ¼ sup
W AF

GKdimBðWÞ:ð3:3Þ

Proof. Since F is filtered, the right-hand side I of (3.1) is a homogeneous Hopf
ideal of TðVÞ that intersects kaV trivially, hence I � J ðVÞ. Conversely, let
r a J ðVÞ. Then there exists W a F such that r a TðW Þ. Now J ðVÞBTðWÞ
is a homogenous Hopf ideal of TðWÞ that intersects kaW trivially, hence
J ðVÞBTðWÞ � J ðW Þ and r a J ðWÞ. Thus I 	 J ðVÞ. The contention �
in (3.2) is immediate as BðVÞ is generated by V , and we also know that
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BðW Þ ,! BðVÞ for any braided subspace W . Finally (3.2) implies (3.3) using
again that F is filtered. r

Corollary 3.6. Let ðV ; cÞ be a locally finite braided vector space. Then

J ðVÞ ¼
[

W braided subspace
dimW<l

J ðWÞ;ð3:4Þ

GKdimBðVÞ ¼ sup
W braided subspace

dimW<l

GKdimBðWÞ:ð3:5Þ

Proof. Apply Lemma 3.5 to the family of finite-dimensional braided subspaces
of V . r

3.1. Local finiteness over an abelian group

Let now G and V be as in the Introduction. Then V ¼ 0
g AGVg a kG

kGYD.

Theorem 3.7. If GKdimBðVÞ < l, then V is a locally finite braided vector
space.

Proof. If v ¼
P

vg a V, where vg a Vg, then supp v :¼ fg a G : vgA 0g. Also,
suppV ¼ fg a G : VgA 0g.

Step 1. Let V be a G-module. If the action of h a G on V is not locally finite, then
there is v a V such that ðvnÞn AZ is linearly independent, vn :¼ hn � v.

Let v a V and vn :¼ hn � v. Assume that there is a non-trivial relationP
qanap anvn ¼ 0 with p� q minimal; applying h�q, we may assume that q ¼ 0.

Then 3vn : 0a na p� 14 is both stable by the action of h and h�1. If this
happens for all v a V , then the action of h is locally finite.

Step 2. Let g a suppV. Then the action of g on Vg is locally finite.

Otherwise, by Step 1, there is v a Vg such that ðvnÞn AZ is linearly independent,
vn :¼ gn � v. Now U :¼ 3vn : n a Z4 is a braided vector subspace of V, since
cðvn n vmÞ ¼ vmþ1 n vn. Then BðUÞ ¼ TðUÞ. Indeed, let Wn ¼

P
s ASn

Ms a
EndT nðUÞ be the quantum symmetrizer, so that BnðUÞ ¼ T nðUÞ=kerWn, and
consider the Z-grading in TðUÞ given by Um ¼ 3vm4, m a Z. Then MsðT nðUÞmÞ
¼ T nðUÞmþlðsÞ for all m a Z, where l is the usual length. Since Sn has a unique
element of maximal length, Wn is injective, proving our claim. Whence BðUÞ and
a fortiori BðVÞ have infinite GKdim.

Let g a suppV and l a k�. As usual we set Vl
g ¼ fv a Vg : g � v ¼ lvg, VðlÞ

g ¼
fv a Vg : ðg� lÞn � v ¼ 0 for ng 0g. By Step 1, Vg ¼ 0

l A k� VðlÞ
g . Since G is abe-

lian, its action preserves Vl
g and VðlÞ

g for all l.
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Step 3. Let g; h a suppV and l a k�. Then the action of h on Vl
g is locally finite.

Otherwise, by Step 1, there is v a Vl
g such that ðxnÞn AZ is linearly independent;

here xn :¼ hn � v. Now cðxn n xmÞ ¼ lxm n xn so that l ¼ �1 by [AAH2, Propo-
sition 3.1]. We distinguish two cases:

(A) The action of g on Vh is locally finite.
(B) The action of g on Vh is not locally finite.

Assume (A). By Step 2, there are y a Vh and m; q a k� such that

g � y ¼ my; h � y ¼ qy:

We may assume that V ¼ Vg aVh, Vg ¼ 3xi : i a Z4 and Vh ¼ 3y4. Let
n a Nb2. Then K ½n� ¼ 3xr � xrþn : r a Z4 is a Yetter–Drinfeld submodule of
V and U½n� ¼ V=K ½n� ¼ U½n�g aU½n�h, where fxigi A In is a basis of U½n�g and

U½n�h ¼ Vh. We fix z a G 0
n and set zj ¼

P
i A In

z�ijxi. Thus

g � zj ¼ �zj; h � zj ¼
X
i A In

z�ijxiþ1 ¼ z jzj;

and the braiding of U½n� satisfies

cðzi n zjÞ ¼ �zj n zi; cðzi n yÞ ¼ myn zi;

cðyn zjÞ ¼ z jzj n y; cðyn yÞ ¼ qyn y:

That is, U½n� is of diagonal type with diagram


�1 
�1 � � � 
�1 
�1


q
mz mz2 mzn�1 m

We consider five cases:

• q B Gl. Suppose that GKdimBðU½n�Þ < l. By [AAH2, Lemma 3.3] there
exist h; j a N0 such that qhðmzÞ ¼ 1 ¼ q jm, so q j�h a G 0

n, a contradiction.

• q a G 0
N , N > 24. Suppose that GKdimBðU½2N�Þ < l. By [AAH2, Theorem

4.1], each subdiagram of rank two appears in [H2, Table 1]. Thus, for each
i a I2N there exists ai a f�3;�2;�1; 0g such that qaiðmz iÞ ¼ 1. Hence z ¼
qa1�a2 a GN , a contradiction.

• q a G 0
N , 3aNa 24. Suppose that GKdimBðU½100�Þ < l. By [AAH2, Theo-

rem 4.1], each subdiagram of rank two appears in [H2, Table 1]: By inspection
the labels of the edges belong to

S
k A I3; 72

Gk. Thus z ¼ ðmzÞm�1 a
S

k A I3; 72
Gk,

a contradiction.
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• q ¼ �1. Suppose that GKdimBðU½n�Þ < l for all nb 2. If mAe1, then the
braided vector space RnðU½n�Þ obtained by reflection at the vertex xn has
diagram


�1 
�1 � � � 
�1 
�1


m
mz mz2 mzn�1 m�1

A similar work as in the previous cases shows that GKdimBðRnðU½n�ÞÞ ¼ l
for some n, depending on the case. When m ¼e1, we consider R1ðU½n�Þ and
conclude that GKdimBðR1ðU½n�ÞÞ ¼ l by an analogous analysis. But this is
a contradiction with [AAH2, Theorem 2.4].

• q ¼ 1. Here GKdimBðU½2�Þ ¼ l, since either mA 1 or else �mA 1, and then
[AAH1, Lemma 2.8] applies for a subspace of U½2�.

In any case there exists nb 2 such that GKdimBðU½n�Þ ¼ l, hence
GKdimBðVÞ ¼ l.

Assume (B). Then, by Step 1, there is w a V
q
h such that ðyrÞr AZ is linearly

independent; here yr :¼ gr � w. Thus we may assume that V ¼ Vg aVh, Vg ¼
3xi : i a Z4 and Vh ¼ 3yr : r a Z4. Now K ¼ 3yr � yrþ1 : r a Z4 is a Yetter–
Drinfeld submodule of V and U ¼ V=K ¼ Ug aUh, where Ug ¼ Vg and
dimUh ¼ 1. So, we are in the situation (A).

Lemma 3.8. Let 1 ¼ 3g1; . . . ; gr4 be a finitely generated abelian group and let
0 ! W 0 ! W ! W 00 ! 0 be an exact sequence of 1-modules. If the actions of
1 on W 0 and W 00 are locally finite, then so is the action of 1 on W.

Proof. Let w 7! w denote the projection W ! W 00. Pick w a W . Then there
is a 1-stable submodule U ¼ 3w1; . . . ; wl4 of W 00 such that w a U . That is, there
are scalars ai; b

i
kj a k such that

w ¼
X
i

aiwi; gk � wj ¼
X
i

b i
kjwi:

Hence there are v0; vkj a W 0 such that

w ¼
X
i

aiwi þ v0; gk � wj ¼
X
i

b i
kjwi þ vkj; j a Il; k a Ir:

Let Z be a finite-dimensional 1-submodule of W 0 containing v0, and all the
vkj ’s. Then Z þ 3ðwiÞi A Il4 is a finite-dimensional 1-submodule of W that con-
tains w. r

From now on, we assume without loss of generality that G is generated by
suppV.
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Step 4. The action of any finitely generated subgroup of G on V is locally finite.

Let 1 ¼ 3h1; . . . ; hr4 be a finitely generated subgroup of G; we may assume
that h1; . . . ; hr a suppV . We first claim that the action of 1 on Vg is locally finite
for any g a G. Indeed, by Zorn there is a maximal locally finite 1-submodule W 0

of Vg. If W
0AVg, then consider Ug ¼ Vg=W

0, Uh ¼ Vh for h a suppVB1 and
U ¼ Ug a0

h A1 Uh. By induction on the number r of generators and using Step
3, there exists w a 1̂1 such that Uw

g A 0. Pick w a Uw
g � 0 and set W 00 ¼ kw. Let

W be the submodule of Vg generated by W 0 and a pre-image of w. Then W is a
locally finite 1-submodule of Vg, contradicting the maximality of W 0, by Lemma
3.8. This shows the claim and a standard argument gives the Step.

Step 5. V is a locally finite braided vector space.

By Remark 3.3, it is enough to consider a vector subspace V ¼ 3v1; . . . ; vm4.
Let S ¼ fh1; . . . ; hrg ¼

S
i A Im

supp vi, 1 ¼ 3h1; . . . ; hr4 and VS ¼ 0
h AS Vh.

Then VS is a locally finite Yetter–Drinfeld module over k1 by Step 4, hence it
is a locally finite braided vector space, andV is a contained in a finite-dimensional
braided vector space. r

3.2. Decompositions

As in [Gr, Definition 2.1], a decomposition of a braided vector space V is a fam-
ily ðViÞi A I of subspaces such that

V ¼ 0
i A I

Vi; cðVi nVjÞ ¼ Vj nVi; i; j a I :ð3:6Þ

If iA j a I , then we set cij ¼ cjVinVj
: Vi nVj ! Vj nVi.

Question 2. Assume that cjicij ¼ idVinVj
for all iA j a I . Is it true that

GKdimBðVÞ ¼
X
i A I

GKdimBðViÞ?ð3:7Þ

If yes, then GKdimBðVÞ < l implies GKdimBðViÞ ¼ 0 for all but finitely
many i a I .

If F � I , then VF ¼ 0
i AF Vi is a braided subspace of V . Hence

F ¼ fVF : F � I ; jF j < lg

is a filtered family of braided subspaces of V ; by Lemma 3.5, we have

J ðVÞ ¼
[

F�I ; jF j<l

J ðVF Þ;ð3:8Þ

GKdimBðVÞ ¼ sup
F�I ; jF j<l

GKdimBðVF Þ:ð3:9Þ
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Let F � I , jF j < l; fix an ordering i1; . . . ; ik of F . By the proof of [Gr, 2.2],
the multiplication induces a monomorphism of graded vector spaces

BðVi1ÞnBðVi2Þn � � �nBðVikÞ ,! BðVÞ:ð3:10Þ

Question 3. Is it true that

GKdimBðVÞb
X
i AF

GKdimBðViÞ?ð3:11Þ

Assuming that dimVi < l for all i a F ? Assuming this and that the Hilbert
series of BðViÞ is rational for all i a F ?

4. Diagonal type

A point of label q a k� is a braided vector space ðV ; cÞ of dimension 1 with
c ¼ q id. Let V be a braided vector space of diagonal type; that is there are
ðxiÞi A I a basis of V and q ¼ ðqijÞi; j A I a kI�I such that qij A 0 and cðxi n xjÞ ¼
qijxj n xi for all i; j a I . It turns out that there are interesting examples of
infinite-dimensional braided vector spaces of diagonal type with GKdim ¼ 0, so
we also ask:

Question 4. Classify all braided vector spaces ðV ; cÞ of diagonal type with
matrix ðqijÞi; j A I , where I is infinite countable such that GKdimBðVÞ < l.

We first describe two classes of infinite-dimensional braided vector spaces
ðV ; cÞ of diagonal type. Let I ¼ N ¼ f1; 2; . . .g or Z. First, consider a ¼ ðaijÞi; j A I
with Dynkin diagram as in Table 1. Then ðqijÞi; j A I is of Cartan type a if qii A 1
and qijqji ¼ q

aij
ii holds for all iA j a Iy.

To describe the second class, we recall from [H2] that the generalized Dynkin
diagram of a matrix ðqijÞi; j A I such that qii A 1 is a graph with set of points I , with
the following decoration:

� The vertex i is decorated with qii above; when the numeration of the vertex is
needed, it is stated below.

� Let iA j a I . If qijqji ¼ 1, there is no edge between i and j, otherwise there is
an edge decorated with qijqji.

Table 1. Infinite Dynkin diagrams

Al � � � � � ::::: � � � � � �
Aþl � � ::::: � � � � � �
Bl �(� � ::::: � � � � �
Cl �)� � ::::: � � � � �

�

Dl � � � ::::: � � � � � �
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All the diagrams in Table 2 obey the following conventions:

� q a k�, qAe1.
� p : I ! G2 is a function, p2 1; if I ¼ N, then d ¼ minfi a I : p ¼ �1g. Then

qii ¼
�1; if pi ¼ �1;

q or q�1; if pi ¼ 1;

�
(unless explicitly stated).

� They are locally of the following forms (unless explicitly stated)

q�1

�q q�1

;
q �q

�1
q

;
q ��1 q�1

;
q�1

��1 q
:

The following matrices ðqijÞi; j A I give rise to braided vector spaces ðV ; cÞ with
GKdimBðVÞ ¼ 0, being unions of finite-dimensional Nichols algebras:

(a) ðqijÞi; j A I of Cartan type as in Table 1, and q a Gl � 1 for all i a I .
(b) ðqijÞi; j A I of super type as in Table 2, and q a Gl � 1 for all i a I .

Conversely, let V be a braided vector space of diagonal type with connected
braiding, with a basis ðxiÞi A I such that cðxi n xjÞ ¼ qijxj n xi, where qij a k� for
all i; j a I .

Proposition 4.1. If GKdimBðVÞ ¼ 0, then either of the following holds:

(a) ðqijÞi; j A I is of Cartan type Al ðI ¼ ZÞ, Aþl, Bl, Cl, or Dl ðI ¼ NÞ, see
Table 1, and qii a Gl � 1 for all i a I .

(b) ðqijÞi; j A I is of super type Aþlðp; qÞ, Alðp; qÞ, Blðp; qÞ, Clðp; qÞ, or Dlðp; qÞ,
see Table 2, and q a Gl � 1 for all i a I .

Proof. The argument is standard [K, Ex. 4.14]. Suppose that V is of Cartan
type. If the Dynkin diagram contains a point P with three concurrent edges, then

Table 2. Some generalized Dynkin diagrams

Label I Diagram Parameter

Aþlðp; qÞ N �
1

� ::::::::: � ��1

d

q � � � �

Alðp; qÞ Z � � � � � ��1

0

q � � � �

Blðp; nÞ N �n q�1

� � ::::::::: � � � � � q ¼ n2

Blðp; zÞ N �z �z � � ::::::::: � � � � � z a G 0
3, q ¼ �z2

Clðp; qÞ N �q
2
q�2

�q � ::::::::: � � � � � q4 A 1

�q
q�1

Dlðp; qÞ N �q q�1

� ::::::::: � � � � � �
��1

q2

q�1

Dlðp; qÞ N ��1

q�1
� :::::::::: � � � � � �
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V contains a connected braided subspace U of dim mb 7 whose diagram con-
tains P; hence U is of Cartan type Dm by [H2]. Now since V has a connected
braiding, one constructs recursively a braided subspace W of Cartan type Dl.
If W AV , then there is a point out of W connected to a point in Dl, but this
contradicts [H2]. So, V ¼ W is of Cartan type Dl. The argument in all other
cases is analogous. r

Example 4.2. Blðp; zÞ, z a G 0
3, q ¼ �z2. A set of defining relations of BðVÞ is

the union of those of the various Byðp; zÞ described in [AA, 6.1.4], see also [An],
using Lemma 3.5.

5. Decompositions whose components are blocks or points

5.1. Blocks

Let e a k� and l a Nb2. Let Vðe; lÞ be the braided vector space with a basis
ðxiÞi A Il such that

cðxi n x1Þ ¼ ex1 n xi; cðxi n xjÞ ¼ ðexj þ xj�1Þn xi; i a Il; j a I2;l:

This braided vector space is a called a block.

Theorem 5.1 ([AAH1, Theorem 1.2]). GKdimBðVðe; lÞÞ < l if and only if
l ¼ 2 and e a fe1g, in which case GKdimBðV ðe; lÞÞ ¼ 2.

5.2. A class of braided vector spaces

We consider in this Subsection braided vector spaces ðV ; cÞ of the following sort.
Let I be an infinite subset of Q such that I B

�
I þ 1

2

�
¼ j. We suppose that

(A) V has a decomposition V ¼ 0
i A I Vi as in (3.6). Furthermore, there exists

jA J � I such that Vj UVðej ; ljÞ is a block, j a J. Also, if i a I � J, then Vi

is a qii-point, with qii a k�; we fix xi a Vi � 0, i a I � J.

Let Je ¼ f j a J : ej ¼e1; lj ¼ 2g. By Theorem 5.1, we may (and will) assume
that J ¼ Jþ A J�. Given j a J, we fix a basis Bj ¼ fxj; xjþ1

2
g of Vj such that the

braiding is given by

ðcðxr n xsÞÞr; s ABj
¼

ejxj n xj ðejxjþ1
2
þ xjÞn xj

ejxj n xjþ1
2

ðejxjþ1
2
þ xjÞn xjþ1

2

 !
:

If i; h a I � J, then the braiding cih is uniquely determined by qih a k�:
cih ¼ qiht, where t is the usual flip. Let

Vdiag ¼ 0
i A I�J

Vi:

Our next assumption deals with the braidings between blocks and points.
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(B) For every j a J and i a I � J, there exist qij; qji a k� and aij a k such that the
braiding between Vj and Vi is given by

cðxj n xiÞ ¼ qjixi n xj; cðxjþ1
2
n xiÞ ¼ qjixi n xjþ1

2
;ð5:1Þ

cðxi n xjÞ ¼ qijxj n xi; cðxi n xjþ1
2
Þ ¼ qijðxjþ1

2
þ aijxjÞn xi:ð5:2Þ

Then cjicij ¼ id i¤ qjiqij ¼ 1 and aij ¼ 0. The interaction between the block j and
the point i is Iij ¼ qjiqij. If qijqji ¼ 1, then we say that the interaction is weak.
Also the ghost between j and i as

Gij ¼
�
� 3

2
ej �

1

2

�
aij:

If Gij a N, then we say that the ghost is discrete.
We next impose the form of the braidings between two di¤erent blocks.

(C) For every j; k a J, jAk, there exist qjk; qkj a k� and ajk; akj a k such that
the braiding between Vj and Vk with respect to the basis Bj and Bk as above
is given by

the braiding of Vj a kxk is given by ð5:1Þ and ð5:2Þ;
same for the braiding of Vk a kxj;

cðxjþ1
2
n xkþ1

2
Þ ¼ qjkðxkþ1

2
þ ajkxkÞn xjþ1

2
;

cðxkþ1
2
n xjþ1

2
Þ ¼ qkjðxjþ1

2
þ akjxjÞn xkþ1

2
:

Set rP s when crscsrA idVsnVr
, rA s a I . LetQbe the equivalence relation on

I generated byP. The last assumption is:

(D) V is connected, i.e. rQs for all r; s a I .

5.3. Infinite flourished graphs

A flourished graph is a graphD with an infinite set I of vertices and the following
decorations:

� The vertices have three kind of decorations þ, � and q a k�; they are depicted
respectively as rþ , r�� and �q. The set of all vertices of the first kind is denoted by
Jþ, and those of the second kind by J�. The vertices in J :¼ Jþ A J� are called
blocks, the remaining are called points.

� If iA h are points, and there is an edge between them, then it is decorated by
some ~qqih a k� � 1: �qi ~qqih �qh.

� If j is a block and i is a point, then an edge between j and i is decorated by Gij

for some Gij a k�; or not decorated at all.

The full (decorated) subgraph with vertices I� J is denotedDdiag; it is a gen-
eralized Dynkin diagram [H2] whose set of vertices is possibly infinite.
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The set of connected components ofDdiag is denoted by X ; we also set

X fin ¼ fX a X : jX j < lg; Xl ¼ X � X fin:

Let V be as in §5.2. We attach a flourished graph D to V by the following
rules. The set of vertices of D is the infinite set I . The decoration obeys the fol-
lowing rules:

• If j a Jþ, respectively j a J�, then the corresponding vertex is decorated as rþ ,
respectively r�� . Thus Je ¼ Je, J ¼ J.

• If i a I � J, then the corresponding vertex is decorated as �qii.
• There is an edge between r and s a I i¤ rP s.

• If j a J, i a I � J, qijqji ¼ 1 and aij A 0, then the edge between i and j is

labelled by Gij ¼
�2aij; j a Jþ;

aij; j a J�:

�
.

• If i; h a I � J, iA h and qihqhi A 1, then the corresponding edge is decorated
by ~qqih ¼ qihqhi.

5.4. Infinite admissible graphs

The infinite flourished graphs arising from Nichols algebras in the class above
with finite GKdim are described in the following definition.

Definition 5.2. An infinite flourished graph is admissible when the following
conditions hold.

(a) The set J is finite and non-empty.
(b) There are no edges between blocks.
(c) The only possible connections between a block and a connected component

X a X fin are described in Tables 3 and 4 (the point connected with the block
is black for emphasis). Here G a N, o a G 0

3.

Table 3. Connecting finite components and blocks; r B Gl.

rþ G 
1 r� G 
1 r� G 
�1
rþ 1 
�1 r�1

�r

Table 4. Connecting finite components and blocks; r a Gl �G2.

rþ G 
�1
rþ 1 
o rþ 1 
�1 o2

�o

��1 o2


o 1 rþ rþ 1 
�1 o ��1

rþ 1 
�1 r�1

�r rþ 2 
�1 �1 ��1
rþ 1 
�1 o �o

2
o �o

2

rþ 1 
�1 �1 ��1 � � � ��1 �1 ��1
rþ 1 
�1 o �o

2
o2

�o
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(d) There are only a finite number of connections between blocks and connected
components X a X fin as in Table 3.

(e) Let X a X fin. Then there is a unique i a X connected to a block.
(f) If X a X fin has jX j > 1, then it is connected to a unique block.
(g) If X ¼ fig a X fin and qii a G 0

3, then it is connected to a unique block.
(h) D is connected.
(i) Given a connected component X a Xl, there is a unique block Vj connected

to VX and the corresponding flourished diagram is

rþ 1 
�1 �1 ��1
:::::::::::::::: ��1 �1 ��1

::::::::::::::::ð5:3Þ

Remark 5.3. This Definition extends [AAH1, Definition 1.9] to graphs with in-
finite sets of vertices. Besides this, the main di¤erence is that only weak interac-
tions between blocks and points are allowed. Indeed, the only possible admissible
graphs in [AAH1, Definition 1.9] having mild interaction are C1 and C2, the for-
mer included in the latter, but neither contained in another admissible graph.

Another di¤erence is that [AAH1, Definition 1.9] does not require connected-
ness but we deal with this in Corollary 5.7.

Remark 5.4. Let V be as in §5.2; let j a J, i.e. Vj is a block, and let X a X ; set
VX ¼ 0

i AX Vi. Then BðVj aVX ÞUKaBðVjÞ for a suitable Nichols algebra K,
see [AAH1, §4.1.4], and

GKdimBðVj aVX Þ ¼ GKdimK þGKdimBðVjÞ ¼ GKdimK þ 2:

LetT3, respectivelyT4, be the set of flourished diagrams in Table 3, resp. 4.

(a) If the diagram of Vj aVX belongs toT3, then GKdimBðVj aVX Þb 3.
(b) If the diagram of Vj aVX belongs toT4, then GKdimBðVj aVX Þ ¼ 2.

See [AAH1, Tables 2 and 3], and references therein.

Theorem 5.5. Let V be a braided vector space as in §5.2 and letD be its infinite
flourished graph. The following are equivalent:

(I) GKdimBðVÞ < l,
(II) D is admissible.

Proof. (I) ) (II): First, (b) follows from [AAH1, Theorem 6.1]. Now JA j
in (a) is part of the assumption (A). Let j1; . . . ; jt be di¤erent blocks. Then
GKdimBðVj1 a � � �aVjtÞ ¼ 2t by the proof of [AAH1, Theorem 7.1]. Hence J
is finite.

Let j a J be a block and X a X fin connected to j. Then the interaction be-
tween them is weak as explained in Remark 5.3. By [AAH1, Theorem 1.10], (c),
(e), (f) and (g) follow.

Let V 1 ¼ 0
j A J Vj and let X1; . . . ;Xm a X fin be such that the connection

between Xl and a block is as in Table 3, for every l a Im. Let V 2 ¼
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0
i AX1A���AXm

Vi. Then

GKdimBðVÞbGKdimBðV 1 aV 2Þb 2jJj þm;

by the formula at the end of the proof of [AAH1, Theorem 7.1], together with
Remark 5.4. This shows (d).

Also, (h) is the assumption (D). Finally, if X a Xl, then it is connected to a
block j by (D). Then (c) and (f) say that X and j should have the form in (i).

(II) ) (I): By (c), we have a splitting X fin ¼ X3

‘
X4 where

X3 ¼ fX a X fin : bj a J such that Vj aVX has diagram inT3g;
X4 ¼ fX a X fin : bj a J such that Vj aVX has diagram inT4g:

By (a) and (d), the braided vector subspace

V 0 ¼
�
0
j A J

Vj

�
a

�
0

X AX3

VX

�
has finite dimension. By [AAH1, Theorem 7.1], cf. Remark 5.3,

d :¼ GKdimBðV 0Þ < l:

Given Y a Xl and n a N, we denote by Y ½n� the connected subdiagram of Y
with n vertices starting at the black point. Let us now consider finite subsets
F � X4 and G � Xl, together with a function n : G ! N, Y 7! nY . We set

VF ;G;n ¼V 0 a

�
0
X AF

VX

�
a

�
0
Y AG

VY ½nY �

�
:

By the proof of [AAH1, Theorem 7.1], cf. Remark 5.3,

GKdimBðVF ;G;nÞ ¼ d:

Since V is the filtered union of all the VF ;G;n’s, we conclude by Lemma 3.5 that
GKdimBðVÞ ¼ d. r

Let now V be a braided vector space as in 5.2 except that we do not assume
(D), i.e. connectedness. Let V be the set of connected components of V (do not
confuse with the set X of connected components of Vdiag). Given K � I , we set as
above VK ¼ 0

i AK Vi. Let

V>0 ¼ fV a V : GKdimBðVVÞ > 0g:

Lemma 5.6. Let I1 be a proper non-empty subset of I and I2 ¼ I � I1. If
chicih ¼ idVinVh

for all i a I1 and h a I2, then

GKdimBðVÞ ¼ GKdimBðVI1Þ þGKdimBðVI2Þ:

Proof. We may assume that GKdimBðVI1Þ < l and GKdimBðVI2Þ < l.
Let F be a finite subset of I and Fa ¼ F B Ia, a ¼ 1; 2, thus F ¼ F1 AF2. Then
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GKdimBðVF Þ ¼ GKdimBðVF1
Þ þGKdimBðVF2

Þ since BðVF ÞUBðVF1
Þn

BðVF2
Þ and both have convex PBW-basis, hence GK-deterministic subspaces,

see Remark 2.3 and [AAH1, Lemma 3.1]. Hence Lemma 3.5 applies. r

Corollary 5.7. The following are equivalent:

(I) GKdimBðVÞ < l.
(II) V>0 is finite; and for each V a V, GKdimBðVVÞ < l, either VV is of

diagonal type or else it has an admissible flourished diagram.

Proof. (I) ) (II): If V1; . . . ;Vd are di¤erent components in V>0, then
GKdimBðVÞb d by Lemma 5.6. The second statement is evident and the third
follows from Theorem 5.5.

(II) ) (I): By Lemma 5.6, GKdimBð0
V AV>0

VVÞ < l; call it d. Then
GKdimBð0

V AF VVÞ < l for any finite subset F of V that contains V>0 by
the same result. By Lemma 3.5, the claim follows. r

5.5. Examples

We illustrate the previous result describing some examples of Nichols algebras of
infinite rank and finite GKdim.

Example 5.8. Let Iy ¼ NA
�
3
2

�
. Let LðAlÞ be the braided vector space defined

by a matrix ðqijÞi; j AN in such a way that it has a flourished diagram

rþ
1

1 
�1

2

�1 ��1

3
:::::::::::::::::::::::::::::: ��1

j

�1 ��1

jþ1
::::::::::::::::

By Corollary 3.6 and [AAH1, Proposition 5.31], the algebra BðLðAlÞÞ has

GKdim ¼ 2. Also it is presented by generators xi, i a I
y
y with relations as in

[AAH1, Proposition 5.31], replacing y by l. A PBW basis is obtained by union
of PBW-basis of the algebras BðLðAyÞÞ, y a N.

Example 5.9. Let ðnkÞk ANb2
be a family of natural numbers and Iy ¼S

k ANb2
ðfkg � InkÞA

�
1; 32
�
. Let V be the braided vector space with flourished

diagram


�1

ð2;1Þ
�1 ��1

ð2;2Þ
:::::::::::::::::::::::::::::: ��1

ð2;n2Þ


�1

ð3;1Þ
�1 ��1

ð3;2Þ
:::::::::::::::::::::::::::::: ��1

ð3;n3Þ

rþ
1


�1

ðk;1Þ
�1 ��1

ðk;2Þ
:::::::::::::::::::::::::::::: ��1

ðk;nkÞ
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

::::
::::
::::
::::
::::
::::
::::
::::
::::
::::
::::
:

1

1

1
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By Corollary 3.6 and [AAH1, Proposition 5.31] the algebra BðVÞ is presented by
generators xi, i a I

y
y, with the relations of the various subalgebras BðLðAnk�1ÞÞ

together with q-commuting relations between the points in di¤erent Ank�1’s (but
with various q’s). It has GKdim ¼ 2 and a PBW-basis is constructed along the
lines of the proof of [AAH1, Theorem 7.1].

Variation: replace some (or all) the nk’s by l.

Example 5.10. Let Iy ¼ NA
�
3
2 ;

5
2

�
. Let ðGi1Þi ANb3

, ðGi2Þi ANb3
be two families of

natural numbers and q ¼ ðqijÞi; j AN giving rise to the flourished diagram

rþ
1


�1

3

�1

4
::::::::::::::::::::::::::::::::::: 
�1

i

�1

iþ1
::::::::::::::::

rþ
2

G31

G41

Gi1

Gðiþ1Þ1

G32
G42

Gi2

Gðiþ1Þ2

Let V be the braided vector space with this diagram; notice that the subdiagram
spanned by f1; 2; ig corresponds to a Poseidon braided subspace Pi, as in [AAH1,
§7], for every i a Nb3. By Corollary 3.6, the algebra BðVÞ is presented by gener-
ators xi, i a Iy, with the defining relations of the various BðPiÞ, cf. [AAH1, Prop-
osition 7.7], together with the qih-commuting relations for iA h a Nb3. It has
GKdim ¼ 4 and a PBW-basis by collecting together those of the various BðPiÞ,
cf. the proof of [AAH1, Theorem 7.1].

Variations of the preceding examples give rise to Nichols algebras with
GKdim any natural number distinct to 1 and 3. Allowing various connected com-
ponents, any natural number greater than one could be attained, see Lemma 5.6.

5.6. Hopf algebras with finite GKdim

Let V be a braided vector space as in §5.2; assume that its flourished diagram is
admissible.

A principal realization of V over an abelian group G consists of

(i) a family ðgiÞi A I of elements of G,
(ii) a family ðwiÞi A I of characters of G,
(iii) a family ðhjÞj A J of derivations of G,

such that

whðgiÞ ¼ qih; i; h a I ;ð5:4Þ
hjðgiÞ ¼ aij; i a I ; j a J:ð5:5Þ
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Given a principal realization the braided vector space V is realized in kG
kGYD,

hence we get a Hopf algebra by bosonization BðVÞakG. Notice that the realiza-
tion depends not only on the Dynkin diagram but actually on all the qij’s. For
convenient choices of the last, one can find an abelian group G which is finitely
generated modulo its torsion. Then GKdimBðVÞakG would be finite. We leave
to the reader the exercise of working out these ideas.
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