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Abstract

The present work has been conducted in order to introduce a novel approach for the design of mechanical devices
conceived to manipulate the displacements field in linear elastic materials subjected to thermal gradients. Such an
approach involves the solution of a topology optimization problem where the objective function defines the error in
achieving a prescribed displacement field, and the mechanical device consists of two macroscopically distinguishable
isotropic candidate materials. The material distribution is defined as a continuous function by following the solid
isotropic microstructure (or material) with penalization (SIMP) method. The so-designed devices are easy to manu-
facture, since the design variables dictate the candidate materials distribution. Based on such an approach it is not
necessary to devise further ways to simultaneously mimicking several thermal and mechanical effective properties, as
required by coordinates transformation-based metamaterial design methods. Although the candidate materials are
isotropic, the mechanical device behaves as a metamaterial allowing the desired manipulation of the displacements
field. As an example, this topology optimization-based approach is applied to the design of an elastostatic cloaking
device subjected to thermal gradients, considering also thermo-dependent mechanical properties.
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1. Introduction

Recent developments in engineered materials has allowed
the manipulation of physical fields in outstanding and un-
precedented ways, including cloaking [1–6], concentration
[2, 4, 6–11], inversion [4, 6–8], shielding [4–6] and channel-
ing [6, 12] in heat conduction, and cloaking in elastostatics
[13–16], elastodynamics [17–19] and acoustics [20], among
others. These engineered materials are called metamaterials
for having effective properties that goes beyond (meta in
Greek) those found in nature.

Classically, metamaterials and metadevices (those de-
vices made of or behaving as metamaterials) have been de-
signed via the coordinate transformation approach originally
proposed by Leonhardt [21] and Pendry [22] for electromag-
netic cloaking. Such an idea was subsequently adapted to
the design of metadevices for heat flux manipulation [1–3, 9]
and mechanical cloaking [18, 19]. The implementation of
such an approach in the design of mechanical metamaterials
leads to the need of achieving an invariant form of the lin-
ear momentum balance equation, which poses several issues.
Norris and Shuvalov [23] demonstrated that the coordinates
transformation procedure leads to the anisotropic materials
obeying the Willis constitutive equations [24]. Milton et al.
[25] achieved a transformation-invariant form of the linear
momentum balance for cloaking by including a third-order
tensor besides the standard (fourth-order) elasticity tensor,
whereas Brun et al. [26] did it by breaking the symmetry
of the standard elasticity tensor. Great efforts have been
devoted to manufacture the so-conceived mechanical meta-
materials [13, 14, 17, 27]. Stenger et al. [17] designed a

circular mechanical cloaking device with radially variable
effective elastic properties, in an attempt to emulate the
invariant form of the plate equation derived by Farhat et al.
[28]. Kadic et al. [27] proposed to use pentamodal materials
to emulate any material conceived from coordinates trans-
formation, and such an idea was followed by Bückmann et al.
[13] for the manufacture of an elastostatic cloaking device.
As an alternative to the coordinates transformation-based
procedures, Bückmann et al. [14] proposed the implemen-
tation of a direct-lattice transformation technique to design
elastostatic cloaking devices. Such an approach is conceived
to directly prescribe the geometry of the metamaterial or
metadevice to be manufactured from lattices without the
need of devising further ways to achieve the inhomogeneous
material properties required for the task accomplishment,
which is a crucial improvement in comparison with the co-
ordinates transformation-based procedure.

Recently, Peralta et al. [10] introduced the optimization-
based metamaterial design (OMD) approach for the design
of thermal metamaterials, free from the limitations of coor-
dinates transformation-based procedures. Such a procedure
consists in solving a large-scale continuous optimization
problem to minimize the error in the accomplishment of a
given task, where the parameters describing the metamate-
rial microstructure (microparameters) are taken as design
variables. Examples of design variables are the geometrical
parameters defining a biomimetic unit cell of artificial bones
[29, 30], the relative thickness of layers and their orientation
in laminates [5, 10, 16], and the artificial density [31, 32]
in material distribution problems. Like the direct-lattice
technique [14], the OMD approach directly prescribes how
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to manufacture the metamaterial or metadevice. Addi-
tionally, it allows the design of any metadevice having a
quantitatively characterizable microstructure, including lat-
tices as particular cases. Another noteworthy advantage
of the OMD approach lies on the possibility of designing
metadevices conceived to perform any heat flux manipula-
tion task (including concentration, shielding, reversion, and
cloaking), by using a unique objective function to avoid the
need of a different formulation for each task [4]. The OMD
versatility was demonstrated when it was extended to the
design of metadevices for elastostatic cloaking under given
boundary traction [15] and thermal gradients [16].

Although OMD dictates how to manufacture the meta-
material at each point, the achievement of such a precise
inhomogeneous metamaterial is still a critical issue that pre-
cludes real applications. In further efforts towards manu-
facturability, the well known topology optimization method
[33] was used in the design of thermal [4, 11], mechanical
[15], and thermo-mechanical [31, 32, 34–38] metadevices.
Topology optimization was originally formulated for struc-
tural problems [39–41], where the design variables define the
presence of material at a point. According to the possibility
of achieving a discrete material distribution in terms of con-
tinuous design variables, this technique has been successfully
extended to heat transfer [42, 43], electro-mechanical [44],
fluid flow [45], dynamic fatigue [46, 47], thermo-mechanical
[48, 49] and even electro-thermo-mechanical [50] applica-
tions. Regarding the design of metamaterials and metade-
vices, the design variables are rather used to choose be-
tween materials with highly contrasting properties. Topol-
ogy optimization-based metamaterial design (TOMD) has
changed the mainstream belief that it is imperative to use
anisotropic inhomogeneous metamaterials for the manipu-
lation of macroscopic fields [7, 14, 18, 51]. For instance,
Fachinotti et al. [4] applied the well-known solid isotropic
microstructure (or material) with penalization (SIMP) [33]
approach in the framework of TOMD in order to design
an easy-to-make heat flux inversion metadevice, which con-
sisted of two piecewise macroscopically distinguishable ho-
mogeneous materials with very different isotropic thermal
conductivities. Such a device was actually significantly sim-
pler, easier to make and more efficient than the coordinates
transformation-based inverter designed by Narayana and
Sato [51]. Sigmund and Torquato [31, 32] used TOMD with
a SIMP-like approach involving three phases (two solids, one
void) to optimize both the topology and material distribu-
tion in each base cell of metamaterials for extreme thermal
expansion responses, whereas Wang et al. [34, 36, 37] used
a multiphase level-set method for such a purpose. The
possibility of manufacturing such thermo-mechanical meta-
materials obtained by TOMD has been demonstrated by
Takezawa et al. [35], who have succeeded in implement-
ing additive manufacturing techniques to obtain an extreme
thermal expansion metamaterial designed via a SIMP-based
multiphase topology optimization procedure [31, 32] coupled
to a phase field method [52].

Later, Peralta et al. [11] adapted a multiphase topology
optimization method known as discrete material optimiza-
tion (DMO) [53] to the design of thermal metadevices made
of any number of homogeneous candidate materials, either
isotropic or not. By this way, these authors designed a
heat flux concentrator made of laminates of copper and
polydimethylsiloxane in different orientations. As a further
demonstration of its versatility, this approach was applied
by Fachinotti et al. [15] for the design of mechanical metade-
vices, showing an elastostatic cloaking device as example.

Regarding all the previously mentioned TOMD-based
thermo-mechanical metamaterials for extreme thermal ex-
pansion [31, 32, 34–38], it is worth to mention that such
metamaterials were conceived under the assumption that
the temperature is homogeneous throughout the metama-
terial without being affected by the material distribution.
Such an excessively restrictive hypothesis is actually ap-
propriate only when a unique temperature is prescribed on
all the device boundaries and there are no internal heat
sources, given the usually high conductivity contrast within
metamaterials. The sensitivity of coupled temperature and
displacement fields to microstructural changes [54] has been
recently accounted for Álvarez-Hostos et al. [16] in the de-
sign of thermo-mechanical metamaterials, which involves the
coupled solution of heat transfer and mechanical problems
throughout the entire optimization process. These authors
used the OMD approach, hence suffering from manufactura-
bility issues.

In agreement with the aforementioned aspects, the
present work is focused on extending the TOMD approach
(and its advantages regarding manufacturability) to the de-
sign of thermo-mechanical metadevices accounting for the
coupling between displacement and temperature fields. In
this case, the objective function representing the mechanical
task (e.g., elastostatic cloaking) will depend on displace-
ment, which in turn depends on temperature. Accordingly,
the performance of such metadevices will be dictated by
the spatial distribution of both mechanical (elastic moduli
and thermal expansion) and transport (conductivity) prop-
erties, which are dependent on the design variables defining
the material distribution in the optimization problem. So,
the computation of the objective function at each one of the
iterations (usually, hundreds to thousands) during the opti-
mization process requires the fully coupled solution of the
linear momentum and thermal energy balance equations,
making this thermo-mechanical problem considerably more
expensive to solve when compared to that in which a homo-
geneous temperature field is directly prescribed [31, 32, 34–
38].

The current TOMD is conducted under the classical
SIMP approach [33] for the design of thermo-mechanical
metadevices, which consist of two piecewise macroscopi-
cally distinguishable homogeneous materials with very dif-
ferent mechanical (elastic moduli and thermal expansion
coefficient) and thermal (conductivity) properties. As a
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further contribution unprecedented in the design of thermo-
mechanical metamaterials and metadevices, the dependence
of elastic moduli with the temperature is allowed.

Finally, a device for cloaking under surface traction and
thermal gradients is designed using two isotropic materi-
als (aluminum and polyethylene) in order to highlight the
capability of this approach to design easy-to-make thermo-
mechanical metadevices. The performance of such a cloak-
ing metadevice of feasible manufacture can actually be com-
pared to that of a metamaterial proposed in a previous com-
munication [16], which is made of laminates based on the
same materials. Such metamaterial consists in an inhomoge-
neous distribution of the relative thickness of the constituent
materials and orientation of the laminates, whereby its man-
ufacturability is uncertain.

2. Governing equations

The topology optimization-based design of a thermo-
mechanical metadevice implies the minimization of an ob-
jective function that quantifies the error in accomplishing
a given task, which generally depends on displacement and
temperature. The evaluation of such an objective function
requires to solve both the linear momentum and thermal en-
ergy balance equations, which is done in this work via the
finite element method (FEM).

2.1. Thermo-mechanical problem

The domain Ω depicted in Fig. 1 represents a het-
erogeneous solid body, undergoing a steady state thermo-
mechanical loading process. Assuming a linear thermo-
elastic behaviour and small strains, the displacement field
u in Ω is governed by the equilibrium equation:

divσ + b = 0, (1)

where b is the body force, and σ is the Cauchy stress tensor
defined by the Duhamel-Neumann law for thermo-elasticity:

σ = C : ε+ d (T − Tref) ,

being ε = [grad u+(grad u)T ]/2 the infinitesimal strain ten-
sor, C the elastic moduli tensor, d the stress increment per
unit temperature, T the temperature and Tref the reference
temperature for zero thermal strain. The solution of Eq. (1)
is subjected to the boundary conditions:

u = uwall in Γu,

σ · n = twall in Γt,

where n is the unit vector normal to and pointing outwards
Γ, whereas uwall and twall are the displacement and surface
traction vectors prescribed on the non overlapping portions
Γu and Γt of Γ, respectively.

The dependence of u on T gives rise to the need of cou-
pling the solution of (1) to the heat conduction equation:

− div(q) + s = 0, (2)

where s is the internal heat source, and q the heat flux vec-
tor given by the Fourier’s Law.

q = −k · gradT,

being k the thermal conductivity tensor. The solution of
Eq. (2) is subjected to the boundary conditions:

T = Twall in ΓT ,

q · n = qwall in Γq,

where Twall and qwall are the temperature and heat flux
prescribed on the non overlapping portions ΓT and Γq of Γ,
respectively.

Figure 1: Thermo-mechanical problem in a macroscopic domain
where the effective properties depend on a quantitatively char-
acterized microstructure

2.2. Finite element formulation

The thermo-mechanical problem described in the previ-
ous section will be solved by using the FEM with Ω divided
in finite elements Ω(e), and approximating the temperature
and displacement fields for all x ∈ Ω as follows:

T (x) = NiTi = N(x)T, (3)

u(x) = Niui = Nm(x)U, (4)

where Ti and ui are the temperature and displacement un-
known at each node xi of the finite element mesh, and Ni
is the shape function associated to this node, for which
Ni(xj) = δij with δij denoting the Kronecker delta. Ti and
ui are grouped in vectors T and U, respectively. The shape
functions Ni are grouped either in the row vector N and
matrix Nm for the thermal and mechanical analysis, respec-
tively. The substitution of Eq. (3) in the Bubnov-Galerkin
weak-form of the thermal problem leads to:

KT = Q, (5)

with

K =

∫

Ω

BTkBdΩ, (6)

Q =

∫

Ω

NT sdΩ

︸ ︷︷ ︸
Qs

−
∫

Γq

NT qwall dΓq

︸ ︷︷ ︸
Qq

(7)
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where B is the matrix of shape functions gradient with com-
ponents Bij = ∂Ni/∂Xj . Similarly, the following system
of equations is obtained after substituting Eq. (4) in the
Bubnov-Galerkin weak-form of the mechanical problem:

KmU = F, (8)

with

Km =

∫

Ω

[Bm]T CBmdΩ, (9)

F =

∫

Γt

NT twall dΓt

︸ ︷︷ ︸
Ft

+

∫

Ω

NTbdΩ

︸ ︷︷ ︸
Fb

,

−
∫

Ω

[Bm]T d (T − Tref) dΩ

︸ ︷︷ ︸
FTh

, (10)

where Bm denotes the strain-displacement matrix. In Eqs.
(9) and (10), the elastic moduli C and stress increment per
unit temperature d tensors are given in Voigt notation. Let
the microstructure at each finite element Ω(e) in a heteroge-
neous region Ωdev ⊂ Ω occupied by a metadevice, be quanti-
tatively characterized by a vector pe of M microparameters.
Accordingly, the effective material properties C, d and k at
each Ω(e) ∈ Ωdev are function of p(e). Consequently the
global conduction K and stiffness Km matrices, and also
the global thermal loads vector FTh are function of the mi-
crostructure distribution in Ωdev:

K = K(P), Km = Km(P), and FTh = FTh(P),

with
P = [p(1),p(2), ...,p(N)],

whereby both the displacement and thermal fields in the
whole domain Ω depend on P, i.e. u = u(x,P) and
T = T (x,P) for all x ∈ Ω [54].

2.3. The displacements manipulation prob-
lem under thermal loads

The problem of designing a metadevice Ωdev embedded
in the body Ω to manipulate the displacement inside the
region Ωtask ⊂ Ω subjected to both thermal and mechanical
loads, can be stated as follows: to find P such that

u(x,P) = ū(x), for all x ∈ Ωtask, (11)

where ū(x) is a prescribed displacement field to be achieved
in a region Ωtask ⊂ Ω. Given the link between the thermal
and mechanical responses of the domain, the accomplish-
ment of any displacements manipulation task requires to
find a proper spatial distribution of both thermal and me-
chanical material properties. Thus, the fulfillment of such
a task will be affected by the dependence of both displace-
ment and temperature on the microparameters distribution.

In order to make feasible the numerical solution of this
problem, the task accomplishment is checked at H points
x(h) ∈ Ωtask. Further, to guarantee the microstructure fea-
sibility, the search of P must be constrained to a feasible

design set D. Such a constraint precludes the perfect fulfill-
ment of (11), and it is achieved up to a minimum error:

f(P) =



∑H
h=1

∥∥∥u(x(h),P)− ū(x(h))
∥∥∥

2

∑H
h=1 ‖ū(x(h))‖2




1/2

, (12)

where the relative error f in the accomplishment of the dis-
placements manipulation task at all the points x(h) ∈ Ωtask

defines the objective function, whereas the microparameters
Pi defining the microstructure distribution in Ωdev are the
design variables.

Constraining the search of P to a feasible design set D
precludes the exact accomplishment of (11), which actu-
ally represents a near-elastostatic cloaking under thermal
gradients. The near-cloaking problem in elastostatic has
also recently been addressed by Craster et al. [55] through
a different formulation, which is based on the regularized
change of variable originally developed by Kohn et al. [56]
for electromagnetic cloaking.

The optimization-based procedure proposed in this com-
munication implies to solve the following non-linear con-
strained optimization problem:

min
P∈D

f(P) (13)

In principle, there are M design variables per finite ele-
ment, whereby the optimization problem (13) is usually a
large-scale problem. If the feasible design set D is rich
enough, it would be possible to achieve a perfect design.
If not, it is still possible to obtain a design for which (12)
reaches a minimum. In a previous communication [16], the
optimization-based approach has been successfully imple-
mented in the design of thermo-mechanical metadevices by
using a metamaterial consisting of an orthotropic composite
laminate made of two materials with very different thermal
and mechanical properties. In such study, there were M = 2
design variables (the relative thickness and orientation of the
laminate) at each finite element in the metadevice. Such a
design has been obtained without introducing manufactura-
bility constraints, which have already been recognized to
be crucial for the manufacture of both thermal [4, 11] and
mechanical [15] metadevices. Therefore, the optimization-
based design of the current thermo-mechanical metadevice
will be conducted putting also special emphasis on manufac-
turability. Such a feature will be assured by following the
SIMP approach, which has been widely used in topology op-
timization problems. In a previous work, such a technique
was successfully implemented in the design of easy-to-make
heat flux manipulation metadevices [4]. Thus, in this study
the effective elastic moduli, stress increment per unit tem-
perature and thermal conductivity at each finite element
Ω(e) ∈ Ωdev, are defined as:

C(e) = ρpeCA + (1− ρpe)CB,

d(e) = ρpedA + (1− ρpe)dB,

k(e) = ρpekA + (1− ρpe)kB,

where p > 1, ρe is an artificial density with 0 ≤ ρe ≤ 1,
whereas subscripts A and B represent two different isotropic
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materials. A value of p ≥ 3 is high enough for compelling ρpe
to tend either to 0 or 1. Accordingly, the effective properties
at each element Ω(e) ∈ Ωdev are defined by ρe ≡ Pe as the
only design variable (M = 1), determining which of the two
materials A or B is at the finite element Ω(e).

2.4. Sensitivity analysis

The efficient solution of the optimization problem (13),
requires the analytical computation of the derivatives of the
objective function f with respect to the design variables
Pi ≡ ρi, i = 1, 2, . . . , N . For computational efficiency, these
derivatives can be computed using the adjoint method. For
this purpose, the objective function is rewritten as [57–60]:

f(P) = f(P)− ξT (KT−Q)− λT (KmU− F) , (14)

where the additional terms are null by virtue of the FEM-
based equilibrium and heat conduction equations (5) and
(8), respectively. The differentiation of (14) with respect to
Pi yields

df

dPi
=

∂f

∂Pi

∣∣∣∣
U=const

+
∂f

∂U

dU

dPi
−ξT

(
∂K

∂Pi
T + K

dT

dPi
+ K̂

dT

dPi

)

− λT
(
∂Km

∂Pi
U + Km dU

dPi
+ K̂m dT

dPi
+
∂FTh

∂Pi
+
∂FTh

∂T

dT

dPi

)
,

(15)

where K̂ and K̂m are the matrices with components K̂jk =

(∂Kjl/∂Tk)Tl and K̂m
jk = (∂Km

jl /∂Tk)Ul, respectively. The

matrix K̂ is non null only if thermal conductivity depends
on temperature, and also K̂m is non null only if the elastic
moduli depends on temperature. The terms in (15) can be
rearranged as follows:

df

dPi
=

∂f

∂Pi

∣∣∣∣
U=const

+

(
∂f

∂U
− λTKm

)
dU

dPi

−
[
λT
(
∂FTh

∂T
+ K̂m

)
+ ξT

(
K + K̂

)] dT

dPi

− λT
(
∂Km

∂Pi
U +

∂FTh

∂Pi

)
− ξT ∂K

∂Pi
T. (16)

In order to avoid the expensive computation of dT/dPi and
dU/dPi, the adjoint vectors λ and ξ are determined such
that:

Kmλ =
∂f

∂U

T

, (17)

and (
K + K̂

)T
ξ = −

(
∂FTh

∂T
+ K̂m

)T
λ. (18)

Introducing in Eq. (16) the adjoint vectors λ and ξ obtained
from the solution of (17) and (18), allows the computation
of df/dPi according to:

df

dPi
=

∂f

∂Pi

∣∣∣∣
U=const

− λT
(
∂Km

∂Pi
U +

∂FTh

∂Pi

)
− ξT ∂K

∂Pi
T. (19)

It is worth noting that the current objective function (12)
does not explicitly depend on P, but only implicitly via
u(x(h),P), whereby ∂f/∂Pi|U=const = 0.

Similar analyses were performed for the design of func-
tionally graded materials [58], compliant actuators [59]
and composites with rectangular inclusions [54], and also
in topology optimization thermo-mechanical problems with
stress constraints [60]. However, unlike the current study,
the work mentioned above have been conducted without
considering the dependence of material properties on tem-
perature. Actually, the current sensitivity analysis can be
seen as a particular case of the complete formulation devel-
oped by Michaleris et al. [57] that includes, besides thermo-
dependent material properties, nonlinear and transient ef-
fects.

3. Design of an elastostatic cloak-
ing device subjected to thermal
loads

As an applied example, the current topology
optimization-based procedure will be used in the design
of a thermo-mechanical cloaking metadevice.

40
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Figure 2: Domain Ω = Ωdev ∪Ωincl ∪Ωtask and boundary condi-
tions of the thermo-mechanical problem.

Let Ω be a full square plate made of nylon (see Table 1
for thermal and mechanical properties) under plane strain
conditions, free of internal heat sources and body forces, and
subjected to the thermal and mechanical boundary condi-
tions depicted in Fig. 2. Also, let u0 be the displacement
fields in Ω under such conditions. After making a circular
hole Ωincl at the center of the plate without altering the
boundary conditions mentioned above, the displacements
field in Ω is significantly affected. For cloaking purposes,
a metadevice occupying the annular region around the hole
( Ωdev) will be designed in order to allow the displacement
field u outside the device (Ωtask) be affected to a minimum
extent. To this end, the optimization problem (13) is solved
in order to find P (the material distribution in Ωdev) such
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that the corresponding displacements u(x(h),P) matches –
up to a minimum error– the displacements u0(x(h)) in the
plate before making the hole, at the nodes x(h) of the finite
elements whose centers lie in the region Ωtask of the plate
outside the device. Such a device will be designed using alu-
minum (material A) and polyethylene (material B), whose
properties are reported in Table 1. The Young’s modulus
of all the materials are temperature-dependent functions,
obtained from a nonlinear regression of the data reported
in references [61–63]. It should be noted that the single
dependence of the Young’s modulus E(T ) on temperature
introduces variations in both the elastic moduli C and stress
increment per unit temperature d isotropic tensors, since:

C(T ) =
E(T )

(1 + ν)
I(4) +

E(T )ν

(1 + ν)(1− 21ν)
I(2) ⊗ I(2),

and

d(T ) = −C(T ) : I(2)α,

where I(2) is the second order identity tensor with compo-

nents I
(2)
ij = δij , whereas I(4) is the fourth order symmetric

identity tensor with components I
(4)
ijkl = (δikδjl + δilδjk)/2.

The remaining material properties (k, α, ν) are kept con-
stant, since they do no exhibit significant variations within
the temperature range inherent to the thermal boundary
conditions depicted in Fig. 2. However, it is worth men-
tioning that the current methodology allows the possibility
of introducing the temperature dependence of any property
without further complications.

Table 1: Thermal and mechanical properties of nylon, aluminum and polyethylene

Property Material

Nylon Aluminium Polyethylene

Thermal conductivity [W(mK)-1] 0.31 kA = 205 kB = 0.46

Young’s modulus [GPa] 2.33[1.21− (1 + e−0.14T (K)+48.5)−1] EA = −0.04T (K) + 80 EB = 136.16 e−0.016T (K)

Poisson ratio 0.4 νA = 0.33 νB = 0.46

Thermal expansion coefficient [K-1] 8× 10−5 αA = 2.3× 10−5 αB = 15× 10−5

3.1. Solution procedure of the optimization
problem

Given the symmetry of the domain and thermo-
mechanical boundary conditions depicted in Fig. 2, the
FEM-based solution of the governing equations will be per-
formed only over the upper right quadrant of Ω by using an
uniform mesh of 200× 200 = 40000 bilinear finite elements.
The thermo-mechanical problem over the plate with the
hole is solved with a mesh of 35053 finite elements, which
is obtained after discarding the elements whose centers lie
in Ωincl. The artificial density ρe ≡ Pe is considered to vary
element-wise in Ωdev, which is occupied by 15086 elements.
Accordingly, this is a large scale non-linear optimization
problem of 15086 design variables subjected to the box
constraint 0 ≤ Pe ≤ 1. As stated so far, the elastostatic
cloaking device will be designed by solving the optimiza-
tion problem (13), with (12) as the objective function to be
minimized. The cloaking task is defined by setting ū = u0

at the nodes x(h) of those elements whose centers lie in Ωtask.

Finally, such a non-linear large-scale constrained opti-
mization problem is solved using the method of moving
asymptotes (MMA) [64]. The checkerboard-type instabil-
ities that usually affect this kind of materials distribution
problems [33], will be overcome by using the density filter-
ing technique proposed by Bruns and Tortorelli [65]. Such
a strategy has already been proven to be well suited for the
design of thermal [4, 5, 10, 11], mechanical [15] and thermo-
mechanical [16] metadevices. Additionally, Heaviside filter-
ing [66, 67] is implemented in order to reduce the “gray”
zones (those elements where 0 < Pe < 1, i.e. the material is
neither aluminum or polyethylene, but an unlikely feasible
material with intermediate properties). The combination of

both filtering strategies leads to the definition of a filtered
artificial density

P̃e = 1− e−βP̄e + P̄ee
−β ≡ H̃(P̄e, β), (20)

with

P̄e =

∑N
i=1〈r −∆ei〉Pi∑N
i=1〈r −∆ei〉

. (21)

The above equation defines the density filter [65], being r
the filter radius (adopted in this work as 7 times the finite
element size), ∆ei the distance between the centers of the
elements Ω(e) and Ω(i), and 〈x〉 = xH(x) the ramp function
with H(x) denoting the Heaviside step function (H(x) = 0
for x < 0, H(0) = 1/2 and H(x) = 1 for x > 0). The
equation (20) defines the Heaviside projection filtering [68],
being H̃(x, β) a regularization of H(x), and β a parameter
controlling the curvature of H̃ such that H̃(x, 0) ≡ x (i.e.,
there is no filtering) and H̃(x,∞) = H(x).

The filtered density P̃e is also called “physical” density,
since it determines the material properties at the finite el-
ement Ω(e). Consequently, the objective function becomes
f̃(P) ≡ f(P̃), but P remains as design variable. Accord-
ingly, the optimization problem (15) is replaced by

min
P∈D

f̃(P) subjected to 0 ≤ Pi ≤ 1

i = 1, 2, . . . , N, . (22)

Filtering has to be accounted within the sensitivity analysis.
Since equation (19) now actually defines df̃/dP̃i instead of
df/dPi, the derivative of the new objective function with
respect to the design variable Pi must be computed using
the chain rule:

df̃

dPi
=

df̃

dP̃j

dP̃j

dP̄k

dP̄k
dPi

,
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where dP̃j/dP̄k and dP̄k/dPi can be easily derived from
equations (20) and (21), respectively.

To obtain the final design, successive optimization prob-
lems are solved by gradually increasing β via the continu-
ation method proposed by Andreassen et al. [67], in order
to achieve stable convergence and ensuring differentiability
in the course of the optimization procedure[66, 67]. This is
schematized in the following flowchart in pseudo code:

(1) Initialization: set s = 0 and P0 = [0.5, 0.5, . . . , 0.5].

(2) Continuation: set β = 2s, i = 0 and P(i) = P0.

(a) Thermal FEM: P̃→ T (x, P̃)

(b) Mechanical FEM: (T, P̃)→ u(x, P̃)

(c) Objective function: u(x, P̃)→ f(P̃)

(d) Sensitivity: (P(i), P̃,u, T, . . . )→ ∂f
∂P

(e) Update:
(
P(i), ∂f∂P

)
→ P(i+1)

(f) Stop criterion:

• If i < imax and ‖P(i+1) − P(i)‖∞ > ε,
i← i+ 1, go to (a).

• Otherwise:

– If β < βmax, set s ← s + 1 and P0 =
P(i+1), then go to (2).

– Otherwise, go to (3).

(3) Thresholding: (P̃, w∗)→ P̃thr.

In the above procedure, P0 is the initial guess, which is
first arbitrarily adopted and then updated after each con-
tinuation step s. The optimization solver at each continu-
ation step s stops at the iteration imax = 300 or when the
change in variables is less than ε = 0.01. The curvature of
the Heaviside approximation is increased until βmax = 128,
since greater β seriously deteriorate the convergence of the
optimization problem. Although the gray zones are consid-
erably reduced after the successive optimization steps, there
is still need of a final filtering (the so-called thresholding) to
obtain a fully binary design P̃thr with w∗ as the threshold
for ρpe. The thresholding strategy to be implemented in this
work has been proposed by Fachinotti et al.[4, 15], and its
implementation will be explained later.

4. Results

The FEM-based solutions for the displacement and tem-
perature fields in the full nylon plate are depicted in Fig.
3 (a)-(c), whereas those in the holed nylon plate are shown
in Fig. 3 (d)-(f). After making the hole in the nylon plate,
a new displacements field uhol is achieved. Such displace-
ments differs considerably from the field u0 corresponding
to the full nylon plate, giving rise to an error fhol = 1.203 in
the fulfillment of the cloaking task. The material distribu-
tion achieved by solving successive optimization problems
(22) via the continuation procedure described in the pre-
vious section, is shown in Fig. 4 (a). The displacements

and temperature fields achieved when a cloaking device
with such a material distribution occupies the annular re-
gion bounded by the dashed lines, are depicted in Fig. 3
(g)-(i). Using such a device allows the error in the fulfill-
ment of the cloaking task to be minimized up to a value
of fopt = 0.01284 = 0.0107fhol, which represents a 98.93%
reduction compared to the error fhol corresponding to the
holed plate without the device. Even after Heaviside filter-
ing, the optimal solution depicted in Fig. 4 (a) still exhibits
gray zones. Such a feature precludes the manufacture of the
so-designed thermo-mechanical metadevice, which is a main
concern in this work.

In order to suppress the gray zones, recourse can be made
to a thresholding strategy proposed in previous work related
to the design of both thermal[4] and mechanical[15] easy-to-
make metadevices: the material at the element Ω(e) ∈ Ωdev

is aluminum if P̃ thr
e = 1 and polyethylene if P̃ thr

e = 0, with

P̃ thr
e = H(P̃ pe − w∗),

where w∗ is the threshold. In classical topology optimiza-
tion, w∗ is frequently determined in order to fulfill vol-
ume constraints [69], although it is frequently conceived
as a user-defined parameter [70–75]. In problems with-
out volume constraint like the current one, Fachinotti et
al. [4, 15] proposed to determine w∗ such that the per-
formance of the metadevice –that is no longer optimal
after thresholding– be affected to a minimum extent. In
this sense, the thresholding procedure is conceived to find
w∗ ∈ (0, 1) such that f thr = f(P̃thr) reaches its minimum.
The f thr/fopt ratio for different values of w∗ is plotted in
Fig. 5, which exhibits a minimum at w∗ = 0.12 where
f thr = 0.01454 = 1.1324 fopt = 0.0120 fhol. Accordingly,
using the corresponding discrete device shown in 4 (b)
offering the best deal between performance and manufac-
turability, has allowed a 98.79% reduction compared to the
error fhol without the device. The corresponding displace-
ment field uthr is depicted in Fig. 3 (j)-(k), whereas the
temperature field is shown in Fig. 3 (l). So, losing only
0.14% of the initial displacements field recovery (that of the
full nylon plate u0) in Ωtask after the thresholding proce-
dure has allowed the achievement of such a device of feasible
manufacture.

The distribution of local relative error εhol = ‖uhol −
u0‖/‖u0‖ for the holed homogeneous plate in the region
Ωtask –where the cloaking task was prescribed– is depicted
in Fig. 6 (a), whereas the distribution of local relative error
εthr = ‖uthr − u0‖/‖u0‖ achieved in the same region when
including the thresholded (feasible) cloaking device in Ωdev

is depicted in Fig. 6 (b). The good performance of such
cloaking device can actually be demonstrated by comparing
Fig. 6 (a) and Fig. 6 (b): the maximum εthr is 7.4%, which
is less than a half of the minimum εhol. These results are
also consistent with the deformed contours depicted in Fig.
7, where the displacement are magnified by a factor of 5 for
better visualization.
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Figure 3: Displacements ux (a) and uy (b) and temperature T (c) distributions in the homogeneous plate without hole, the
holed homogeneous plate (d-f), the plate with the optimal cloaking device (g-i) and the plate with the fully discrete device (j-l).
Displacements and temperature distributions are given in millimeters and Kelvin, respectively.
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Figure 4: Distribution of aluminum (red) and polyethylene (blue) in the metadevice designed by solving the topology optimization
problem. a) Optimal continuous material distribution with gray zones, and b) best discrete material distribution achieved after
eliminating the gray zones by thresholding.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

w*

0

20

40

60

80

100

120

f 
th

r /
f 

o
p
t

w*=0.12

Figure 5: Error in the cloaking task accomplishment by the fully
discrete metadevice as a function of the threshold value w∗.

Such deformed contours involve the points lying on the
plate boundaries and also on the diagonal lines throughout
it, and the deformed contours of the hole and the metadevice
are represented by the dotted lines. This figure depicts the
marked differences between the deformed shape of the full
plate (black) and the holed plate (red), and also the notewor-
thy overlapping of the contours corresponding to the holed
plate with the metadevice (blue) and the full plate (black)
in Ωtask. Given the significant reduction of the errors with
respect to the target displacements field u0 after introduc-
ing the metadevice, the deformed contours corresponding to

the full plate and the holed plate with the metadevice are
virtually indistinguishable each other in Ωtask. These con-
tours also depict how the device works: it is conceived to
deform appropriately in order to perform the cloaking task
only in Ωtask, whereby there is no coincidence of the black
and blue contours in the region occupied by such a device
(enclosed by the blue dotted lines).

5. Discussion

The results reported in the previous section demonstrate
the potential of the current topology optimization-based ap-
proach to design thermo-mechanical metadevices, providing
a simple and feasible manufacture design consisting of two
macroscopically distinguishable isotropic materials. The
background material (nylon) has intermediate Young’s mod-
ulus regarding the metadevice constituents (aluminum and
polyethylene), which has already been proven to guarantee
an efficient design of metadevices for mechanical cloaking
[15]. The background material has also intermediate ther-
mal expansion compared to aluminum and polyethylene,
which is actually crucial in the design of thermo-mechanical
cloaking devices [16].

As shown in the previous section, the performance of the
easy-to-make thresholded cloaking device shown in Fig. 4
(b) is highly satisfactory. A richer design set D can lead to
a metadevice exhibiting even better performance, but that
would also be significantly harder to manufacture. For in-
stance, it is possible to design the cloaking device using the
same candidate materials, but arranged in laminates of vari-
able relative thickness and orientation.
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 Error
(%) 15.2 179.0 342.8 506.6 670.0

Homogeneous 
Base material

(Nylon)

(a)

Error
(%) 0.0 1.8 3.7 5.5 7.4

Metadevice
(Aluminium and 
Polyethylene)

(b)

Figure 6: Distribution of local relative error in the cloaking task achievement: (a) Holed homogeneous plate, and (b) Holed plate
with the thresholded metadevice.

Device

Full plate Holed plate Holed plate with the
metadevice

Figure 7: Deformed contours of the internal and external bound-
aries together to the diagonal lines for the full plate (black), the
holed plate (red), and the holed plate with the metadevice (blue).

Such laminates behave as an orthotropic metamaterial,
whose properties under plane strain conditions are given in
Table 2 [16]. In this case, two design variables are needed
to characterize the unit cell at each finite element Ω(e): the
orientation θe of the laminate and the relative thickness te of
the aluminum layer. The relative thickness of the polyethy-
lene layer is simply 1−te, whereby it is not a design variable.
So, the metamaterial distribution is determined by solving
the problem

min
P∈R2N

f(P̄) subjected to 0 ≤ P2i−1 ≤ 1 and 0 ≤ P2i ≤ π,

i = 1, 2, . . . , N, (23)

where P is the set of design variables P2i−1 = ti and
P2i = θi, whereas P̄ is that of density-filtered variables
P̄2i−1 = t̄i and P̄2i = θ̄i defined in terms of their respective
design variables by equation (21). The effective properties
within such a richer design set support intermediate values
between those of aluminum and polyethylene, whereby gray
zones are not penalized and there is no Heaviside filtering.

Note that problem (23) has twice as many design vari-
ables as (22), becoming considerably more expensive to
solve. The solution of (23), once density-filtered, gives rise
to the metamaterial distribution shown in Fig. 8. The
colormap indicates the relative thickness of the aluminum
layers, whereas the black segments represent the laminates
orientation.
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Table 2: Effective thermal and mechanical properties of a laminate consisting in two layers of materials A and B with respective
relative thicknesses tA ≡ te and tB = 1− te, referred to the local Cartesian frame λτ (λ in the laminate direction, and τ across the
laminate).

Thermal conductivity kλλ = tAkA + tBkB
kττ = kAkB(tAkB + tBkA)−1

Elastic moduli Cλλλλ = Eλ(1− νλτντλ)[1− ν2λz − 2νλτντλ(1 + νλz)]
−1

Cττττ = Eτ (1− νλz)(1− 2νλτντλ − νλz)−1
Cλλττ = Eτνλτ (1− 2νλτντλ − νλz)−1
Cλτλτ = Gλτ

Young’s moduli Eλ = [EAtA(1− ν2A)−1 + EBtB(1− ν2B)−1](1− ν2λz)
Eτ =

[
(1− 2νA)(1 + νA)tA(EA(1− νA))−1 . . .

+(1− 2νB)(1 + νB)tB(EB(1− νB))−1 + 2ν2λτ (Eλ(1− νλz))−1
]−1

Poisson ratii νλz = [EAtAνA(1− ν2A)−1 + EBtBνB(1− ν2B)−1][EAtA(1− ν2A)−1 + EBtB(1− ν2B)−1]−1

νλτ = [νAtA(1− νA)−1 + νBtB(1− νB)−1](1− νλz)
ντλ = νλτEτE

−1
λ

Shear modulus Gλτ = GAGB(tAGB + tBGA)−1

Thermal expansion αλλ = [αAEAtA(1− νA)−1 + αBEBtB(1− νA)−1](1− νλz)E−1λ
αττ = αAtA(1 + νA)(1− νA)−1 + αBtB(1 + νB)(1− νB)−1 − 2νλταλλ(1− νλz)−1
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Figure 8: Variable relative thickness of the aluminum layer (col-
ormap) and orientation (black segments) of the optimal heteroge-
neous metadevice made of laminates of aluminum and polyethy-
lene. On the top, unit cell at a finite element in the metadevice.

Using this completely heterogeneous optimal metadevice
allows the error in the fulfillment of the cloaking task to be
minimized up to a value of fhet = 0.00753 = 0.0063fhol,
which represents a 99.37% reduction compared to the error
fhol corresponding to the holed plate without the device.

0.0 2.6 5.3 7.9 10.5
Error
(%)

Metadevice of 
laminate 

microstructure

Figure 9: Distribution of local relative error in the cloaking task
achievement in the holed plate with the optimal heterogeneous
metadevice made of laminates of aluminum and polyethylene.

The distribution of local relative error εhet = ‖uhet −
u0‖/‖u0‖ (being uhet the displacement field in presence of
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this metadevice) in the region Ωtask is depicted in Fig. 9, and
exhibits a maximum value max εhet = 10.5%. Compared
to the thresholded metadevice (Fig. 4 (b)), the optimal
heterogeneous metadevice (Fig. 8) performs the cloaking
task globally better (fhet = 0.5179f thr) but locally worse
(max εhet = 1.4189 max εthr). In conclusion, although it
is slightly less efficient to globally accomplish the cloaking
task, the thresholded metadevice is largely preferred thanks
to its feasibility.

5.1. Importance of including temperature-
dependent properties

The significance of accounting for the thermal-
dependence of material properties in the design of man-
ufacturable thermo-mechanical devices is a feature that –
up to the authors’ knowledge– is considered for the first
time in this work. Such an aspect can actually be demon-
strated by solving again the topology optimization thermo-
mechanical problem discussed so far, but neglecting the
thermal-dependence of Young’s modulus of all the involved
materials. For such a purpose, the Young’s modulus of the
materials will be computed at the average value of the tem-
perature range involved in the thermo-mechanical problem
(T = 333 K). Following the procedure described in Section
3.1. in the framework of this thermo-mechanical problem,
the thresholded device depicted in Fig. 10 is obtained. Such
a metadevice exhibits noteworthy differences in the material
distribution with respect to the thresholded device shown in
Fig. 4 (b), which was designed taking due account of the
thermal-dependence of Young’s moduli.

0.0

1.0

0.5

Figure 10: Distribution of aluminum (red) and polyethylene
(blue) in the thresholded metadevice obtained after neglecting
the thermal-dependence of the Young’s modulus of all the in-
volved materials.

Keeping in mind that the displacement field to be recov-
ered is actually that of the full plate made of nylon with

thermo-dependent Young’s modulus (the field u0 shown in
Fig. 3 (a) and (b)), the error in the cloaking task achieve-
ment using the metadevice shown in Fig. 10 is f con =
0.392 = 26.9601f thr (much higher than the error f thr for
thresholded metadevice in the Fig. 4 (b)). The poor perfor-
mance of this device is a consequence of having been con-
ceived to fulfill the cloaking task under conditions such that
the properties of all the materials involved can be consid-
ered constant, which is not realistic given that the Young’s
modulus of such materials exhibit actually noteworthy vari-
ations in the temperature range of the thermo-mechanical
problem addressed in this work. In conclusion, neglecting
the thermal-dependence of material properties may seriously
deteriorate the performance of the metadevice.

5.2. Versatility of the topology optimization-
based approach

To further highlight the versatility of the current topol-
ogy optimization-based approach for the design of thermo-
mechanical metadevices, the design of a different cloaking
device will be carried out under the geometric configura-
tion shown in Fig. 11. This problem is identical to that
described in Section 4., but introducing changes in the ge-
ometry of both the hole Ωincl and the metadevice Ωdev. The
geometry of the hole is changed to a rhombus, whereas the
metadevice is now a square surrounding the hole. Such mod-
ification in the geometry makes more difficult the search
for an invariant form of the conservation equations, when
using the classical coordinates transformation-based design
approaches [7, 23, 25, 26, 28]. However, when the current
topology optimization-based approach is used, the design
process is identical to that described in Section 3.1.
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Figure 11: Domain Ω = Ωdev∪Ωincl∪Ωtask and boundary condi-
tions of the thermo-mechanical problem with different geometries
for both the hole and the cloaking device.
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Figure 12: Distribution of aluminum (red) and polyethylene
(blue) in the metadevice achieved under the proposed topology
optimization-based approach, when considering different geome-
tries for both the hole and the metadevice

After making the rhombic hole in the plate, the changes
in the displacements field compared to that of the full plate
(the field u0 shown in Fig. 3 (a) and (b)) give rise to a global
error f�hol = 0.89 in the accomplishment of the cloaking task
throughout Ωtask. The distribution of local relative error
ε�hol = ‖u�hol−u0‖/‖u0‖, with u�hol denoting the displace-
ment in this holed plate, is depicted in Fig. 13 (a). Such
a distribution exhibits maximum value of max ε�hol = 616%.

The fully discrete metadevice shown in Fig. 12 has been
obtained by following the same steps detailed in section
3.1., finding a threshold of w∗ = 0.08 that guarantees the
best deal between performance and manufacturability. Us-
ing this device reduces the error in the cloaking task up to
f�thr = 0.0255 = 0.0287f�hol, which represents a 97.13%
reduction compared to the error f�hol corresponding to the
holed plate without metadevice. Fig. 13 (b) shows the dis-
tribution of local relative error ε�thr = ‖u�thr − u0‖/‖u0‖,
with u�thr denoting the displacement in this holed plate
when including in Ωdev the metadevice depicted in Fig. 12.

Error
(%) 7.5 160.0 312.0 464.0 616.0

Homogeneous 
Base Material

(Nylon)

(a)

Error
(%) 0.0 5.4 10.9 16.3 21.7

Metadevice
(Aluminium and 
Polyethylene)

(b)

Figure 13: Distribution of local relative error in the cloaking task achievement: (a) Holed homogeneous plate, and (b) Holed plate
with the thresholded metadevice.

Note that using this feasible metadevice considerably
reduces the maximum local relative error up to max ε�thr =
21.7% = 0.0352 max ε�hol.

Finally, the good performance of this cloaking metade-
vice is qualitatively appreciated in the deformed contours
depicted in Fig. 14 corresponding to the full plate as well as

of the holed plate with and without the metadevice, where
the displacements are magnified by a factor of 5 for bet-
ter visualization. Including the metadevice designed in this
alternative case, has also given rise to a noteworthy overlap-
ping of the deformed contours in Ωtask. Despite the changes
introduced in the problem geometry, the cloaking device still
works the way it was intended.
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Full plate Holed plate Holed plate with the
metadevice

Device

Figure 14: Deformed contours of the internal and external bound-
aries together to the diagonal lines for the full plate (black), the
holed plate (red), and the holed plate with the metadevice (blue).

6. Conclusions

A novel approach has been introduced for the com-
putational design of manufacturable thermo-mechanical
metadevices, accounting for the coupling between tem-
perature and displacement fields when both are actually
influenced by the material distribution. It consists in the
solution of a topology optimization problem where the ob-
jective function defines the error in the accomplishment
of a displacement-dependent task (cloaking, particularly),
and the design variables determine the material distribu-
tion. This topology optimization problem is solved using
the popular solid isotropic microstructure (or material) with
penalization (SIMP) interpolation scheme, where the design
variable is an artificial density serving to choose between
two candidate materials with contrasting thermal and me-
chanical properties.

Compared to a previous communication also concerning
the design of thermo-mechanical devices considering the
coupling and design-dependence of temperature and dis-
placement [16], the current work introduces manufactura-
bility as a crucial contribution. Metadevices are made of
only two macroscopically distinguishable standard isotropic
materials, being easy-to-make, unlike the previously de-
signed heterogeneous metadevices [16] made of orthotropic
laminate-based metamaterials.

The thermo-mechanical response of the device is eval-
uated using the finite element method, allowing fully ar-

bitrary geometries for the device, the domain where it is
embedded and its thermal and mechanical boundary con-
ditions, which largely contributes to the high versatility of
the currently proposed approach.

The potentiality and versatility of the proposed topol-
ogy optimization-based approach are demonstrated via its
application to the design of a series of elastostatic cloaking
metadevices in regions subjected to thermal and mechanical
loads, considering either constant or temperature-dependent
material properties and different geometries. All the so-
designed cloaking metadevices are easy-to-make, exhibiting
also a good performance.

Further, in so doing, it was highlighted the importance
of the thermal-dependence of material properties on the
thermo-mechanical response of the metadevice, and conse-
quently in its final design.

It was also demonstrated that an unique approach serves
for different problems.

Based on the obtained results, the following conclusions
can be highlighted: (i) the proposed topology optimization-
based approach allows the design of manufacturable and
high-performance thermo-mechanical metadevices; (ii) the
so-designed metadevices can be easily manufactured us-
ing two macroscopically distinguishable isotropic materi-
als with contrasting material properties; (iii) the effect of
material distribution on temperature was accounted for,
which is unprecedented in the design of manufacturable
thermo-mechanical metadevices; (iv) by considering the in-
fluence of material distribution on temperature, the thermal-
dependence of material properties and the coupling of tem-
perature and displacement fields, the current approach al-
lows solving problems that are unaffordable with the classi-
cal coordinates transformation-based approach for the de-
sign of metamaterials and metadevices; and (v) the ma-
terial distribution in the thermo-mechanical metadevice is
prescribed, which is a crucial advantage with respect to the
approaches (like the transformation-based one) that define
inhomogeneous and uncertainly feasible material properties.
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