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Abstract

We study the existence and multiplicity of periodic solutions for sin-
gular ϕ-laplacian equations with delay on time scales. We prove the exis-
tence of multiple solutions using topological methods based on the Leray-
Schauder degree. A special case is the T -periodic problem for the forced
pendulum equation with relativistic effects.
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1 Introduction

In this work, we study the existence and multiplicity of T -periodic solutions
x : T → R to the following equation with delay on time scales

(ϕ(x∆(t)))∆ + h(x(t))x∆(t) + g(x(t− r)) = p(t), t ∈ T, (1)

where T is an arbitrary T -periodic nonempty closed subset of R (time scale),
ϕ : (−a, a) → R is an increasing homeomorphism with 0 < a < +∞ such that
ϕ(0) = 0, and h, g : R → R are continuous functions. Moreover, we assume that
r ≥ 0 and T > 0 are real numbers, and that p(t+ T ) = p(t) is continuous in T

with p := 1
T

∫ T

0
p(t)∆t = 0.

∗Email: mpkuna@dm.uba.ar
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The time scales theory was introduced in 1988, in the PhD thesis of Stefan
Hilger [9], as an attempt to unify discrete and continuous calculus. The time
scale R corresponds to the continuous case and, hence, yields results for ordinary
differential equations. If the time scale is Z, then the results apply to difference
equations. However, the generality of the set T produces many different situ-
ations in which the time scales formalism is useful in several applications. For
example, in the study of hybrid discrete-continuous dynamical systems, see [5].

The methods usually employed to explore the existence of periodic solutions
for dynamic equations in time scales are: fixed point theory [11, 12], Mawhins
continuation theorem [6, 7, 10], lower and upper solutions [17, 18], among many
other works. Some of the above cited references correspond to the semilinear
case, that is, ϕ(x) = x and some others to the p-laplacian operator, namely
ϕp(x) := |x|p−2x. For instance, in [6] Cao, Hang and Sun studied, by means of
Mawhins continuation theorem, the existence of periodic solutions of

(ϕp(x
∆(t)))∆ + f(x(t))x∆(t) + g(x(t)) = e(t), t ∈ T,

with p > 2, f, g continuous real functions and e ∈ C(T,R) with period T > 0.
However, the literature concerning singular ϕ-laplacian operators in time scales
is more scarce. A special case of (1) with T = R is the forced pendulum
equation with relativistic effects, namely,



 x′
√
1− x′2

c2




′

+ kx′(t) + b sinx = p(t), t ∈ R, (2)

where c > 0 is the speed of light in the vacuum, k > 0 is a possible viscous
friction coefficient and p is a continuous and T -periodic forcing term with mean
value zero. This equation has received much attention by several authors, see e.g.
[4, 13, 19]. In particular in [19], employing the Schauder fixed point theorem,
Torres proved the existence of at least one T -periodic solution, provided that
2cT ≤ 1. This result was later improved in [20] and finally in [2], where the
sharper condition cT <

√
3π was obtained.

In this work, we generalize several aspects of the results in [6] and [19]. On
the one hand, our problem consist of dynamical equations on time scales; on the
other hand, the functions f, g are general and the equation may also include a
delay. This implies that the use of the Poincaré operator does not reduce the
problem to a finite-dimensional one, and requires the use of accurate topological
methods such as the Leray-Schauder degree. Moreover, our main theorem is in
fact a multiplicity result, which intuitively can be motivated as follows. If we
observe for example problem (2), it is clear that the periodicity implies that
if x is a T -periodic solution, then x + 2kπ is also a T -periodic solution for
all k ∈ Z. Such solutions are usually called in the literature geometrically
equivalent. However, if the term kx′ is replaced by h(x)x′ for some continuous
function h close to a constant, then the problem still admits infinitely many
solutions, which may be geometrically distinct if h is not a 2π-periodic function.
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With this idea in mind, it shall be shown that if the nonlinear term has a more
general oscillatory behaviour, then multiple solutions exist.

More specifically, our main result reads as follows:

Theorem 1.1 Assume that there exists a strictly increasing sequence {αj}nj=0
such that

(−1)j
∫ T

0

h(x(t))x∆(t) + g(x(t))∆t < 0 if x(0) = αj ,
∥∥x∆

∥∥
∞ < a.

for every j and each smooth T -periodic function x(t). Then, for any continu-
ous T -periodic function p(t) with mean value zero, problem (1) has at least n
different T -periodic solutions.

In particular, if g is oscillatory over R and h satisfies some suitable conditions
then (1) has infinitely many different T -periodic solutions, provided that the
oscillations are sufficiently slow. The proof of the theorem shall be based on
the search for fixed points of an appropriate compact operator defined on the
Banach space of all continuous T -periodic functions on T. The singular nature
of ϕ shall be of help in the obtention of the required a priori bounds, thus making
possible a Leray-Schauder degree approach. We highlight that, in contrast with
the continuous case, the treatment of Liénard-like equations on time scales is
more delicate because the average of the term h(x(t))x∆(t) with T -periodic x is
not necessarily equal to 0. This is due to the fact that the standard chain rule
does not hold and, consequently, some extra conditions are required in order to
avoid this difficulty.

The paper is organized as follows. In Section 2, we set the notation, ter-
minology, and several preliminary results which will be used throughout this
paper. In Section 3, we adapt Mawhin’s continuation theorem to the context of
times scales in order to prove the existence of at least one T -periodic solution of
(1). We remark that this first result can be deduced from the multiplicity result
although, for the sake of clarity, this simpler case was analyzed separately. In
Section 4, we prove our main theorem with the help of the arguments introduced
in the preceding section. Some examples illustrating the results are presented
in Section 5.

2 Notation and preliminaries

For fixed T > 0, we shall assume that T is T -periodic, that is, T + T = T. we
denote by CT = CT (T,R) the Banach space of all continuous T -periodic func-
tions on T endowed with the uniform norm ‖x‖∞ = sup

T

‖x(t)‖ = sup
[0,T ]

T

‖x(t)‖

and the closed subspace

C̃T =
{
x ∈ CT :

∫ T

0 x(s)∆s = 0
}
.
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For an element x ∈ CT its maximum and minimum values shall be denoted
respectively by xM and xm.

Moreover, denote by C1
T = C1

T (T,R) the Banach space of all continuous T -
periodic functions on T that are ∆-differentiable with continuous ∆-derivatives,
endowed with the usual norm

‖x‖1 = sup
[0,T ]

T

‖x(t)‖ + sup
[0,T ]

T

∣∣x∆(t)
∣∣ .

In this paper we shall consider T -periodic time scales T such that 0 ∈ T and
T− r ⊂ T.

We introduce the following operators and functions:

• The Nemytskii operator Nf : C1
T → CT , given by

Nf (z)(t) = f(t, x(t), x∆(t), x(t − r)),

where f : T× R
3 → R is a continuous function;

• The integration operator H : C̃T → C1
T ,

H(z)(t) =
∫ t

0
z(s)∆s,

• The continuous linear projectors:

Q : CT → CT , Q(x)(t) = 1
T

∫ T

0
x(s)∆s,

P : CT → CT , P (x)(t) = x(0)

where, for convenience, we omitted the isomorphism between R and the
subspace of constant functions of CT .

The above equation (1) can be written as follows:

(ϕ(x∆(t)))∆ = f(t, x(t), x∆(t), x(t − r)), t ∈ T, (3)

A function x ∈ C1
T is said to be a solution of (3) if ϕ(x∆) is of class C1 and

verifies (ϕ(x∆(t)))∆ = f(t, x(t), x∆(t), x(t − r)), for all t ∈ T.

The following lemma is an adaptation of a result of [3] to time scales.

Lemma 2.1 For each x ∈ CT , there exists a unique Qϕ = Qϕ(x) ∈ [xm, xM ]
such that ∫ T

0

ϕ−1(x(t) −Qϕ(x))∆t = 0.

Moreover, the function Qϕ : CT → R is continuous and sends bounded sets into
bounded sets.
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Proof: Let x ∈ CT and define the continuous application Gx : [xm, xM ] → R by

Gx(s) =
∫ T

0 ϕ−1(x(t) − s)∆t.

We claim that the equation
Gx(s) = 0 (4)

has a unique solution Qϕ(x). Indeed, Let r, s ∈ [xm, xM ] be such that

∫ T

0
ϕ−1(x(t) − r)∆t = 0 =

∫ T

0
ϕ−1(x(t) − s)∆t,

then using the fact that ϕ−1 is strictly increasing we deduce that r = s. More-
over, It is seen that

∫ T

0
ϕ−1(x(t) − xM )∆t ≤ 0 ≤

∫ T

0
ϕ−1(x(t) − xm)∆t,

whence

Gx(xm)Gx(xM ) ≤ 0.

Thus, there exists s ∈ [xm, xM ] such that Gx(s) = 0, that is, equation (4) has
a unique solution. It follows that function Qϕ : CT → R given by Qϕ(x) = s is
well defined and, furthermore, because s ∈ [xm, xM ] we deduce that

|Qϕ(x)| ≤ ‖x‖∞.

Therefore, the function Qϕ sends bounded sets into bounded sets.
Finally, let us verify that Qϕ is continuous on CT . Let (xn)n ⊂ CT be a

sequence such that xn → x in CT . Since the function Qϕ sends bounded sets
into bounded sets, the sequence (Qϕ(xn))n is bounded in R and, consequently,
without loss of generality we may assume that it converges to some ã. Because

∫ T

0
ϕ−1(xn(t)−Qϕ(xn))∆t = 0

for all n, by the dominated convergence theorem on time scales [5], we deduce
that

∫ T

0
ϕ−1(x(t) − ã)∆t = 0,

so Qϕ(h) = ã. Thus, we conclude that the function Qϕ is continuous. �

Now, we define the fixed point operator, which is similar to the one employed
in [3] (see also [1] for an elementary introduction). In order to transform problem
(3) into a fixed point problem we use the operators H,Q,Nf , P and Lemma 2.1.
The proof of this result is similar to the continuous case and shall not repeated
here.

Lemma 2.2 x ∈ C1
T is a solution of (3) if and only if x is a fixed point of the

operator Mf defined on C1
T by

Mf (x) = P (x) +Q(Nf(x)) +
H
(
ϕ−1 [H(Nf (x) −Q(Nf(x))) −Qϕ(H(Nf (x)−Q(Nf (x))))]

)
.
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As the function f is continuous, using the Arzelà-Ascoli theorem it is not difficult
to see that Mf is completely continuous.

Using Lemma 2.2, the existence of a T -periodic solution for (3) is reduced
to the study of the fixed points of the operator Mf . To this end, we will use
topological degree theory.

Consider the following family of problems defined for λ ∈ [0, 1]:

(ϕ(x∆(t)))∆ = λNf (x)(t) + (1− λ)Q(Nf (x)), (5)

where the operator Nf is defined by

Nf(x)(t) = f(t, x(t), x∆(t), x(t − r)) :=
−h(x(t))x∆(t)− g(x(t− r)) + p(t), t ∈ T.

For each λ ∈ [0, 1], consider the nonlinear operator M(λ, ·), where M is
defined on [0, 1]× C1

T by

M(λ, x) = P (x) +Q(Nf (x))+ (6)

H(ϕ−1 [λH(Nf (x)−Q(Nf (x))) −Qϕ(λH(Nf (x)−Q(Nf (x))))]).

Observe that M(1, x) = Mf and, similarly as above, it is easy to see that M
is completely continuous and, for λ > 0, the existence of solution to equation
(5) is equivalent to the problem

x = M(λ, x).

We claim that the previous assertion is true also for λ = 0. Indeed, because
Qϕ(c) = c for any constant c, it is clear that M(0, x) = P (x) + Q(Nf (x)). If
x = M(0, x) then x is constant and x = P (x), that is, Q(Nf (x)) = 0 and (5)
with λ = 0 is trivially satisfied. Conversely, if (ϕ(x∆(t)))∆ ≡ Q(Nf(x)) then

we obtain, upon integration,
∫ T

0 Q(Nf (x))∆t = 0 which, in turn, implies that
Q(Nf(x)) = 0. Thus x∆ is constant and, by periodicity, x∆ ≡ 0, that is, x is
constant and, consequently, x = P (x) = P (x) +Q(Nf (x)) = M(0, x).

Remark 2.3 It is worthy to notice that, for any λ ∈ [0, 1], if x is a fixed point
of M then Q(Nf (x)) = 0.

3 Existence of periodic solutions

In this section, we establish the existence of at least one T−periodic solution to
problem (1). Let us denote by degB and degLS the Brouwer and Leray-Schauder
degrees respectively.

The following continuation theorem is obtained.

Theorem 3.1 Assume that Ω is an open bounded set in C1
T such that the fol-

lowing conditions hold:
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1. For each λ ∈ (0, 1) the problem

(ϕ(x∆(t)))∆ = λNf (x) (7)

has no solution on ∂Ω.

2. The equation

g(y) = 0,

has no solution on ∂Ω∩R, where we consider the natural identification of
R with the subspace of constant functions of C1

T .

3. The Brouwer degree of g satisfies:

degB(g,Ω ∩ R, 0) 6= 0.

Then, for any continuous T -periodic function p(t) with mean value zero, the
problem (1) has at least one T−periodic solution.

Proof: Let λ ∈ (0, 1]. If x is a solution of (7), then Q(Nf (x)) = 0, hence x is a
solution of problem (5). On the other hand, for λ ∈ (0, 1], let x be a solution of
(5) and since

Q (λNf (x) + (1− λ)Q(Nf (x))) = Q(Nf(x)),

we have that Q(Nf (x)) = 0, then x is a solution of (7). It follows that, for
λ ∈ (0, 1], problems (5) and (7) have the same solutions. We assume that (5)
has no solutions on ∂Ω for λ = 1, since otherwise we are done with the proof.
It follows that (5) has no solutions for (λ, x) ∈ (0, 1]× ∂Ω. If x is a solution of
(5) for λ = 0, then we conclude as before that Q(Nf(x)) = 0 and x(t) ≡ b ∈ R.

Thus, using the fact that
∫ T

0
p(t)∆t = 0

0 =
1

T

∫ T

0

f(t, b, 0, b)∆t = −g(b),

which, together with hypothesis 2, implies that b /∈ ∂Ω.
Summarizing, we proved that (5) has no solution on ∂Ω for all λ ∈ [0, 1].

Thus, for each λ ∈ [0, 1], the Leray-Schauder degree degLS(I −M(λ, ·),Ω, 0) is
well defined and, by the homotopy invariance property,

degLS(I −M(0, ·),Ω, 0) = degLS(I −M(1, ·),Ω, 0).

On the other hand,

degLS(I −M(0, ·),Ω, 0) = degLS(I − (P +QNf),Ω, 0).

But the range of the mapping

z 7→ P (z) +QNf(z)

7



is contained in the subspace of constant functions of C1
T , identified with R.

Thus, using the reduction property of the Leray-Schauder degree [8, 14]

degLS(I − (P +QNf),Ω, 0) = degB
(
I − (P +QNf )

∣∣
Ω∩R

,Ω ∩ R, 0
)

= degB(g,Ω ∩R, 0) 6= 0.

Then, degLS(I −M(1, ·),Ω, 0) 6= 0 and, in consequence, there exists x ∈ Ω such
that Mf (x) = M(1, x) = x, which is a solution of (3) and therefore a solution
of (1). �

With the help of Theorem 3.1 we shall be able to prove the existence of fixed
points of Mf With this aim, for λ ∈ (0, 1) we consider the equation

(
ϕ
(
x∆(t)

))∆
+ λh(x(t))x∆(t) + λg(x(t− r)) = λp(t), t ∈ T, (8)

which is the explicit expression of problem (7).
For the reader’s convenience, we start with the following simple existence

theorem which, in fact, can be obtained as a particular case of our main result
in the next section:

Theorem 3.2 Assume there exists d > 0 such that
∫ T

0
[h(x(t))x∆(t) + g(x(t))]∆t > 0 if xm ≥ d,

∥∥x∆
∥∥
∞ < a,

∫ T

0 [h(x(t))x∆(t) + g(x(t))]∆t < 0 if xM ≤ −d,
∥∥x∆

∥∥
∞ < a.

Then problem (1) has at least one T -periodic solution.

Proof: Let λ ∈ (0, 1). If x ∈ C1
T (T,R) is a solution of (8) then on the one hand,

it is clear that
|x∆(s)| < a, (9)

for all s ∈ T.
On the other hand, integrating both sides of (8) from 0 to T and since∫ T

0 p(s)∆s = 0, we have that

∫ T

0

[h(x(t))x∆(t) + g(x(t− r))]∆t = 0.

From the periodicity of x, using (8), (9) and the assumptions, we obtain:

xM > −d, xm < d. (10)

By the inequality xM ≤ xm +
∫ T

0

∣∣x∆(s)
∣∣∆s and (10), it follows that

xM < d+

∫ T

0

∣∣x∆(s)
∣∣∆s.
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Analogously, it can be shown that

xm > −
(
d+

∫ T

0

∣∣x∆(s)
∣∣∆s

)
.

Hence,

−
(
d+

∫ T

0

∣∣x∆(s)
∣∣∆s

)
< xm ≤ xM <

(
d+

∫ T

0

∣∣x∆(s)
∣∣∆s

)
,

and using (9) we deduce that

‖x‖∞ < d+ aT. (11)

From (9) and (11) it follows that ‖x‖1 < d+ aT + a = d+ a(1 + T ).
Let ρ := d + a(1 + T ). Then using the hypothesis and the fact that ρ > d,

we see that g(ρ)g(−ρ) < 0, which implies that degB(g,Ω ∩ R, 0) 6= 0, where
Ω := Bρ(0) ⊂ C1

T and Ω ∩ R = (−ρ, ρ). Therefore, the conditions 1, 2 and 3 of
Theorem 3.1 are satisfied and the proof is complete. �

The next example shows that the
∫ T

0 h(x(t))x∆(t)∆t is not always equal to
zero. This is due to the fact that the standard chain rule does not hold for time
scales.

Example 3.3 Let T be 3-periodic with [0, 3]T = [0, 1]∪{2, 3}, let h(x) = x, and
let x : T → R be the 3-periodic function defined by

x(t) =






t if 0 ≤ t ≤ 1

2 if t = 2.

It follows by direct computation that
∫ 3

0
x(t)x∆(t)∆t = − 5

2 .

For the next result, let us observe that the set S of right scattered points on
[0, T ]

T
,

S = {t ∈ [0, T ]
T
: σ(t) > t}

is countable. For simplicity, we shall assume that the set L(S) of limit points
of S is finite. The following corollary is thus obtained:

Corollary 3.4 Suppose there exists d > 0 such that g(s) > 0 for s ≥ d and
g(s) < 0 for s ≤ −d. Moreover, assume that h is nonincreasing over (d,+∞)
and nondecreasing over (−∞, d). If L(S) is finite, then problem (3) has at least
one T−periodic solution.

Proof: Let H : R → R be the continuous function defined by

H(x) =
∫ x

0 h(s)ds.

9



Assume for example that x ∈ C1
T is such that xm ≥ d and ‖x∆‖∞ < a, then

g(x(t − τ)) > 0 for all t and therefore
∫ T

0
g(x(t − τ))∆t > 0. We claim that∫ T

0
h(x(t))x∆(t)∆t ≥ 0 and, consequently, the first condition of the previous

theorem is satisfied.
The proof will follow several steps.
Step 1. Let a < b ∈ T such that [a, b] ∩ S is finite, then

∫ b

a

h(x(t))x∆(t)∆t ≥ H(x(b)) −H(x(a)).

Indeed, write [a, b] ∩ S = {t0, . . . , tN} with tj < tj+1 and compute

∫ tN

t0

h(x(t))x∆(t)∆t =

N−1∑

j=0

(
h(x(tj))[x(σ(tj))− x(tj)] +

∫ tj+1

σ(tj)

h(x(t))x∆(t)∆t

)

=

N−1∑

j=0

h(x(tj))[x(σ(tj))− x(tj)] +

N−1∑

j=0

[H(x(tj+1))−H(x(σ(tj)))]

=

N−1∑

j=0

(
h(x(tj))[x(σ(tj))−x(tj)]−[H(x(σ(tj)))−H(x(tj))]

)
+H(x(tN ))−H(x(t0))

=

N−1∑

j=0

(h(x(tj))− h(ξj))[x(σ(tj))− x(tj)] +H(x(tN ))−H(x(t0))

for some ξj between x(tj) and x(σ(tj)). Because h is nonincreasing over the

range of x, it follows that
∫ tN

t0
h(x(t))x∆(t)∆t ≥ H(x(tN ))−H(x(t0)). Moreover,

∫ t0

a

h(x(t))x∆(t)∆t = H(x(t0))−H(x(a))

and the result follows if tN = b. If otherwise tN < b, then

∫ b

tN

h(x(t))x∆(t)∆t = h(x(tN ))(x(σ(tN ))− x(tN )) +H(x(b)) −H(x(σ(tN )))

= h(x(tN ))(x(σ(tN ))−x(tN ))− [H(x(σ(tN )))−H(x(tN ))]+H(x(b))−H(x(tN ))

≥ H(x(b)) −H(x(tN ))

and hence
∫ b

a
h(x(t))x∆(t)∆t ≥ H(x(b)) −H(x(a)).

Step 2. Let a < b be two consecutive limit points of S, then

∫ b

a

h(x(t))x∆(t)∆t ≥ H(x(b)) −H(x(a)).

Indeed, if [a, b] ∩ S is finite, then the proof follows from the previous step.
Otherwise, there are three possible situations:

10



1. (a, b) ∩ S = {tj}j∈N0
with tj ց a. Then

∫ t0

a

h(x(t))x∆(t)∆t =

∞∑

j=1

∫ tj−1

tj

h(x(t))x∆(t)∆t

and, from Step 1,

∫ t0

a

h(x(t))x∆(t)∆t ≥
∞∑

j=1

[H(x(tj−1))−H(x(tj))] = H(x(t0))−H(x(a)).

It follows that
∫ b

a

h(x(t))x∆(t)∆t ≥ H(x(t0))−H(x(a)) +

∫ b

t0

h(x(t))x∆(t)∆t

= H(x(b)) −H(x(a)).

2. (a, b) ∩ S = {tj}j∈N0
with tj ր b. As before, it is seen that

∫ b

t0

h(x(t))x∆(t)∆t =

∞∑

j=0

∫ tj+1

tj

h(x(t))x∆(t)∆t

≥ H(x(b))−H(x(t0))

and the proof follows because
∫ t0

a
h(x(t))x∆(t)∆t = H(x(t0))−H(x(a)).

3. (a, b) ∩ S = {tj}j∈N0
∪ {sj}j∈N0

with tj ց a, tj ր b and t0 = s0. As
before, we deduce that

∫ t0

a

h(x(t))x∆(t)∆t ≥ H(x(t0))−H(x(a)),

∫ b

t0

h(x(t))x∆(t)∆t ≥ H(x(b)) −H(x(s0))

and the proof follows.

Step 3.
If L(S) is empty, then S is finite, then by Step 1

∫ T

0

h(x(t))x∆(t)∆t ≥ H(x(T ))−H(x(0)) = 0.

Next, suppose L(S) = {Lj}j=0,...,N with Lj < Lj+1 for all j. By periodicity we
may assume, without loss of generality, that L0 = 0 and LN = T . It follows
from the previous steps that

∫ T

0

h(x(t))x∆(t)∆t ≥
N−1∑

j=0

[H(x(Lj+1))−H(x(Lj))] = H(x(T ))−H(x(0)) = 0

11



and the claim is proved.
In the same way, it is seen that if x ∈ CT satisfies xM ≤ −d and ‖x∆‖∞ < a,

then
∫ T

0 g(x(t− τ))∆t +
∫ T

0 h(x(t))x∆(t)∆t < 0 and so completes the proof.
�

Remark 3.5 If S = ∅ then the conditions on the function h in Corollary 3.4
are not needed. Obviously, this is also true if h is constant.

Corollary 3.6 Assume that

lim sup
x→−∞

g(x) < 0 < lim inf
x→+∞

g(x).

Assume, furthermore, that L(S) is finite and there exists R > 0 such that

h(y) ≤ h(x) for y ≥ x ≥ R or y ≤ x ≤ −R.

Then problem (3) has at least one T -periodic solution.

Proof: The proof is immediate from the previous corollary. �

Corollary 3.7 Assume there exists R > 0 and constants γ± ∈ R such that

g(x) > a|h(x) + γ+| for x ≥ R, g(x) < −a|h(x) + γ−| for x ≤ −R

Then problem (3) has at least one T -periodic solution.

Proof: Suppose for example that xm ≥ R and ‖x∆‖∞ < a, then

(h(x(t)) + γ+)x∆(t) + g(x(t)) ≥ g(x(t)) − a|h(x(t)) + γ+| > 0.

Since
∫ T

0
γ+x∆(t)∆t = 0, we deduce that

∫ T

0

[h(x(t))x∆(t) + g(x(t))]∆t > 0.

Similarly, it is verified that if xM ≤ −R then

∫ T

0

[h(x(t))x∆(t) + g(x(t))]∆t < 0

and the proof follows from Theorem 3.2. �

Remark 3.8 In particular, the assumptions in the previous corollary are sat-
isfied when h is constant and g(x) > 0 > g(−x) for x ≥ R.
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4 Multiplicity of periodic solutions

In this section we establish the existence of at least n different solutions of
problem (1). We remark that in the case n = 1, the assumptions are more
general that those in Theorem 3.2.

Theorem 4.1 Assume that there exists a strictly increasing sequence {αj}nj=0

such that for all j and x ∈ C1
T ,

(−1)j
∫ T

0

[h(x(t))x∆(t) + g(x(t))]∆t < 0 if x(0) = αj ,
∥∥x∆

∥∥
∞ < a. (12)

Then, for any continuous T -periodic function p(t) with mean value zero, problem
(1) has at least n different T -periodic solutions.

Proof: Using the same argument as in the proof of Theorem 3.2, we obtain

that if x ∈ C1
T (T,R) is a solution of (5) with λ ∈ [0, 1], then |x∆(t)| < a and

x(0) 6= αj , for any j = 0, . . . , n. Therefore, problem (5) has no solution in ∂Ωj

for all j = 0, . . . , n− 1, where

Ωj :=
{
x ∈ C1

T (T,R) /x(0) ∈ (αj , αj+1),
∥∥x∆

∥∥
∞ < a

}
.

From the homotopy invariance of the Leray-Schauder degree, we obtain

degLS(I −M(1, ·),Ωj, 0) = degLS(I −M(0, ·),Ωj, 0) =

= degLS(I − (P +QNf ),Ωj , 0) =

= degB

(
I − (P +QNf)

∣∣∣Ωj∩R
,Ωj ∩ R, 0

)
=

= degB(g,Ωj ∩ R, 0) =

= degB(g, (αj , αj+1), 0).

Moreover, observe that employing condition (12) for x ≡ αj it is verified that
(−1)jg(αj) < 0 which, in turn, implies that degB(g, (αj , αj+1), 0) 6= 0. We
conclude that the operator M(1, ·) = Mf has a fixed point xj ∈ Ωj. Finally,
observe that xj(0) ∈ (αj , αj+1) hence all the solutions are different. �

Remark 4.2 Condition (12) may be replaced by

(−1)j
∫ T

0

[h(x(t))x∆(t) + g(x(t))]∆t > 0 if x(0) = αj ,
∥∥x∆

∥∥
∞ < a.

Similarly to Corollary 3.4, condition (12) can be obtained from appropriate
explicit assumptions on g and h, provided that the set L(S) of right-scattered
points has only finitely many limit points.

Corollary 4.3 Assume that L(S) is finite and that there exists a strictly in-
creasing sequence {αj}nj=0 such that
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1. h is nonincreasing and g(s) > 0 for s ∈ (αj − aT
2 , αj +

aT
2 ) and j odd.

2. h is nondecreasing and g(s) < 0 for s ∈ (αj − aT
2 , αj + aaT

2 ) and j even.

Then, for any continuous T -periodic function p(t) with mean value zero, problem
(3) has at least n different T -periodic solutions.

Proof: From the previous proof and the reasoning of Corollary 3.4, it suffices to

verify that if x ∈ C1
T (T,R) is a solution of (5) with λ ∈ [0, 1] and x(0) = αj , then

x(t) ∈ (αj − aT
2 , αj +

aT
2 ) for all t. To this end, observe that if |x(t)−αj | ≥ aT

2
for some t ∈ (0, T )T, then

a
T

2
≤ |x(t) − αj | ≤

∫ t

0

|x∆(s)|∆s < at,

whence t > T
2 . Due to the periodicity, we also deduce that T − t > T

2 , a
contradiction. �

Remark 4.4 In particular, the conditions in the previous theorem imply that
αj+1 − αj ≥ aT for j = 0, 1, . . . , n− 1.

Also, in the spirit of Corollary 3.7 we obtain:

Corollary 4.5 Assume there exists a strictly increasing sequence {αj}nj=0 and
constants γj such that

1. g(x) > a|h(x) + γj | for s ∈ (αj − aT
2 , αj +

aT
2 ) and j odd.

2. g(x) < −a|h(x) + γj | for s ∈ (αj − aT
2 , αj +

aT
2 ) and j even.

Then, for any continuous T -periodic function p(t) with mean value zero, problem
(3) at least n different T -periodic solutions.

Remark 4.6 In particular, suppose that g has slow oscillations, that is, there
exists a sequence of zeros xj ր +∞ such that (−1)jg(x) > 0 for x ∈ (xj , xj+1),
with xj+1−xj > aT , then the problem has infinitely many solutions, provided for

example that a|h(x)| < |g(x)| in (αj− aT
2 , αj+

aT
2 ) for all j, where αj =

xj+xj+1

2 .

5 Examples

In order to illustrate the above results, we consider some examples.

Example 5.1 Let us consider the equation
(

x∆(t)√
1− x∆(t)2

)∆

+ e−x2(t)x∆(t) + arctan(x(t)) = sin(4πt) t ∈ T (13)

where T is a 1/2-periodic time scale with

[0, 1/2]
T
= [0, 1/8]∪ {3/16} ∪ {1/4} ∪ [5/16, 3/8]∪ [7/16, 1/2] .

By Corollary 3.4 or Corollary 3.7, we deduce that the problem (13) has at least
one 1/2-periodic solution.
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Example 5.2 Let h : R → R be continuous. Let us study the existence of a
2π-periodic solution to the following problem


 x∆(t)√

1− x∆(t)2

c2




∆

+ h(x(t))x∆(t) + x3(t− r) = cos(t), t ∈ R, (14)

where c > 0 and r ≥ 0. Using Corollaries 3.4 and 3.7, it follows that problem
(14) has at least one 2π-periodic solution if for example one of the following
assumptions is verified:

1. S = ∅.

2. There exists R > 0 such that

h(y) ≤ h(x) for y ≥ x ≥ R or y ≤ x ≤ −R.

3. lim supx→±∞

∣∣∣h(x)x3

∣∣∣ < 1

Example 5.3 Let us consider the relativistic pendulum equation on time scales



 x∆(t)√
1− x∆(t)2

c2




∆

+ h(x(t))x∆(t) + sin(x(t)) = p(t), t ∈ T, (15)

where h, p : R → R are continuous functions and p is T -periodic with mean value
zero. If cT ≤ π, then problem (15) has infinitely many T -periodic solutions
under one of the following assumptions:

1. S = ∅.

2. L(S) is finite and (−1)j+1h is nondecreasing in (αj − cT
2 , αj +

cT
2 ), where

αj = (2j + 1)π2 for j ∈ Z.

3. c |h(x) + γj | < |sin(x)| for j ∈ Z and some constants γj.

Clearly the latter condition is satisfied when h is constant although, in this
case, the solutions are not necessarily different in geometric sense (see [19]).
It is worth observing that the restriction cT ≤ π, which comes from Remark
4.4, improves the one in the original work by Torres, but it is slightly worse
than the one obtained in [20] which, as mentioned in the introduction, reads
cT < 2

√
3 = 3.46 . . . However, the method in [20] involves a change of variables

that cannot be extended to a general time scale. The better bound given in [2] is
easily obtained in the continuous case, due to the Sobolev inequality

‖x− x‖2∞ ≤ T

12
‖x′‖2L2 ,

valid for T -periodic functions. Indeed, it suffices to observe that, if we replace
P by Q in the definition of the operator M in (6) then our main theorem is also
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valid, changing x(0) by x in condition (12) and the definition of Ω. Thus, any
possible solution of (5) satisfying for example x = π

2 verifies |x(t) − π
2 | ≤ cT

2
√
3

for all t. If cT ≤
√
3π, then x(t) ∈ [0, π] for all t and

0 =

∫ T

0

sin(x(t)) dt > 0,

a contradiction. For a general time scale, the argument is essentially the same
and yields the condition s(T)c

√
T ≤ π

2 , where s(T) is the constant of the corre-
sponding Sobolev inequality. We recall that, in the continuous case, the obtention
of the value s(R) = T

12 relies on the Fourier series expansion for periodic func-
tions (see e.g. [15]), which should be adapted accordingly to the general context.
For example, a rapid computation shows, for arbitrary T, that s(T) ≤ T

4 which,
applied to this case, retrieves the condition cT ≤ π.
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