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Abstract 1 

Thyroglobulin (TG) is a homodimeric glycoprotein synthesized by the thyroid gland. To date, 2 

two hundred twenty-seven variations of the TG gene have been identified in humans. Thyroid 3 

dyshormonogenesis due to TG gene mutations have an estimated incidence of approximately 1 in 4 

100,000 newborns. The clinical spectrum ranges from euthyroid to mild or severe hypothyroidism. 5 

The purpose of the present study was to identify and characterize new variants in the TG gene. 6 

We report an Argentine patient with congenital hypothyroidism, enlarged thyroid gland and low 7 

levels of serum TG. Sequencing of DNA, expression of chimeric minigenes as well as 8 

bioinformatics analysis were performed. 9 

DNA sequencing identified the presence of compound heterozygous mutations in the TG gene: 10 

the maternal mutation consists of a c.3001+5G>A, whereas the paternal mutation consists of 11 

p.Arg296*. Minigen analysis of the variant c.3001+5A performed in HeLa, CV1 and Hek293T cell 12 

lines, showed a total lack of transcript expression. So, in order to validate that the loss of expression 13 

was caused by such variation, site-directed mutagenesis was performed on the mutated clone, which 14 

previously had a pSPL3 vector change, to give rise to a wild-type clone c.3001+5G, endorsing that 15 

the mutation c.3001+5G>A is the cause of the total lack of expression.  16 

In conclusion, we demonstrate that the c.3001+5G>A mutation causes a rare genotype, altering 17 

the splicing of the pre-mRNA. This work contributes to elucidating the molecular bases of TG 18 

defects associated with congenital hypothyroidism and expands our knowledge in relation to the 19 

pathologic roles of the position 5 in the donor splice site.  20 

Jo
urn

al 
Pre-

pro
of



3 
 

1. Introduction 1 

Congenital hypothyroidism (CH) is a complex group of thyroid diseases which results from 2 

alteration in the biosynthesis of thyroid hormones (dyshormonogenesis, 15-20 % of cases) or in 3 

thyroid gland development (grouped under the name of thyroid dysembryogenesis or dysgenesis, 4 

80-85 % of cases). Dyshormonogenesis has been associated to variants in the SLC5A [Spitzweg and 5 

Morris, 2010; Targovnik et al., 2017, 2020], SLC26A4 [Bizhanova and Kopp, 2010; Wémeau and 6 

Kopp, 2017, Targovnik et al., 2020], SLC26A7 [Bruellman et al., 2020b, Cangul, et al., 2018, 7 

Hermanns et al., 2020; Ishii et al., 2019; Zou et al., 2018], thyroid peroxidase (TPO) [Abramowicz 8 

et al., 1992; Ris-Stalpers and Bikker, 2010; Targovnik et al., 2017, 2020], DUOX1 [Aycan et al., 9 

2017; Bruellman et al., 2020b, Liu et al., 2019; Watanabe et al., 2019b; Zou et al., 2018], DUOXA1 10 

[Liu et al., 2019], DUOX2 [Belforte et al., 2016; Grasberger, 2010; Moreno et al., 2002; Muzza et 11 

al., 2014; Muzza and Fugazzola, 2017; Park et al., 2016; Targovnik et al., 2020], DUOXA2 [Muzza 12 

and Fugazzola, 2017], iodotyrosine deiodinase (IYD)  [Moreno and Visser, 2010; Targovnik et al., 13 

2017] and thyroglobulin (TG) [Citterio et al., 2019; Di Jeso and Arvan, 2016; Ieiri et al., 1991; 14 

Targovnik et al., 2010a, 2011, 2016, 2017, 2020] genes. 15 

Thyroid dyshormonogenesis due to TG gene variants have an estimated incidence of 16 

approximately 1 in 100,000 newborns. The clinical spectrum ranges from euthyroid to mild or 17 

severe hypothyroidism. During the last decades, two hundred twenty-seven variants in the human 18 

TG gene have been reported associated with congenital goiter and also endemic and nonendemic 19 

goiter: 26 splice site variants (19 in the donor splice site and 7 in the acceptor splice site), 42 20 

nonsense variants, 130 missense variants (18 located at in the wild type cysteine residues, 7 21 

originating new cysteine residues, 27 in the ChEL-homology domain and 78 located along the 22 

remaining TG monomer), 5 duplications (4 singles and 1 multiple), 2 insertion (1 multiple and 1 23 

involving a large number of nucleotides), 21 deletions (13 singles, 4 multiples and 4 involving a 24 

large number of nucleotides) and 1 imperfect DNA inversion [Abdul-Hassan et al., 2013; Agretti et 25 
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al., 2013; Alzahrani et al., 2006; Baryshev et al., 2004; Bruellman et al., 2020a, 2020b; Brust et al., 1 

2011; Cangul et al., 2014; Caputo et al., 2007a, 2007b; Caron et al., 2003; Chen et al., 2018; 2 

Citterio et al., 2011, 2013a, 2013b, 2015; de Filippis et al, 2017; Fan et al., 2017; Fu et al., 2016a, 3 

2016b; Gutnisky et al., 2004; Heo et al., 2019;  Hermanns et al., 2013; Hishinuma et al., 1999, 4 

2005, 2006; Hu et al., 2016; Ieiri et al., 1991; Jiang et al., 2016; Kahara et al., 2012; Kanou et al., 5 

2007; Kim et al., 2008; Kitanaka et al., 2006; Liu et al., 2012; Lof et al., 2016; Long et al., 2018; 6 

Machiavelli et al., 2010; Makretskaya et al., 2018; Medeiros-Neto et al., 1996; Mendive et al., 7 

2005; Mittal et al., 2016; Mizokami et al., 2019; Moya et al., 2011; Narumi et al., 2011; Nicholas et 8 

al., 2016; Niu et al., 2009; Pardo et al., 2008, 2009; Peteiro-Gonzalez et al., 2010; Raef et al., 2010; 9 

Rivolta et al., 2005; Rubio et al., 2008; Santos-Silva et al., 2019; Siffo et al., 2018; Sun et al., 2018; 10 

Tanaka et al., 2020; Targovnik et al., 1993, 1995, 2001, 2010b, 2012; van de Graaf et al., 1999; 11 

Wang et al., 2020; Watanabe et al., 2018, 2019, Wright et al., 2020; Yamaguchi et al., 2020; Yu et 12 

al., 2018; Zou et al., 2018; Corral et al., 1993; Pérez-Centeno et al., 1996; Gonzáles-Sarmiento et 13 

al., 2001]. The patients are typically homozygous or compound heterozygous for the gene 14 

mutations, and their parents are carriers of one of such variant.  15 

In the present study we report a Argentinean patient with CH and low levels of serum TG. 16 

Screening by direct sequencing analysis of the TG gene revealed a previously reported, high-17 

frequency nonsense TG mutation and a novel donor splice site (5'ss) TG mutation, constituting a 18 

compound heterozygous for c.886C>T [p.Arg296*] and c.3001+5G>A mutations. In our cellular 19 

expression system, the mutation at the 5'ss causes a total lack of expression of the transcript. Our 20 

results provide new insights on the role of the splice site mutations in the generation of CH and in 21 

particular about the effect of the c.3001+5G>A mutation on the TG splicing mechanism. 22 
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2. Materials and Methods 1 

2.1 Patient  2 

We report a boy born in 2010, is the third child of a non consanguineous couple. With a birth 3 

weight 3.075 g, he was born by cesarean section due to maternal cholestasis. Due to unremarkable 4 

history on delivery, he was exposed to iodinated desinfectants the first days of life.   At 10 days of 5 

life he was referred to the Endocrinology Division of the Children’s Hospital as a result of elevated 6 

TSH in neonatal screening at 48 hs of age (137 mU/L, cut off: 10). He appeared icteric, with a 7 

slightly prominent tongue and a palpated soft goiter. Serum thyroid profile showed elevated TSH of 8 

>100 mIU/L (normal range between 0.5 and 8) with low total T4 of 3.7 µg/dl (normal range 9 

between 6 and 18), low free T4 of 0.47 ng/dl (normal range between 1 and 2.6) and normal total T3 10 

of 103 ng/dl (normal range between 80 and 260). The serum TG concentration was 4 ng/ml (normal 11 

range between 30 and 100) suggesting that hypothyroidism could be related to defective TG 12 

synthesis. 99mTechnetium scintigraphy showed a hypercaptant goiter.  13 

There was no historical evidence of iodine deficiency in the family, and the parents had no 14 

history of previous thyroid diseases. 15 

He started treatment with levothyroxine with good adherence. Since then he grew and developed 16 

normally till age 6 when treatment was whithdrawn for a month and hypothyroidism was 17 

confirmed. A perchlorate discharge test was negative. Treatment was reintroduced.   18 

Written informed consent to participate in the clinical and genetic studies was given by both 19 

parents and the research project was approved by the Institutional Review Board. 20 

 21 

2.2 DNA sequencing 22 

Genomic DNA was isolated from peripheral blood leucocytes by using standard methods. The 180 23 

bp of the promotor region and all 48 exons of the TG gene, including splicing signals and the 24 

flanking intronic regions were amplified by PCR and sequenced using sense and antisense specific 25 
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primers or M13 universal primers reported previously [Gutnisky et al., 2004] with the Big 1 

Dyedeoxyterminator Cycle Sequencing Kit (Applied Biosystems, Weiterstadt, Germany). The 2 

samples were analyzed on the 3500XL Genetic Analyzer (Applied Biosystems). 3 

 4 

2.3 Construction and expression of the minigenes.  5 

To study the effect of the c.3001+5G>A mutation, we constructed wild-type and mutated hybrid 6 

minigenes using the vector pSPL3 (Life Technologies Inc., Gaithersburg, MD). The genomic DNA 7 

region from index patient II-1 containing exon 11 (240-bp) and intronic flanking sequences (110-bp 8 

upstream from the 5’ exon end and 367-bp downstream from the 3’ exon end) were amplified by 9 

long PCR technique using elongase (Thermo Fisher Scientific, Waltham, MA). The forward primer 10 

(pSPL3I10NotI; 5’-ATAAGAATGCGGCCGCGGTGTGTGTGTGGTGTGTAT -3’) contained 11 

the NotI site (underlined) and the reverse primer (pSPL3I11BamHI; 5’-12 

CAGGATCCTGTGTGGTGTTCCTGAATCC -3’) contained the BamHI site (underlined). The 13 

741-bp (717 of which were TG sequences) PCR products were purified from the agarose gel by use 14 

the GFX PCR DNA and Gel Band Purification Kit (GE Healthcare, Buckinghamshire, UK) and 15 

were sequentially digested with NotI and BamHI. The insert was directionally cloned into the NotI 16 

and BamHI sites of the pSPL3 vector. Because index patient II-1 is heterozygous for the 17 

c.3001+5G>A mutation, the wild-type and mutated alleles were thus cloned. The recombinant 18 

plasmids were amplified in DH5α-competent cells and purified by use of the QIAGEN Plasmid 19 

Plus Maxi Kit (QIAGEN, Venlo, Netherlands). The correct sequence was confirmed by sequencing 20 

with the intronic primer TG11F [Gutnisky et al., 2004]. 21 

HeLa, CV1 and Hek293T cell lines were grown in 3.8-cm dishes in DMEM supplemented with 22 

10% bovine calf serum, in a 5% CO2 atmosphere at 37 °C. When cells reached approximately 80% 23 

confluence, they were transfected with 500 ng plasmid DNA (wild-type, mutant, and control 24 

pSPL3)/3.8-cm dish with the Lipofectamine 2000 (Thermo Fisher Scientific). Twenty four hours 25 
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later, cells were harvested and total RNA was extracted with Trizol (Thermo Fisher Scientific). 1 

Reverse Transcription-PCR (RT-PCR) was performed as described previously [Gutnisky et al., 2 

2004] using vector-specific primers: forward primer (pSPL3F), 5-tctgagtcacctggacaacc-3 and 3 

reverse primer (pSPL3R), 5-atctcagtggtatttgtgagc-3. Samples were heated to 94 °C for 5 min, 4 

followed by 40 cycles of DNA denaturation (94 °C for 30 sec), annealing (55 °C for 30 sec), and 5 

polymerization (72 °C for 1 min). After the last cycle, the samples were incubated for an additional 6 

10 min at 72 °C. The identity of all the RT-PCR products was confirmed by cloning into pGEMT-7 

Easy Vector System (Promega) and sequencing with the T7 primer. 8 

 9 

2.4 Site-directed Mutagenesis 10 

The pSPL3A-c.3001+5G M clone was generated from pSPL3A-c.3001+5A using Quick Change II 11 

Site Directed Mutagenesis Kit (Agilent, Santa Clara, CA) following the manufacturer’s 12 

recomendations. Mutagenesis primers were designed using Quick Change Primer Design 13 

(http://www.genomics.agilent.com) forward primer: 5'-tggcggctcagtctagtgagtgtggtgccc-3', reverse 14 

primer: 5'-gggcaccacactcactagactgagccgcca-3'. The final construct was verified by sequencing with 15 

the intronic primer TG11F [Gutnisky et al., 2004]. 16 

 17 

2.5 Computer prediction analysis 18 

Searching for potential 5’ss sequences in the TG gene spanning from exon 11 to intron 11 was 19 

accomplished using the NNSplice (http://www.fruitfly.org/seq_tools/splice.html), Fsplice 20 

(http://linux1.softberry.com/berry.phtml?topic=fsplice&group=programs&subgroup=gfind) and 21 

SPLM (http://linux1.softberry.com/berry.phtml?topic=splm&group=programs&subgroup=gfind) 22 

prediction tools. Scores of the 9-nt sequences, corresponding either to the authentic 5’ss and the 23 

mutated 5’ss, were calculated by means of the MaxEntScan program 24 

(http://genes.mit.edu/burgelab/maxent/Xmaxentscan_scoreseq.html). Finally, the analysis of exon 25 
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sequences that allows the identification of putative exonic splicing enhancer (ESE) responsive to 1 

the human Ser/Arg-rich proteins (SR proteins) was performed using the ESEfinder program 2 

(http://rulai.cshl.edu/tools/ESE/).   3 

 4 

2.6 Nucleotide and amino acid nomenclatures  5 

The amino acid position is designated according to the reference sequences reported in NCBI 6 

accession number: NM_003235.5. The A of the ATG of the initiator methionine codon is denoted 7 

nucleotide +1. Amino acid positions are numbered including the 19-amino acids of the signal 8 

peptide.  9 

Jo
urn

al 
Pre-

pro
of



9 
 

3. Results 1 

3.1 DNA sequence analysis of TG gene. 2 

All 48 exons of the TG gene from index patient II-1 were screened as well as 180 bp of the TG 3 

promoter and all the flanking intronic sequences by direct DNA sequencing. Sequence analysis of 4 

15,000 bases revealed that the index patient was heterozygous for a previously extensively 5 

documented nonsense mutation due to a cytosine to thymine transition at nucleotide 886 in exon 7 6 

(c.886C>T, Chr 8:133894854C>T, dbSNP: rs121912648, ClinVar ID: 12695) (Figure 1a) which 7 

replaces the wild-type arginine at codon 296 with a stop codon [p.Arg296*]. The GT-AG splicing 8 

consensus sequences were rigorously preserved in all introns, except in the donor splice site of 9 

intron 11 where a heterozygous nucleotide substitution guanine to adenine was identified at position 10 

+5 (c.3001+5G>A, Chr 8:133906179G>A) (Figure 1a), compared with the expected sequence. This 11 

mutation was not reported in the literature or gnomAD database 12 

(https://gnomad.broadinstitute.org/). 13 

Segregation analysis by direct sequencing of PCR products of exons 7 and 11 from the parents 14 

showed that the allele c.886C>T [p.Arg296*] was derived from her father and the allele 15 

c.3001+G>A from her mother (Figure 1a). This finding indicates that the index patient II-1 is a 16 

compound heterozygous for c.886C>T [p.Arg296*] and c.3001+5G>A mutations in the TG gene. 17 

 18 

3.2 Minigene analysis 19 

We tested the c.3001+5A mutation for abnormal splicing using the pSPL3 vector system 20 

(pSPL3B-c.3001+5A, Figure 1b and 2). Transfection with mutated pSPL3B-c3001+5A minigen, 21 

performed in HeLa, CV1 and Hek293T cell lines, showed a total lack of transcript expression, 22 

whereas wild type pSPL3A-c.3001+5G minigen (Figure 2) and pSPL3 control showed the expected 23 

fragments of 500 bp (α splicing event) and 260 bp (γ splicing event), respectively (Figure 3). A 24 

weak unpredicted band of approximately 380 bp was detected in mutated pSPL3B-c3001+5A 25 
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minigen (Figure 3). Sequence analysis of this cloned band showed that it contains a DNA fragment 1 

corresponding to the mitochondrial genome. This finding indicates that there is a partial homology 2 

of the primers used in RT-PCR (pSPL3F and pSPL3R) with the mitochondrial genome, originating 3 

a weak nonspecific band, especially when the target transcript is absent. 4 

To examine whether the lack of expression in the mutated clone could be caused by a mutation 5 

in its vector pSPL3, the vector in the mutated clone was changed to the vector of the wild type 6 

clone. The insert from the recombinant pSPL3B-c.3001+5A clone, was introduced in the vector of 7 

the pSPL3A-c.3001+5G clone which previously showed expression of the expected transcript, 8 

giving rise to the new pSPL3A-c.3001+5A clone (Figure 2). However, the expression of the 9 

transcript remains null with the pSPL3A-c.3001+5A clone, despite the vector change (Figure 3). 10 

The weak nonspecific band of approximately 380 bp was also observed in the expression of this 11 

construct (Figure 3). 12 

In order to validate that the loss of expression was caused by c.3001+5A variant, site-directed 13 

mutagenesis was performed on the pSPL3A-c.3001+5A mutated minigen to give rise to pSPL3A-14 

c.3001+5G M wild-type clone (Figure 2), reestablishing the expression of wild type transcript 15 

(Figure 3), endorsing that the c.3001+5A variant is the cause of the total lack of expression. 16 

 17 

3.3 5’ Splice site prediction analysis 18 

In order to evaluate in silico the relevance of the c.3001+5G>A mutation, wild-type and mutated 19 

5'ss located in the intron 11 were analized using the NNSplice, FSplice and SPLM tools. As shown 20 

in Figure 4a, the wild-type 5′ss was recognized by all three programs, whereas the mutated 5′ ss did 21 

not identify as a donor site of splicing by NNSplice, FSplice and SPLM programs (Figure 4a). The 22 

strength of mutated and physiologic 5'ss sites were also compared by four other methods 23 

(MaxEntScan program), the maximum entropy model (MAXENT), the maximum dependence 24 

decomposition model (MDD), the first-order Markov model (MM) and Weight Matrix Model 25 
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(WMM), that require the prior knowledge of the input sequence to be tested. MAXENT, MDD, 1 

MM and WMM scores were consistently lower for the mutated 5′ ss with respect to wild type 5′ ss 2 

(Figure 4a).   3 

The 5' ss consensus sequence is critical but often insufficient for the accurate 5'ss recognition 4 

and may require auxiliary sequences in both introns and exons. ESE elements are sequence tracts 5 

that are required for correct exon definition and inclusion [Blencowe, 2000]. ESE sequences act as 6 

binding sites for SR proteins (SF2/ASF, SC35, SRp40 and SRp55) [Blencowe, 2000]. ESE motifs 7 

were identified in the vicinity of the ss of constitutive and alternative exons [Wang et al., 2005]. 8 

Interestingly, according to ESEfinder, c.3001+5G>A mutation does not diminish the score or 9 

eliminates the SR proteins that bind to ESE sequences located around the exon/intron 11 junction 10 

(Figure 4b). Both mutated and wild type 5' ss were reconized by SF2/ASF, SC35, SRp40 and 11 

SRp55 proteins.  12 
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4.Discussion 1 

We have studied an Argentinean patient that had clinical and biochemical criteria suggestive of 2 

CH associated with TG gene deficiency: lower serum TG and high levels of serum TSH with 3 

simultaneous low levels of circulating thyroid hormones [Targovnik et al, 2010a, 2011]. The low 4 

TG levels and a perchlorate discharge test negative are the basis for the selection of patients for 5 

molecular studies in the TG gene. Molecular analyses indicated that the affected individual carries a 6 

new compound heterozygous for p.Arg296* and c.3001+5G>A mutations in the TG gene.  7 

p.Arg296* mutation (originally published as p.Arg277*) is the most frequently identified TG 8 

variant in Caucasian populations which has been found in families from Argentina, Brazil, Spain, 9 

Portugal, France, United Kingdom, Saudi Arabia and Iraq, as homozygous, compound heterozygous 10 

or monoallelic variants. [Abdul-Hassan et al., 2013; Brust et al., 2011; Caputo et al., 2007a, 2007b; 11 

Citterio et al., 2011, 2013a; Gutnisky et al., 2004; Machiavelli et al., 2010; Nicholas et al., 2016; 12 

Pardo et al., 2009; Peteiro-Gonzalez et al., 2010; Rivolta et al., 2005; Siffo et al., 2018; Santos-Silva 13 

et al., 2019; van de Graaf et al., 1999; Zou et al., 2018]. This mutation was available in 14 

heterozygous state from gnomAD database in Ashkenazi Jewish, Latino, Europeans (non Finnish), 15 

European (Finnish), African and South Asian populations with an estimated total Minor Allele 16 

Frequency (MAF) of 0.0003535 % (100/282,884) for the allele thymine886. 17 

The monomeric mature human TG [Malthiéry and Lissitzky, 1987; van de Graaf et al., 2001] is 18 

composed of a 19 amino acids signal peptide followed by a 2748 amino acid polypeptide. The 19 

classic model is organized in four structural regions (I, II, III and IV) [Citterio et al., 2019; Di Jeso 20 

and Arvan, 2016; Targovnik et al., 2016, 2017, 2020] (Figure 5a). Recently, Coscia et al., [2020] 21 

reported the 3D structure of human TG. This new model is organized in five structural regions: N-22 

Terminal Domain (NTD), core, flap, arm and C-Terminal Domain (CTD) (Figure 5b). The region 23 

IV in the classical model or the CTD region in the new model are integrated by the cholinesterase-24 

like (ChEL) domain (Figure 5a and 5b) [Park and Arvan, 2004; Swillens et al., 1986]. The most 25 
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important T4-forming site couples donor DIT149 to acceptor DIT24 [Lamas et al., 1989; Palumbo et 1 

al., 1990; Dunn et al., 1998]; whereas the main T3-forming site couples an MIT2747 at the 2 

antepenultimate residue of one TG monomer with the antepenultimate DIT2747 in the apposed 3 

monomer of the TG dimer [Citterio et al., 2018]. p. Arg296*variant comprises only a part of region 4 

I (classical model) or NTD region (new model) and eliminates the ChEL domain (Figure 5c) 5 

required for TG dimerization and functions as an intramolecular chaperone and as a molecular 6 

escort for the remaining regions [Lee et al., 2008]. The functional consequence of p.Arg296* 7 

truncated protein is the complete loss of the carboxy-terminal hormonogenic domains,  and 8 

consequently, limited ability to generate thyroid hormone, particularly T3 . However, p.Arg296* TG 9 

peptide retains its ability to synthesize T4 because it still harbors both the acceptor Tyr24 and the 10 

donor Tyr149 (Figure 5c). It is possible to hypothesize that a short amino-terminal portion of TG 11 

with a single hormonogenic site even synthesizing low physiological levels of thyroid hormone was 12 

sufficient for support the vertebrate´s complexification from the first moments of its appearance 13 

until the ChEL domain fusion event. This hypothesis is supported by the observation that a milder 14 

hypothyroidism phenotype was described in some homozygous patients with p.Arg296* mutation 15 

[Caputo et al., 2007a; Citterio et al., 2013a; Pardo et al., 2009; Rivolta et al., 2005; Siffo et al., 16 

2018; van de Graaf et al., 1999; Zou et al., 2018]. 17 

The second mutation identified in the index patient II-1 was a substitution of wild-type guanine 18 

for adenine at position +5 in the intron 11. Defects in pre-mRNA splicing represent one of the main 19 

causes of human genetic diseases, they vary according to each pathology between 10% and 50% 20 

[Roca et al., 2013], either by altering degenerate positions of donor or acceptor ss sequences or 21 

branch sites even by affecting intronic or exonic splicing regulatory sequences such as ESE 22 

elements [Bonnet et al., 2008; Tournier et al., 2008]. The human 5’ consensus splice donor 23 

sequence is AG/GTRAGT (R indicates purine and backslashes indicate the exon-intron junction 24 

site) [Shapiro and Senapathy, 1987, Roca et al., 2003, Buratti et al., 2007]. At the 5’ss, mutations 25 
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affecting the guanine at position +1 are the most common, followed by mutations at position +5. 1 

The position +5guanine forms strong guanine-citosine base pairs with U1 small nuclear RNA (U1 2 

snRNA) [Roca et al., 2013]. Mutations in this position significantly reduce the pairing of the 5' ss 3 

with the complementary sequence at the end of site in U1 snRNP [Roca et al., 2013]. The most 4 

common consequence of splicing mutations in higher eukaryotes is the skipping of one or more 5 

exons that precede it followed by creation or activation of cryptic donor and acceptor sequences 6 

(Roca et al., 2003; Buratti et al., 2007). In particular, a missplicing of TG pre-mRNA due to a 7 

mutation in consensus donor or acceptor ss is known to induce a congenital goiter and 8 

hypothyroidism in humans. Exon skipping in the human TG gene can be caused by nucleotide 9 

substitutions or deletion in acceptor or donor ss involving the -4/-3/-2/-1 (c.2762-4C>T, c.275-10 

3C>G, c.5042-2A>G, c.6563-2A>G, c.2762-1G>A, c.6200-1G>C, c.7998-1G>A) or 11 

+1/+2/+3/+4/+5/+6 position (c.638+1G>A, c.745+1G>A, c.4816+1G>T, c.4932+1G>C, 12 

c.2176+1G>A, c.5686+1G>T, c.5686+1G>A, c.5686+1G>C, c.6262+1delG, c.6876+1delG, 13 

c.274+2T>G, c.7036+2T>A, c.7862+2T>A, c.5401+2T>C, c.4159+3_+4delAT, c.176+5G>T, 14 

c.638+5G>A, c.3001+6T>G, c.3433+3_+6delGAGT), respectively [Abdul-Hassan et al., 2013; 15 

Alzahrani et al., 2006; Bruellman et al., 2020b; Chen et al., 2018;  Citterio et al., 2015, de Filippis et 16 

al., 2017; Fu et al., 2016a, Gutnisky et al., 2004; Hermanns et al., 2013, Hishinuma et al., 2006; Hu 17 

et al., 2016, Ieiri et al. 1991; Makretskaya et al., 2018; Medeiros-Neto et al., 1996; Narumi et al., 18 

2011; Nicholas et al., 2016; Niu et al., 2009; Pardo et al., 2008, 2009; Peteiro-Gonzalez et al., 2010; 19 

Rubio et al., 2008; Targovnik et al., 1995, 2001, 2012; Watanabe et al., 2019; Zou et al., 2018]. 20 

Sato et al.  (2014) reported in rodents a guanine to thymine transversion at the acceptor site of 21 

intron 6 of the TG gene (c.749-1G>T) which induced a complete missing of exon 7 from the TG 22 

transcript causing in homozygosity, dwarfism and goiter and in heterozygosity, only goiter. Three 23 

mutations affecting position 5 in the 5'ss have been found in the TG gene associated with congenital 24 

goiter and hypothyroidism, in introns 2 (c.176+5G>T; de Filippis et al., 2017), 5 (c.638+5G>A; 25 
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Nicholas et al., 2016) and 15 (c.3433+3_+6delGAGT; Nicholas et al., 2016). Moreover, twelve 1 

mutations at position +5 in introns of the TG gene were communicated by gnomAD database 2 

(c.638+5G>A, intron 5; c.3139+5G>A, intron 12; c.4002+5A>G and 4002+5A>C, intron 18; 3 

c.5233+5T>A and c.5233+5T>C, intron 26; c.6262+5G>A, intron 35; c.6397+5G>A, intron 36; 4 

c.7404+5G>A, intron 42, c.7572+5G>A, intron 43; c.7862+5G>A and 7862+5G>C, intron 45).  5 

The usefulness of splicing reporter minigene assays has been shown to be a good approach to 6 

determine the effect of the variants on the splicing process [Bonnet et al., 2008; Tournier et al., 7 

2008] when is difficult to obtain RNA from patients’ tissues. A high level of concordance between 8 

data obtained with these assays and data from patient's RNA has been shown [Bonnet et al., 2008].  9 

Since the thyroid tissue and blood cells from II-1 are unavailable we used hybrid minigen constructs 10 

to evaluate the c.3001+5G>A mutation.  In the present study, minigenes were constructed using the 11 

pSPL3 vector, which has a minimal gene organization: the SV40 promoter followed by an exon-12 

intron-exon structure with a multiple cloning site located inside the intron. These constructions are 13 

expressed in living cells where the splicing machinery remains intact. Surprisingly, the minigen 14 

analysis of the c.3001+5A variant shows a total lack of transcript expression. Interestingly, the 15 

restoring the wild-type minigene from the mutated clone by site-directed mutagenesis confirms that 16 

the mutation c.3001+5G>A is responsible for the total collapse of the expression of the transcript, in 17 

our cellular expression system. Previous report showed that a mutation at donor site in the splice 18 

region +5 (c.1249+5G>A) in the SERPING1 gene produces a complete degradation of the mutant 19 

allele mRNA in a case of familial hereditary angioedema [Colobran et al., 2014].  Roest et al (1996) 20 

identified another example of mutation inactivating in position +5, a substitution of guanine to 21 

cytosine at intron 64 of the dystrophin gene, disrupting the splice donor consensus sequence and 22 

activating a cryptic splice donor site 57 bp downstream (Roest et al., 1996). These observations 23 

remark and expand the importance of the finding and characterization of our variant c.3001+5A 24 

since similar pre-RNA events caused by mutations in +5adenine region seems to be responsible for 25 
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phatologies also in other genes. One possible explanation for missing of transcript is that the 1 

mutation causes instability of the mRNA, making it a potential target for degradation. Nonsense-2 

mediated mRNA decay (NMD) is one type of mRNA surveillance mechanism which ensures the 3 

rapid degradation in the cytoplasm of transcripts containing nonsense codons, thereby preventing 4 

the accumulation of truncated and potentially harmful proteins [Behm-Ansmant et al. [2007]. 5 

However, we cannot properly say that NMD is the mechanism responsible for the complete loss of 6 

the transcript in our cellular expression system. The pSPL3 expression vector methodology was 7 

used with the purposes of studying signaling of spliceosome through the generation of transcripts. 8 

The pSPL3 system is not suitable for a correct reading frame analysis. On the other hand, in the 9 

patient II-I, since the exon 11 skipping conserves the reading frame, to generate a truncated protein, 10 

which activates NMD machinery as it was observed in the SERPING1 gene [Colobran et al., 2014], 11 

the c.3001+5G>A mutation must activate a exonic or intronic cryptic ss. We want to point out that 12 

another posible reason is that the c.3001+5A variant affects early stages of the transcription, which 13 

could explain the total absence of transcripts from the mutated allele. In addition to NMD there are 14 

RNA surveillance mechanisms that act in the nucleus while transcripts are associated with the 15 

chromatin and contribute to down-regulate the expression of abnormal mRNAs.  16 

Vas-Drago et al. [2015] detected decreased transcription of the MARVELD2 3'SM gene, which 17 

contains a 3' ss mutation in the third intron. This observation raises the possibility that additional 18 

mechanisms are involved in coupling transcription to splicing efficiency. Unfortunately, we did not 19 

have thyroid tissue or fresh peripheral blood from the patient II-1 to confirm the total lack of the 20 

mutated allele in vivo. 21 

Four different conclusions emerged from our study. First, the sequencing of the human TG gene 22 

revealed that a new compound heterozygous mutations, p.Arg296*/c.3001+5G>A causes the CH 23 

phenotype in the index II-1 patient. Second, minigen analysis of the variant c.3001+5A shows a 24 

total lack of transcript in our cellular expression system. Third, bioinformatic performance shows 25 
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that such mutation does not diminish the score or eliminates the SR proteins that bind to ESE 1 

sequences located around the exon/intron 11 junction, Finally, we propose two hypotheses about 2 

such interesting and unusual new variant c.3001+5A: a complete degradation of the transcript from 3 

the mutated allele or that such variant could produce a total collapse of transcription in early 4 

regulatory stages. These studies confirm the allelic heterogeneity of the TG gene mutations; such 5 

feature makes it a perfect model for expanding our knowledge in relation to the genetics molecular 6 

mechanisms which still remain without more clear explanations, making of crucial clinical 7 

importance characterizing the molecular processes involved in the CH phenotype by TG defects. 8 
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Figure legends 1 

Figure 1.  Mutations in the thyroglobulin gene in index patient II-1  and their parents. a) Family 2 

pedigree and mutations. The pedigree shows the pattern of inheritance of the mutant thyroglobulin 3 

alleles. Squares represent males and circles females. Filled symbols denote affected individuals and 4 

half-filled symbols, unaffected heterozygote individuals. The hatched symbols indicate the 5 

c.886C>T [p.Arg296*] mutated allele and the solid symbols the c.3001+5G>A mutated allele. 6 

Partial sequencing chromatograms of genomic DNA are shown (sense strand). Arrows denote the 7 

position of identified mutations, single chromatogram peaks indicate homozygosity and two 8 

overlapping peaks at the same locus, heterozygosity. Note that the index patient II-1 have inherited 9 

one copy of the c.886C>T [p.Arg296*] mutation from their father (I-1) and one copy of  the 10 

c.3001+5G>A mutation from their mother (I-2). b) Genomic nucleotide sequence of intron 10/exon 11 

11/intron 11 boundaries and their flanking intronic regions from index patient II-1, amplified by 12 

long PCR technique and cloned into the pSPL3 vector. The position of the oligonucleotide primers 13 

for amplified and cloning are underlined. Arrow denotes the position of identified mutation. 14 

 15 

Figure 2. Minigen constructs strategy. The 741-bp PCR amplified fragments from index patient 16 

II-1 were directionally cloned into the NotI and BamHI sites of the pSPL3 vector. The resulting 17 

clones pSPL3A-c.3001+5G (wild-type) and pSPL3B-c.3001+5A (mutated) were expressed in 18 

eukaryotic cells. To rule out that the lack of expression in the pSPL3B-c.3001+5A mutated clone 19 

could be caused by a mutation in its vector pSPL3, the vector in the mutated clone was changed to 20 

the pSPL3 vector of the pSPL3A-c.3001+5G wild-type clone, originating pSPL3A-c.3001+5A 21 

mutated clone. Finally, in order to validate that the loss of expression was caused by c.3001+5A 22 

variant, site-directed mutagenesis was performed on the pSPL3A-c.3001+5A mutated minigen to 23 

give rise to pSPL3A-c.3001+5G M wild-type clone. Sense strand is shown. Arrows in the partial 24 

sequencing chromatograms denote the position of identified mutations. 25 
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Figure 3. Cellular expression of the wild-type and mutant minigenes performed in HeLa cell 1 

lines. Schematic representation of the genomic organization of the wild-type and empty pSPL3 2 

vector minigenes and their RT-PCR products, α and γ splicing events, respectively. Vector and 3 

genomic DNA splice donor (GT) and acceptor (AG) sites are shown. cDNA was synthesized from 4 

transcribed mRNA and amplified with pSPL3F and pSPL3R primers complementary to flanking 5 

vector sequences. Gel electrophoresis of the RT-PCR amplification products (pSPL3B-c.3001+5A, 6 

pSPL3A-c.3001+5A, pSPL3A-c.3001+5G M, pSPL3A-c.3001+5G, empty pSPL3A vector, 7 

untransfected and negative RT-PCR control without RNA) and partial sequencing chromatograms 8 

(sense strand) corresponding to α and γ splicing events are shown. Transfection with mutated 9 

pSPL3B-c.3001+5A and pSPL3A-c.3001+5A minigenes showed a total lack of transcript 10 

expression, whereas pSPL3A-c.3001+5G M and wild type pSPL3A-c.3001+5G minigenes showed 11 

the expected fragments of 500 bp and pSPL3 control showed the expected fragments of 260 bp.  12 

White arrow denote the weak nonspecific band that contains a mitochondrial genome DNA 13 

fragment. The size marker is a 100 bp ladder (M).  For interpretation of the minigene constructs see 14 

Figure 2. 15 

 16 

Figure 4. c.3001+5G>A mutation, in silico analysis of the wild-type and mutated 5′ splice sites. a) 17 

Individual scores for each 5′ splice sites obtained by a panel of donor site prediction programs 18 

(NNSplice, FSplice, SPLM, MAXENT, MDD, MM and WMM). b) Potential SR binding sites 19 

(SF2/ASF, SC35, SRp40 and SRp55) identified by the ESEfinder 3.0 program. The height of each 20 

bar represents the motif scores, whereas its width indicates the length of the binding site motifs for 21 

SR proteins and its position along the sequence. Note that the wil-type and mutated 5′ splice site are 22 

potentially recognizable by SR proteins. / denotes the exon/intron boundary. 23 

 24 

Figure 5 25 
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Structural organization of the wild-type and p.Arg296* mutant thyroglobulin proteins. a) 1 

Classical primary structure of human thyroglobulin. Schematic representation adapted from Holzer 2 

et al. [2016]; Malthiery and Lissitzky [1987]; Mercken et al. [1985]; Molina et al. [1996], Parma et 3 

al. [1987], Swillens et al. [1986] and van de Graaf et al. [2001] is showed. The thyroglobulin signal 4 

peptide (SP), repetitive units of TG type 1, TG type 2 and TG type 3, linker and hinge domains and 5 

the acetylcholinesterase-homology (ChEL) domain, drawn to scale, are represented by boxes. 6 

Thyroglobulin monomer is organized in four structural regions (I, II, III and IV). N-terminal T4 7 

(coupling of a donor DIT149 with the acceptor DIT24) and C-terminal T3 (coupling of a MIT2766 at 8 

the antepenultimate residue of one TG monomer with the antepenultimate DIT2766 in the opposite 9 

monomer) forming sites are shown. b) New model of thyroglobulin primary structure.  Schematic 10 

representation adapted from Coscia et al. [2020]. The thyroglobulin signal peptide (SP), repetitive 11 

units of TG type 1 and TG type 3, and similar TG type 1, helical, Ig-like 1, Ig-like 2 and 12 

TNF/EGF/laminin-like fold domains, and the acetylcholinesterase-homology (ChEL) domain, are 13 

drawn to scale and represented by boxes. Thyroglobulin monomer is organized in five structural 14 

regions: N-Terminal Domain (NTD), Core, Flap, Arm and C-Terminal Domain (CTD). c) Primary 15 

structure of putative p.Arg296* mutant thyroglobulin protein.   16 
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Highlights 

 

• We report a patient with hypothyroidism by mutations in the thyroglobulin gene  

• Molecular analysis revealed a compound heterozygous for p.R296*/c.3001+5G>A mutations. 

• Minigen analysis shows a total lack of transcript expression. 

• We demonstrate that the c.3001+5G>A mutation alters the splicing of the pre-mRNA. 

• Our results confirm the genetic heterogeneity of thyroglobulin defects. 
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