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Abstract. In this work, we study families of compact spaces which are
of the form G/Λk,i for G the oscillator group and Λk,i < G a lattice.
The solvmanifolds G/Λk,i are not pairwise diffeomorphic and one has
the coverings G → Mk,0 → Mk,π → Mk,π/2 for k ∈ Z. We compute their
cohomologies and minimal models. Each manifold Mk,0 is diffeomorphic
to a Kodaira–Thurston manifold, i.e., a compact quotient S1×H3(R)/Γk

where Γk is a lattice of the real three-dimensional Heisenberg group
H3(R). Furthermore, any Mk,0 provides an example of a solvmanifold
whose cohomology does not depend on the Lie algebra only. We explain
some geometrical aspects of those compact spaces, to show how to dis-
tinguish them (by invariant complex, symplectic and metric structures).
For instance, no invariant symplectic structure of G can be induced to
the any quotient.
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1. Introduction

A solvmanifold M is a compact homogeneous space of a solvable Lie group,
that is M = G/Γ where G is a connected and simply connected solvable Lie
group and Γ is a lattice in G (that is, a co-compact discrete subgroup of G).

This work is devoted to the explanation of several topological and
geometrical properties of some families of solvmanifolds in dimension four.
Among the considered examples we have four-dimensional solvmanifolds
which constitute models for Kodaira surfaces [8]. In fact both the primary
and the secondary Kodaira manifolds can be realized as quotients of a fixed
solvable (non-nilpotent) Lie group G of dimension four by different lattices.
This Lie group is known as the oscillator group and it is an example of almost
nilpotent solvable Lie group (see Sect. 2.1).

This work was supported by Secyt-UNR, ANCyT and CONICET, by MIUR and GNSAGA
of INdAM.
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By fixing the oscillator group, which is the semidirect product G =
R �ρ H3(R) of the (real) three-dimensional Heisenberg group H3(R) and R,
we start determining three families of lattices Λk,i in the solvable Lie group G.

We prove that all subgroups of the families Λk,i are not pairwise isomor-
phic, hence they determine infinitely many non-diffeomorphic solvmanifolds,
for k ∈ N:

Mk,0 = G/Λk,0,

Mk,π = G/Λk,π,

Mk,π/2 = G/Λk,π/2.

By Theorem 2.1, we shall see that Mk,0 = G/Λk,0 is diffeomorphic to
S1 × H3(R)/Γk, which gives rise to a Kodaira–Thurston manifold.

Moreover, for any fixed k, we have the finite coverings

pπ : Mk,0 → Mk,π ,
pπ/2 : Mk,0 → Mk,π/2 ,

which are 2 and 4 sheeted, respectively, and so

G −→ Mk,0 −→ Mk,π −→ Mk,π/2.

In Sect. 3, we compute the cohomology of the minimal model of all
solvmanifolds in the above families.

Theorem 1.1. The Betti numbers bi of the solvmanifolds Mk,∗ are given by

b0 b1 b2

Mk,0 1 3 4
Mk,π 1 1 0
Mk,π/2 1 1 0

(clearly b3 = b1 and b4 = b0, by Poincaré duality). A minimal model of Mk,0

is given by

Mk,0 = (Λ(x1, y1, z1, t1), d)

where the index denotes the degree (hence all generators have degree one) and
the only non vanishing differential is given by dz1 = −x1y1.

A minimal model of Mk,π and Mk,π/2 is given by

Mk,π = Mk,π/2 = (Λ(t1, w3), d = 0)

where the index denotes the degree, cf. [18,19].

Observe that any Mk,0 gives an (low dimensional) example of solvman-
ifold whose de Rham cohomology does not agree with the invariant one, i.e.,
the cohomology of the Chevalley–Eilenberg complex on the solvable Lie al-
gebra (unlike the case of nilmanifolds and solvmanifolds in the completely
solvable case [10] and, more generally, for which the Mostow condition holds
[2,7,22], cf. Sect. 3).

Actually, it turns out that Mk,0 has the same cohomology as a nilman-
ifold, namely the Kodaira–Thurston manifold S1 × H3(R)/Γk, cf. Sect. 3.
Moreover, passing from Mk,0 to the covered manifolds Mk,π and Mk,π/2, the
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cohomology changes. So the cohomology depends on the lattice and not on
the solvable Lie algebra only.

Finally, we see some geometrical features which distinguish these spaces.
Recall that a left-invariant geometric structure on a Lie group G (complex,
symplectic, metric structure) is determined by its value at the Lie algebra
level g. Hence, it can be induced to the compact space Γ\G for Γ < G a
lattice, so that Γ\G is diffeomorphic to G/Γ.

Furthermore, both spaces G and Γ\G are locally equivalent via the
considered geometric structure, that is projection map p : G → Γ\G is a local
diffeomorphism preserving the structure. In this way, the Lie group G acts
locally but not necessarily transitively preserving the geometric structure.

Thus, the spaces Mk,0 provide examples of solvmanifolds which admits
symplectic structures but which are not induced by left-invariant symplectic
structures on G, see Theorem 4.1.

Moreover, for any k the space Mk,0 covers Mk,π and Mk,π/2 which do
not admit any symplectic structure, since their second Betti number vanishes.

It is known that if a given nilmanifold N/Γ admits a symplectic struc-
ture, then it admits an N -invariant one. Hence, we provide low-dimensional
examples which show that this is not true for solvmanifolds.

The different classes of complex structure on G induce complex struc-
tures on G. However, while R × H3(R) admits abelian complex structures,
G does not admit anyone of this type.

There exists a left-invariant Lorentzian metric on G and R×H3(R) which
makes these spaces isometric [3]. Once one induces this metric to the quotients
Mk,i one can verify that these spaces can be distinguished by their geometry:
the isometry groups are different so as their periodic geodesics. Moreover,
any compact space Mk,∗ is a naturally reductive space, hence geodesics are
projections of one-parameter subgroups.

2. Solvmanifolds in Dimension Four

Unlike the special case of nilmanifolds (i.e., compact quotients of nilpotent
Lie groups by a lattice), there is no simple criterion for the existence of a
lattice in a connected and simply-connected solvable Lie group. A necessary
condition is that the connected and simply-connected solvable Lie group is
unimodular [14, Lemma 6.2].

Lattices determine the topology of solvmanifolds since they are
Eilenberg–MacLane spaces of type K(π, 1) (i.e., all homotopy groups van-
ish, besides the first) with finitely generated torsion-free fundamental group.
Actually lattices associated to solvmanifolds yield their diffeomorphism class
as the following theorem states.

Theorem 2.1. [22, Theorem 3.6] Let Gi/Γi be solvmanifolds for i ∈ {1, 2} and
let ϕ : Γ1 → Γ2 denote an isomorphism. Then there exists a diffeomorphism
Φ : G1 → G2 such that
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(i) Φ|Γ1 = ϕ,
(ii) Φ(pγ) = Φ(p)ϕ(γ), for any γ ∈ Γ1 and any p ∈ G1.

As a consequence two solvmanifolds with isomorphic fundamental
groups are diffeomorphic.

Recall that if the action of the group Γ on the topological space Y
is properly discontinuous, then there is a differentiable structure on Y/Γ
(resp. Γ\G) such that Y → Y/Γ (resp. G → Γ\G) is a normal covering.
The lattice Γ is the Deck transformation group of the covering and if Y is
simply connected then Γ is isomorphic to π1(Y/Γ) [9, Proposition 1.40]. See
the following examples in dimension four.

Nilmanifolds. The differentiable manifold R
3 when equipped with the canon-

ical differentiable structure and multiplication map given by

(x, y, z)(x′, y′, z′) =
(

x + x′, y + y′, z + z′ +
1
2
(xy′ − x′y)

)

gives rise to the Heisenberg Lie group of dimension three H3(R).
Let N denote the trivial extension of H3(R), namely N = R × H3(R),

and for every k ∈ N consider Λk the following lattice in N :

Λk = 2πZ × Γk < N where Γk = Z × Z × 1
2k

Z < H3(R) (1)

for Γk a lattice in H3(R).
Each discrete subgroup Λk acts properly discontinuous on the simply

connected space R × H3(R) giving rise to the nilmanifolds N/Λk.

Solvmanifolds. Consider the Lie group homomorphism ρ : R → Aut
(H3(R)) which on vectors (v, z) ∈ R

2 ⊕ R has the form

ρ(t) =
(

R(t) 0
0 1

)
where R(t) =

(
cos t − sin t
sin t cos t

)
. (2)

On the smooth manifold R
4 consider the algebraic structure resulting from

the semidirect product of R and H3(R), via ρ. Thus, the multiplication is
given by

(t, v, z) · (t′, v′, z′) =
(

t + t′, v + R(t)v′, z + z′ +
1
2
vTJR(t)v′

)
(3)

with J and R(t) as above.
Let G denote the simply connected Lie group G = R �ρ H3(R). The Lie

group G is known as the oscillator group.
Every lattice Γk < H3(R) is invariant under the subgroups generated

by ρ(2π), ρ(π) and ρ(π
2 ), (ρ : R → Aut(H3(R) as in (2)). Consequently, we

have three families of lattices in G = R �ρ H3(R):

Λk,0 = 2πZ � Γk < G

Λk,π = πZ � Γk < G (4)

Λk,π/2 =
π

2
Z � Γk < G.
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so that Λk,0 � Λk,π � Λk,π/2, which induce the solvmanifolds

Mk,0 = Λk,0\G � G/Λk,0 ,
Mk,π = Λk,π\G � G/Λk,π ,

Mk,π/2 = Λk,π/2\G � G/Λk,π/2.
(5)

Lemma 2.2. Let k ∈ N. Then

1. Zk = 2πZ × 0 × 0 × 1
2k Z is the center of Λk,i for i = 0, π, π/2 and

2. C = 0 × 0 × 0 × Z is the commutator of Λk,0.

Proof. Fix k ∈ N and take i = 0, π, π/2. By a simple computation we see that
for each k the set Zk is contained in the center of G, and then it is contained
in the center of Λk,i.

Now, let (θ, a, b, c) be in the center of Λk,i, then

(θ, a, b, c)(0, 1, 0, 0) = (0, 1, 0, 0)(θ, a, b, c),(
θ, a + cos θ, b − sin θ, c − 1

2
(a sin θ + b cos θ)

)
=

(
θ, 1 + a, b, c +

1
2
b

)
,

It follows that θ = 2lπ and b = 0.
Also from (2lπ, a, 0, c)(0, 0, 1, 0) = (0, 0, 1, 0)(2lπ, a, 0, c) we get a = 0.

Then (θ, a, b, c) ∈ Zk

Now we prove that C is the commutator of Λk,0. By computing we see

(2lπ, a, b, c)(2l′π, a′, b′, c′)(2lπ, a, b, c)−1(2l′π, a′, b′, c′)−1

= (0, 0, 0, ab′ − a′b) ∈ C

Since C is a subgroup, we have that the commutator is contained in C. But
taking (2lπ, a, b, c) = (0, x, 0, 0) and (2l′π, a′, b′, c′) = (0, 0, 1, 0) for any x ∈ Z,
it follows that the element of C given by (0, 0, 0, x) belongs to the commutator
and this completes the proof. �

Proposition 2.3. The groups Λk,i, k ∈ N, i = 0, π/2, π, are pairwise not
isomorphic.

Proof. First we observe that if ϕ : Λp,j → Λk,i is an isomorphism then
ϕ((2l + 1)π, a, b, c) �= (2l′π, a′, b′, c′) for l, l′ ∈ Z. Otherwise, we get

ϕ((4l + 2)π, 0, 0, z) = ϕ((2l + 1)π, a, b, c)2 = (2l′π, a′, b′, c′)2

= (4l′π, 2a′, 2b′, z′) ∈ Zk

which is the center of Λk,i by Lemma 2.2; it follows that a′ = b′ = 0. So
ϕ((2l+1)π, a, b, c) ∈ Zk and ((2l+1)π, a, b, c) ∈ Zp, which is a contradiction.
Considering ϕ−1 we get also that ϕ(2lπ, a, b, c) �= ((2l′ + 1)π, a′, b′, c′) for
l, l′ ∈ Z. We conclude that Λk,0 is isomorphic neither to Λp,π nor to Λp,π/2.

If there is an isomorphism ϕ1 : Λk,π/2 → Λp,π with ϕ1(π/2, 0, 0, 0) =
(lπ, a, b, c), then:

ϕ1(π/2, 0, 0, 0)2 = (lπ, a, b, c)2 ⇒ ϕ1(π, 0, 0, 0) = (2lπ, x, y, z),

and we show that this cannot happen.
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Suppose that ϕ2 : Λk,0 → Λp,0 is an isomorphism with p < k. By
Lemma 2.2, ϕ2(C) = C.

ϕ2(0, 0, 0, 1)=ϕ2

(
0, 0, 0,

1
2k

)2k

=
(

2πa, b, c,
d

2p

)2k

=
(

4πka, 2kb, 2kc,
e

2p

)
,

for some a, b, c, d, e ∈ Z. Then (2ka, 2kb, 2kc, e
2k ) ∈ C and a = b = c = 0.

ϕ2

(
0, 0, 0,

p

k

)
= ϕ2

(
0, 0, 0,

1
2k

)2p

=
(

0, 0, 0,
d

2p

)2p

= (0, 0, 0, d) ∈ C,

So we have (0, 0, 0, p
k ) ∈ C. Absurd.

Let ϕ3 : Λk,π → Λp,π be an isomorphism. By the remark at the be-
ginning of the proof, we conclude that the restriction of ϕ3 to Λk,0 is an
isomorphism from Λk,0 to Λp,0 which contradicts the last paragraph.

Now, let ϕ4 : Λk,π/2 → Λp,π/2 be an isomorphism. If ϕ4((2l +
1)π/2, a, b, c) = (l′π, a′, b′, c′), then ϕ4((2l + 1)π/2, a, b, c)2 = (l′π, a′, b′, c′)2

and follows that ϕ4((2l + 1)π, x, y, z) = (2l′π, 0, 0, z′) which also contradicts
the remark. Then ϕ4(Λk,π) = Λp,π. �

Theorem 2.1. The subgroups Λk,i are the only lattices of G of the form L1 ×
L2 × L3 × L4 where Li ⊂ R is a subgroup for every i = 1, 2, 3, 4.

Proof. Let L = L1 ×L2 ×L3 ×L4 be a lattice of G, then it is easy to see that
Li is a discrete subgroup of R for i = 1, 2, 3, 4. Then there are p, q, r, s ∈ R≥0

such that

L = pZ × qZ × rZ × sZ

Let m ∈ Z, since (0, q, 0, 0) ∈ L and (0, 0, rm, 0) ∈ L then
(0, q, rm, qr

2 m) ∈ L and qr
2 m ∈ L4. It follows that s = qr

2k for some k ∈ N.
On the other hand, since (p, 0, 0, 0) ∈ L and (0, q, 0, 0) ∈ L then

(p, q cos p,−q sin p, 0) ∈ L and cos p ∈ Z. It follows that p = π
2 l for some

non negative integer l.
We conclude that:

L =
π

2
lZ × qZ × rZ × qr

2k
Z

for q, r ∈ R≥0, k ∈ N and l a non negative integer.
If l = 0, then G/L ∼= R×H3(R)/L′ which is not compact for L′ ⊂ H3(R).

If r = 0 then L ∩ H3(R) = qZ × 0 × 0 which is not a lattice in H3(R).
Analogously, if q = 0, the same follows.

Therefore, l, r, q are non zero real numbers, moreover, l ∈ N.
Now we consider four cases l ≡ 0, 1, 2, 3 (mod 4).

• l ≡ 0 (mod 4)
A set of the form L = 2πlZ × qZ × rZ × qr

2k Z is a lattice of G and it
is isomorphic to Λk,0 via the isomorphism:

γ1 : Λk,0 → 2πlZ × qZ × rZ × qr
2k Z

γ1(t, x, y, z) = (lt, qx, ry, qrz)
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• l ≡ 2 (mod 4)
A set of the form L = (2l + 1)πZ × qZ × rZ × qr

2k Z is a lattice of G
which is isomorphic to Λk,π via the isomorphism:

γ2 : Λk,π → (2l + 1)πZ × qZ × rZ × qr
2k Z

γ2(t, x, y, z) = ((2l + 1)t, qx, ry, qrz)

• l ≡ 1 (mod 4)
Let L = (4l + 1)π

2 Z × qZ × rZ × qr
2k Z be a subgroup of G, then

• ((4l + 1)π
2 , 0, 0, 0)(0,−q, 0, 0) = ((4l + 1)π

2 , 0, q, 0) ∈ L and
• ((4l + 1)π

2 , 0, 0, 0)(0, 0, r, 0) = ((4l + 1)π
2 , r, 0, 0) ∈ L.

Thus, we deduce r|q and q|r, so q = r.
A set of the form L = (4l + 1)π

2 Z × qZ × qZ × q2

2k Z is a lattice of G
and it is isomorphic to Λk,π/2 via the isomorphism:

γ3 : Λk,π/2 → (4l + 1)π
2 Z × qZ × qZ × q2

2k Z

γ3(t, x, y, z) = ((4l + 1)t, qx, qy, q2z)

• l ≡ 3 (mod 4)
Let L = (4l + 3)π

2 Z × qZ × rZ × qr
2k Z be a subgroup of G, as before

• ((4l + 3)π
2 , 0, 0, 0)(0, q, 0, 0) = ((4l + 3)π

2 , 0, q, 0) ∈ L and
• ((4l + 3)π

2 , 0, 0, 0)(0, 0,−r, 0) = ((4l + 3)π
2 , r, 0, 0) ∈ L

which implies q = r.
The set L = (4l + 3)π

2 Z × qZ × qZ × q2

2k Z is a lattice of G which is
isomorphic to Λk,π/2 via the isomorphism:

γ4 : Λk,π/2 → (4l + 1)π
2 Z × qZ × qZ × q2

2k Z

γ4(t, x, y, z) = ((4l + 3)t,−qx,−qy,−q2z)

�

Remark 1. Notice that there exist lattices in G which are not of the form
L1 × L2 × L3 × L4. For instance, let L be the next one

L =
{(

2lπ, 2x, 2y,
1
2
z

)
: l, x, y, z ∈ Z

}
∪

{(
(2l + 1)π, 2x + 1, 2y + 1,

1
2
z

)

: l, x, y, z ∈ Z

}
.

It contains the lattice 2πZ × 2Z × 2Z × 2Z. But this lattice is isomorphic to
Λ2,π via the isomorphism (t, x, y, z) → (t, x−y

2 , x+y
2 , z

2 ). We conjecture that
every lattice of G is isomorphic to one of the family Λk,i as above.

2.1. The Mostow Bundle and Almost Nilpotent Lie Groups

Let M = G/Γ be a solvmanifold that is not a nilmanifold. Let N be the
nilradical of G, i.e., the largest connected nilpotent normal subgroup of G.

Then ΓN := Γ ∩ N is a lattice in N , ΓN = NΓ is closed in G and
G/(NΓ) =: T

k is a torus. Thus, we have the so-called Mostow fibration:

N/ΓN = (NΓ)/Γ ↪→ G/Γ −→ G/(NΓ) = T
k

Most of the rich structure of solvmanifolds is encoded in this bundle.
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The fundamental group Γ of M can be represented as an extension of a
torsion-free nilpotent group Λ of rank n − k by a free abelian group of rank
k where 1 ≤ k ≤ 4:

0 −→ Λ −→ Γ −→ Z
k −→ 0 (6)

The classification of solvmanifolds of dimension four reduces to the clas-
sification of the groups Γ as the group extensions above (see [8]).

Example 1. The subgroup Γk < H3(R) can be expressed as a non-split group
extension

0 −→ Z −→ Γk −→ Z
2 −→ 0

thus the lattice of N given by Λk = Γk × Z is a nilpotent group of rank four.

A connected and simply-connected solvable Lie group G with nilradical
N is called almost nilpotent if its nilradical has codimension one. In this case,
G can be written as a semidirect product G = R �μ N . In addition, if N is
abelian, i.e., N = R

n, then G is called almost abelian.
Let G = R �μ N be an almost nilpotent Lie group. Since N has codi-

mension one in G, we can consider μ as a one-parameter group R → Aut(N).
Observe that dμ =: φ is one-parameter subgroup of the automorphism group
of the Lie algebra n of N .

Example 2. Let us consider the 3-dimensional solvable Lie group R�R
2 with

structure equations ⎧⎨
⎩

de1 = 0,
de2 = 2πe13,
de3 = −2πe12.

It is a non-completely solvable Lie group which admits a compact quotient
and the uniform discrete subgroup is of the form Γ = Z�Z

2 (see [18, Theorem
1.9] and [13]). Indeed, the Lie group R � R

2 is the group of matrices⎛
⎜⎜⎝

cos(2πt) sin(2πt) 0 x
− sin(2πt) cos(2πt) 0 y
0 0 1 t
0 0 0 1

⎞
⎟⎟⎠

and the lattice Γ generated by 1 in R and the standard lattice Z
2. The

semidirect product is relative to the one-parameter subgroup

t �→
⎛
⎝ cos(2πt) sin(2πt) 0

− sin(2πt) cos(2πt) 0
0 0 1

⎞
⎠ .

The solvable Lie group R � R
2 is almost abelian.

Example 3. The oscillator group G = R�ρ H3(R) is almost nilpotent but the
nilpotent Lie group N = R × H3(R) is almost abelian.

Moreover, since Λk in (1) is isomorphic to Λk,0 in (4) by Theorem 2.1
the compact manifolds G/Λk,0 and N/Λk are diffeomorphic.
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3. Cohomology and Minimal Models in Dimension Four

In this section, we shall study the cohomology and minimal models of the
compact solvmanifolds Mk,i.

Let M = G/Γ be a solvmanifold. If the algebraic closures A(Ad G(G))
and A(Ad G(Γ)) are equal, one says that G and Γ satisfy the Mostow condi-
tion. In this case, the de Rham cohomology H∗(M) of the compact solvman-
ifold M = G/Γ can be computed by the Chevalley–Eilenberg cohomology
H∗(g) of the Lie algebra g of G (see [15] and [22, Corollary 7.29]); indeed,
one has the isomorphism H∗(M) ∼= H∗(g). A special case is provided by
nilmanifolds (Nomizu’s Theorem, [16]) and more generally if G is completely
solvable [10], i.e., all the linear operators adX : g → g, X ∈ g have only real
eigenvalues.

In Remark 2, we show examples where the Mostow condition does not
hold and, however, the de Rahm cohomology of the compact solvmanifolds
G/Γ coincides with the Chevalley–Eilenberg cohomology H∗(g) of the Lie
algebra g of G. These examples are provided by the solvmanifolds Mk,i =
G/Λk,i.

Actually to compute the cohomology of Mk,0 one can remark that it is
diffeomorphic to S1 × H3(R)/Γk, the Kodaira–Thurston manifold. Hence, we
can easily write down its cohomology classes, in terms of the ones of S1 and
H3(R)/Γk.

By Nomizu’s Theorem, the cohomology of H3(R)/Γk is given by the
Chevalley–Eilenberg cohomology H∗(h3) of the Lie algebra h3 of H3(R). By
the structure equations

dα = 0, dβ = 0, dγ = −αβ

it follows that

• H1(H3(R)/Γk) is generated by α, β,
• H2(H3(R)/Γk) is generated by αγ, βγ and
• H3(H3(R)/Γk) is generated by αβγ.

Let τ be the generator of H1(S1) ∼= R
∗.

Proposition 3.1. The de Rham cohomology classes of Mk,0 = G/Λk,0 are
given by:

• H1(Mk,0) ∼= R
3 is generated by τ, α, β.

• H2(Mk,0) ∼= R
4 is generated by τα, τβ, αγ, βγ.

• H3(Mk,0) ∼= R
4 is generated by ταγ, τβγ, αβγ .

• H4(Mk,0) ∼= R
4 is generated by ταβγ.

A minimal model of Mk,0 is given by

Mk,0 = (Λ(x1, y1, z1, t1), d)

where the index denotes the degree (hence all generators have degree one) and
the only non vanishing differential is given by dz1 = −x1y1. It suffices to send
t1 to τ , x1 to α (and so on) to have a quasi isomorphism Mk,0 → ΛMk,0,
where ΛMk,0 denotes the de Rham algebra of Mk,0.
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This result can be also obtained by applying the method in [18,19] for
the Koszul–Sullivan model of the Mostow fibration.

In order to compute the cohomologies of Mk,π and Mk,π/2 recall that
there are the 2-sheeted and 4-sheeted coverings pπ : Mk,0 → Mk,π and pπ/2 :
Mk,0 → Mk,π/2.

In general, if q : X → X̃ is a finite sheeted covering defined by the action
of a group Φ on X, then the cohomologies of X̃ are given by the invariants
by the action of the finite group Φ), i.e.,

H∗(X̃) ∼= H∗(X)Φ ,

(see e.g. [9, Proposition 3G,1]).
Now, the (nontrivial part of the) action of Λk,π/Λk,0 is given by α �→ −α

and β �→ −β.
The (nontrivial part of the) action of Λk,π/2/Λk,0 is given by α �→ −β

and β �→ α. Computing the invariants, one easily sees that the de Rham
cohomology of Mk,π/2 is the same as the one of Mk,π.

Proposition 3.2. The cohomology of Mk,π and Mk,π/2 is

• H1(Mk,π) ∼= R is generated by τ .
• H2(Mk,π) is trivial (there is no invariant 2-form).
• H3(Mk,π) ∼= R is generated by αβγ.
• H4(Mk,π) ∼= R is generated by ταβγ.

A minimal model of Mk,π and Mk,π/2 is given by

Mk,π = Mk,π/2 = (Λ(t1, w3), d = 0)

where the index denotes the degree, cf. [19, Example 3.2]. A quasi isomor-
phism Mk,π → ΛMk,π is given by t1 �→ τ and w3 �→ αβγ.

Remark 2. The cohomologies of the Chevalley–Eilenberg complexes of the
Lie algebras g of the oscillator group G and of the nilpotent Lie algebra
t × h3 of S1 × H3(R) are given by:

b0 b1 b2 b3 b4

g 1 1 0 1 1
t × h3 1 3 4 3 1

Hence, Mk,0 has the same cohomology as a nilmanifold, namely the
Kodaira–Thurston manifold S1 × H3(R)/Γk. Thus, any Mk,0 gives an (low
dimensional) example of solvmanifold whose cohomology does not agree with
the invariant one, i.e., the cohomology of the Chevalley–Eilenberg complex
on the solvable Lie algebra g. On the other hand, the de Rham cohomologies
of Mk,π and Mk,π/2 are isomorphic to the cohomology of the corresponding
solvable Lie algebra g, although the Mostow condition does not hold. See
also [1].

Remark 3. In general, if the Mostow condition does not hold, as far as we
know two techniques can be applied: the modification of the solvable Lie
group [2,7] and the cited Koszul–Sullivan models of fibrations in the almost
nilpotent case [18,19]. As for the first method, one knows by Borel density
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theorem (see e.g. [22, Theorem 5.5]) that there exists a compact torus Tcpt

such that TcptA(Ad G(Γ)) = A(Ad G(G)). Then one shows (see [2]) that
there exists a subgroup Γ̃ of finite index in Γ and a simply connected nor-
mal subgroup G̃ (the “modified solvable Lie group”) of Tcpt � G such that
A(Ad G̃(Γ̃)) = A(Ad G̃(G̃)). Therefore, G̃/Γ̃ is diffeomorphic to G/Γ̃ and
H∗(G/Γ̃) ∼= H∗(g̃), where g̃ is the Lie algebra of G̃. In the case of the fami-
lies Mk,0, Mk,π and Mk,π/2 one can see that Γ̃k = Λk,0 (for any k) and that
G̃k is S1 × H3(R).

4. Geometry to Distinguish

Here we study some geometrical features of the solvmanifolds above, as mod-
els of compact spaces provided with complex, symplectic structures or metric
tensors. The aim was to distinguish these spaces also by their geometry.

Fact. Let G denote a Lie group admitting a lattice Γ such that Γ\G
is a compact space. In this situation a left-invariant geometric element on
G (say complex, symplectic or metric structure on G) which is determined
at the Lie algebra level, induces a (sometimes called) invariant structure on
Γ\G. By this construction in general the Lie group G does not act on Γ\G
transitively leaving the structure invariant, but locally. That is the compact
manifold Γ\G is a locally homogeneous manifold with respect to the induced
geometric structure above (see the examples below).

We shall see that with respect to complex or symplectic structures the
manifolds G and N are different. However, there is a Lorentzian metric on
G and N which makes these spaces isometric. However, the quotients spaces
provided with these metrics can be distinguished.

4.1. Complex Structures

Recall that a left-invariant complex structure on a Lie group G corresponds
to an endomorphism

on the Lie algebra J : g → g such that J2 = −Id and NJ (x, y) ≡ 0
where NJ denotes the Nijenhuis tensor which is given by

NJ (x, y) = [Jx, Jy] − [x, y] − J [Jx, y] − J [x, Jy] for all x, y ∈ g.

An invariant complex structure on G induces a complex atlas on G
giving rise to a complex manifold. Due to results of Ue [24], a complex surface
S is diffeomorphic to a T

2 bundle over T
2 if and only if S is a complex torus,

Kodaira surface or hyperelliptic surface. Moreover, Hasegawa [8] proved the
following:

Theorem 4.1. A complex surface is diffeomorphic to a four-dimensional solv-
manifold if and only if it is one of the following surfaces: complex torus,
hyperelliptic surface, Inou surface of type S0, primary Kodaira surface, sec-
ondary Kodaira surface, Inoue surface of type S±. And every complex struc-
ture on each of these complex surfaces is invariant.
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The invariance of the complex structure concerns the algebraic structure
of the group covering the manifold. Thus, for the so-called Kodaira–Thurston
manifold (above Kodaira surface of type I), we have two solvable groups which
covers this space. On the one hand the oscillator group G and on the other
hand the nilpotent Lie group R × H3(R).

Let us explain this. As a real manifold, both N and the oscillator group
G are diffeomorphic to R

4 together with its canonical differentiable structure.
Denote v = (x, y) ∈ R

2 and for each (t1, v1, z1) ∈ R
4 consider the following

differentiable functions of M :

LN
(t1,v1,z1)

(t2, v2, z2) =
(

t1 + t2, v1 + v2, z1 + z2 +
1
2
vt
1Jv2

)
(7)

LG
(t1,v1,z1)

(t2, v2, z2) =
(

t1 + t2, v1 + R(t1)v2, z1 + z2 +
1
2
vt
1JR(t1)v2

)
(8)

where J and R(t) are the linear maps on R
2 given by

J =
(

0 1
−1 0

)
, R(t) =

(
cos t − sin t
sin t cos t

)
t ∈ R. (9)

The maps LN
(t1,v1,z1)

and LG
(t1,v1,z1)

are diffeomorphisms of R
4: in fact on the

basis {∂t, ∂x, ∂y, ∂z} of TR
4 one has the following differentials

LN
(t1,x1,y1,z1)∗ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 − 1

2y1
1
2x1 1

⎞
⎟⎟⎠

LG
(t1,x1,y1,z1)∗ =

⎛
⎜⎜⎝

1 0 0 0
0 cos t1 − sin t1 0
0 sin t1 cos t1 0
0 μ ν 1

⎞
⎟⎟⎠ with

μ = 1
2 (x1 sin t1 − y1 cos t1),

ν = 1
2 (x1 cos t1 + y1 sin t1).

Now take any almost complex structure J on T0R
4 and translate it to every

TpR
4 by mean of the LN

q and LG
q . This construction gives rise to a left-

invariant complex structure on N and G, respectively.
Let now Γ be a lattice of N or of G. Since the complex structure is

left invariant, one induces it to the quotient Γ\N and Γ\G in such way that
JγxX = JxX for every γ ∈ Γ.

The complex structure on the compact space Γ\N or Γ\G is said to be
invariant if it is induced by a left-invariant complex structure on G. However,
the compact manifold Γ\G or Γ\N is not necessarily homogeneous.

It is known that in the corresponding nilpotent Lie group R × H3(R)
there is only one integrable almost complex structure up to equivalence but
on G there are two non-equivalent ones.

Invariant complex structures on N . Let R × h3 denote the Lie algebra of
R × H3(R) which is the Lie algebra generated by the following basis of left-
invariant vector fields:

T̃ =
∂

∂t
X̃ =

∂

∂x
− 1

2
y

∂

∂z
Ỹ =

∂

∂y
+

1
2
x

∂

∂z
Z̃ =

∂

∂z
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Every complex structure here is equivalent to (see [5])

JX̃ = Ỹ JZ̃ = T̃ J2 = −1 (10)

which is obtained by translating via the maps LN
p the almost complex struc-

ture on T0R
4 given by

J∂x = ∂y J∂z = ∂t J2 = −1. (11)

For every k the lattice Λk acts properly discontinuous on (N, J) giving rise to
the compact complex manifold Λk\N , a primary Kodaira–Thurston manifold.

Notice that each invariant complex structure J on N = R × H3(R) is
abelian, that is it satisfies

[Ju, Jv] = [u, v] for all u, v.

Equivalently by complexifying the tangent space T C

p R
4 the eigenspaces cor-

responding to the eigenvalues i and −i are abelian subalgebras.

Invariant complex structures on G. On the oscillator group any invariant
complex structure is equivalent [20] to one J± obtained by translating via
the maps LG

p the almost complex structures on T0R
4 given by

J±∂x = ∂y J±∂z = ±∂t J2 = −1. (12)

For the left-invariant vector fields X̃, Ỹ , Z̃, T̃ on G:

T̃ =
∂

∂t
X̃ = cos(t)

∂

∂x
− sin(t)

∂

∂y
− 1

2
(x cos(t) + y sin(t))

∂

∂z

Z̃ =
∂

∂z
Ỹ = sin(t)

∂

∂x
+ cos(t)

∂

∂y
+

1
2
(x cos(t) − y sin(t))

∂

∂z

one gets the complex structure J±X̃ = Ỹ J±Z̃ = ±T̃ . Nevertheless J± cannot
be abelian.

Now each lattice Λk,i i = 0, π, π/2 acts free and properly discontinuous
on the complex manifold (G, J±) giving the compact complex spaces Mk,i.
Moreover, one has the next covering as complex spaces

G −→ Mk,0 −→ Mk,π −→ Mk,π/2. (13)

showing that the primary Kodaira surface Mk,0 covers both secondary Ko-
daira surfaces Mk,i for i = π, π/2. [8]. And, moreover, the secondary Kodaira
surface Mk,π covers the secondary Kodaira surface Mk,π/2 which shows a
relationship among certain secondary Kodaira surfaces.

4.2. Symplectic Geometry

As above we shall say that Γ\G admits an invariant symplectic structure if
an invariant symplectic structure ω on G is induced to Γ\G. This is possible
since

ωgx(U, V )) = ωx(U, V ) for all g, x ∈ G.

It is known that if a given nilmanifold Γ\N admits a symplectic struc-
ture, then it admits an N -invariant one. This follows by Nomizu’s Theorem,
since any de Rham cohomology class has an invariant representative, and it is
more in general true for solvmanifolds for which the Mostow condition holds
(see [6]).
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As already proved the oscillator group G does not admit any invariant
symplectic structure [12,21]. But the Kodaira–Thurston manifold Mk,0 was
the first example constructed in order to provide an example of a compact
manifold admitting a symplectic structure but not Kähler structures [23].

Theorem 4.1. The compact spaces Mk,0 are symplectic.
In fact every left-invariant symplectic structure on R × H3(R) can be

induced to the quotients Mk,0. However, no symplectic structure on Mk,0 is
induced by the oscillator group G.

Notice that G does not satisfies the Mostow condition. The example
above shows that this is not true for any solvable Lie group.

Moreover, Mk,0 covers Mk,π and Mk,π/2 which do not admit any sym-
plectic structure, since their second Betti number vanishes.

Remark 4. [11, Remarks 2 and 3] Another example of a non-symplectic man-
ifold finitely covered by a symplectic manifold is constructed but in higher
dimension. The examples above provide the first examples (known to us) of
this situation in dimension four.

By following usual computations one proves the next result. Let
H2n+1(R) denote the Heisenberg Lie algebra of dimension 2n + 1.

Proposition 4.2. The trivial extension R × H2n+1(R) admits an invariant
symplectic structure if and only if n = 1.

Therefore for any lattice Λ no compact space Λ\G admits an invariant
symplectic structure.

4.3. Lorentzian Metric

Explained information of this part can be found in [3,4]. Let R
4 with the

following Lorentzian metric

g = dt

(
dz +

1
2
ydx − 1

2
xdy

)
+ dx2 + dy2 (14)

where (t, x, y, z) are usual coordinates for R
4. It is not hard to see that both

Lie groups N and G act simply and transitively by isometries on (R4, g).
Translate this Lorentzian metric to both G and N .

As a consequence (N, g) is isometric to (G, g) (see [3] for more details).
While the metric g is left and right invariant on G, the metric g is only left
invariant on N .

The metric g on N (14) can be induced to the quotient spaces Λk\N .
In fact, for every γ ∈ Λk one has:

g(Zγx, Yγx)γx = g(dpγx(Z),dpγx(Y ))p(γx)

= g(dpx(Z),dpx(Y ))p(x) = g(Zx, Yx)x

thus the canonical projection p : N → Λk\N is a local isometry.
Analogously one induces the metric of G to the quotients Mk,i. The

solvable Lie group G = R � H3(R) acts by isometries on each of the compact
spaces Mk,i for k ∈ N and i = 0, π, π/2. As a consequence the Heisenberg Lie
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group H3(R) < G also acts on each of the compact spaces Mk,i for k ∈ N and
i = 0, π, π/2. Both actions of G and H3(R) on the respective compact spaces
are locally faithful.

Let NG(Λk,s) denote the normalizer of Λk,s. Consider the following
groups

F̃(Mk,i) � NG(Λk,s)/{h ∈ NG(Λk,s) : h = (2πs, 0, r) : s ∈ Z, r ∈ R} (15)

where

1. NG(Λk,0) = π
2 Z � ( 1

2k Z × 1
2k Z × R),

2. NG(Λk,π) = π
2 Z � ( 1

2Z × 1
2Z × R),

3. Set W = {(m,n) ∈ Z
2 : m ≡ n (mod 2)} then

NG(Λk, π
2
) =

{
π
2 Z � (W × R) for k = 1,
π
2 Z � ( 1

2W × R) for k ≥ 2.

are normalizers in G of the lattices Λk,i and

L̃(Mk,s) � G/

{
h ∈ G/h = (2πs, 0, z) : s ∈ Z, z ∈ 1

2k
Z

}
. (16)

In [4] it was proved the following theorem which shows that the compact
spaces Mk,i can be distinguished by their isometry groups relative to the
induced Lorentzian metric g.

Theorem 4.2. Let Mk,s denote the solvmanifolds of dimension four as in (5)
equipped with the naturally reductive metric induced by the bi-invariant metric
of G given by g (14). Then the isometry group of Mk,s is given by

Iso(Mk,s) = F̃(Mk,i) · L̃(Mk,s)

where F̃(Mk,i) is the group in (15) and L̃(Mk,s) is the group in (16).
Moreover,

• L̃(Mk,s) is a normal subgroup and
• Ñ (Mk,s) ∩ L̃(Mk,s) = {τZ ◦ χ̃γ , where Z := (0, 0, 0, z) z ∈ R, γ ∈ Λk,s}.

Since g is bi-invariant on G, the compact spaces Mk,s are naturally re-
ductive spaces and the geodesics starting at p(e) are precisely the projections
of the geodesics of G through the identity element e (see [17, Ch. 11]). Any
other geodesic of G is the translation on the left of a geodesic through e,
giving rise to any geodesic on the quotient.

Moreover, notice that since g is bi-invariant the compact spaces Mk,i

are homogeneous Lorentzian spaces.
If G/K is a naturally reductive pseudo-Riemannian space then every

closed geodesic in G/K is periodic.
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Let α denote a curve on G and ᾱ its projection on Mk,i. If Xe =∑3
i=0 aiXi(e) ∈ TeG, then the geodesic α through e with initial condi-

tion α′(0) = Xe is the integral curve of the left-invariant vector field
X =

∑3
i=0 aiXi. Then we should have α′(s) = Xα(s). Thus, the geodesic

through e = (0, 0, 0, 0) with initial condition Xe satisfies:

t(s) = a0s,

x(s) =
a1

a0
sin a0s +

a2

a0
cos a0s − a2

a0
,

y(s) = −a1

a0
cos a0s +

a2

a0
sin a0s +

a1

a0
,

z(s) =
1
2

[(
a2
1

a0
+

a2
2

a0
+ 2a3

)
s −

(
a2
2

a2
0

+
a2
1

a2
0

)
sin a0s

]
.

If a0 = 0, it is easy to see that α(s) = (0, a1s, a2s, a3s) is the corre-
sponding geodesic.

Theorem 4.3. Let Mk,i denote the solvmanifolds above.
• Every null geodesic is periodic on Mk,i for i = 0, π, π/2.
• There are closed and non closed time-like and space-like geodesics on Mk,i

for i = 0, π, π/2.

Indeed a geodesic α on G through e with tangent vector X =
∑3

i=0 aiXi,
for Xi left invariant gives rise to a closed geodesic on Mk,0 if and only if there
exists T ∈ R such that α(T ) ∈ Λk,i, i = 2π, π, π/2, which
• for a0 �= 0 gives the following condition

a0T ∈ iZ

a−1
0 (R(a0T )J − J)(a1, a2)t ∈ Z × Z(

a2
1 + a2

2

2a0
+ a3

)
T − a2

1 + a2
2

a2
0

sin(a0T ) ∈ 1
2k

Z. (17)

• For a0 = 0 notice the geodesic ᾱ is closed if there exists T ∈ R such that

(a1T, a2T )t ∈ Z × Z

a3T ∈ 1
2k

Z (18)

It is clear that for a0 �= 0 and a0T = 2π, one has R(a0T ) = Id and sin(a0T ) =
0 so that null geodesics (those s.t. a2

1 +a2
2 +2a0a3 = 0) satisfy the conditions

above (17). Thus, T = 2π/a0 shows the first statement.
But for i = π there are periodic null geodesics with smaller period than

2π/a0. In fact if a0T = π then R(a0T ) = −Id and sin(a0T ) = 0. Then
(a1, a2) ∈ a0

2 Z × Z so that together with a2
1 + a2

2 + 2a0a3 = 0 one gets null
geodesics of period π/a0.

Remark 5. In view of the coverings Mk,0 → Mk,π → Mk,π/2 a periodic
geodesic on Mk,0 projects to periodic geodesics on Mk,π and Mk,π/2. As
explained above on the compact spaces Mk,π and Mk,π/2 it is possible to find
other periodic geodesics, which can be distinguished by their periods.
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