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By using modular decomposition and handling certain graph operations such as join and 
union, we show that the Generalized Limited Packing Problem—NP-complete in general—
can be solved in polynomial time in some graph classes with a limited number of 
P4-partners; specifically P4-tidy graphs, which contain cographs and P4-sparse graphs. In 
particular, we describe an algorithm to compute the associated numbers in polynomial 
time within these graph classes. In this way, we generalize some of the previous results on 
the subject. We also make some progress on the study of the computational complexity of 
the Generalized Multiple Domination Problem in graphs.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The notion of 2-packing in graphs, introduced by Meir and Moon in [11], was generalized to k-limited packing for 
a positive integer k by Gallant et al. [5]. These concepts are good graph models for many utility location problems in 
operations research.

In this paper we consider a problem, already introduced in [2], that models several such scenarios as the location of 
obnoxious facilities—e.g. garbage dumps—in a city. In these scenarios, no neighborhood should be close to too many of such 
facilities, nor should the facilities themselves be too close together. If a graph G models the scenario, we consider a subset A
of its vertex set representing the possible locations for the facilities. We are interested in a maximum sized subset of these 
facilities we can build subject to the condition that, for every vertex v , the number of facilities located inside its closed 
neighborhood does not exceed kv , a positive integer representing the capacity of v . We call this problem the Generalized 
Limited Packing Problem (GLP). The concept of k-limited packing introduced in [5] is a special case of ours, where kv = k
for every vertex v and A is the whole vertex set of G . It is known that GLP is NP-complete, even for split graphs when 
kv = k for every vertex v and A is the whole vertex set [3].

The main purpose of the present work is to show that GLP is polynomial time solvable in P4-tidy graphs—a non-perfect 
graph class with a limited number of P4-partners that generalizes cographs and P4-sparse graphs—for any capacity vector 
and any subset of allowed vertices. In this way, the result in [3] regarding uniform capacity vectors and A being the whole 
vertex set can be seen as a corollary of this more general result. We also connect our results with a related problem 
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Fig. 1. A quasi-spider G obtained from a thin spider H .

in graphs—the Generalized Multiple Domination Problem [9]—and make some progress on the study of its computational 
complexity.

Throughout this work, graphs are simple and V (G) and E(G) denote, respectively, the vertex and edge sets of the 
graph G . For other definitions and notation not defined here, the reader is referred to [12].

For v ∈ V (G), NG [v] denotes the closed neighborhood and NG(v) the (open) neighborhood of v . Two vertices u and w are 
false twins in G if NG(u) = NG(w) and true twins in G if NG [u] = NG [w]. Given a graph G and R ⊆ V (G), G[R] denotes the 
subgraph induced by the vertices in R , i.e. V (G[R]) = R and E(G[R]) is the subset of E(G) consisting of those edges with 
both endpoints belonging to R . In particular, G − v denotes the induced subgraph G[V (G) − {v}]. For n ∈N, Sn , Cn , Kn and 
Pn denote respectively a graph without edges, a cycle, a complete graph and a path on n vertices.

Given two graphs G1 and G2, with V (G1) ∩ V (G2) = ∅, the (disjoint) union of G1 and G2, denoted by G1 ∪ G2, is the 
graph with V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2). The join of G1 and G2, denoted by G1 ∨ G2, is the graph with 
V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2) ∪ {i j : i ∈ V (G1), j ∈ V (G2)}.

Let G and G ′ be two graphs such that V (G) ∩ V (G ′) = ∅ and v ∈ V (G). The graph obtained by replacing v by G ′ is the 
graph whose vertex set is (V (G) − {v}) ∪ V (G ′) and whose edge set is E(G − v) ∪ E(G ′) ∪ {i j : i ∈ V (G ′), j ∈ NG(v)}.

Let G be an arbitrary graph. A set M of vertices is a module if every vertex in V (G) − M is either adjacent to all the 
vertices in M or to none of them. Hence, a module M of G is also a module of the complement graph of G . The empty set, 
the singletons and V (G) are the trivial modules of G . A module M is a strong module if, for any other module A, M ∩ A = ∅
or one module is contained into the other. Any graph distinct from K1, K2 and S2 and having only trivial modules is a prime
graph.

There are several methods for decomposing the structure of a graph. A consequence of a decomposition process is the 
simplification of NP-hard problems, for instance. In this paper we will use modular decomposition [4], a form of decompo-
sition of a graph G that associates with G a unique modular decomposition tree T (G). The leaves of T (G) are the vertices 
of G and the nodes of T (G) are modules of G . The modular decomposition tree can be recursively defined as follows: the 
root of the tree corresponds to the entire graph; if the graph is not connected, the root is called parallel and its children 
are the modular decomposition trees of its components; if the complement graph of G is not connected, the root is called 
series and its children are the decomposition trees of the components of G; if G and G are both connected, the root is called 
neighborhood and its children are the modular decomposition trees of the graphs induced by its maximal strong modules. 
In this last case, a representative graph is associated with the node; this graph has one vertex representing each maximal 
strong module and two vertices are adjacent if and only if there is an edge in G with one extreme in each module. The 
representative graph of a neighborhood module is a prime graph. The efficient construction of the modular decomposition 
tree had been extensively studied. In [1] and [10], independent linear-time algorithms are provided.

A spider graph, introduced in [7], is a graph whose vertex set can be partitioned into S , C and R , where S = {s1, . . . , sr}
is a stable set; C = {c1, . . . , cr} is a clique, r ≥ 2; si is adjacent to c j if and only if i = j (a thin spider), or si is adjacent to c j
if and only if i �= j (a thick spider); R , called the head, is allowed to be empty and if it is not, all vertices in R are adjacent 
to all vertices in C and non-adjacent to all vertices in S . A leg of the spider is any edge with one endpoint in S and the 
other in C . It is straightforward to see that the complement of a thin spider graph is a thick spider graph, and vice-versa. 
The triple (S, C, R) is called the (spider) partition and can be found in linear time [8]. If the head R is empty or contains 
one vertex, then a spider with thin (thick) legs is called an urchin (starfish). Urchins and starfish are prime graphs.

A graph is a quasi-spider graph (see Fig. 1) if it can be obtained from a spider graph with partition (S, C, R) by replacing 
at most one vertex of S ∪ C by a graph with two vertices. Observe that every spider graph is also a quasi-spider graph.

A partner of an induced P4 in a graph G is a vertex v ∈ V (G) − V (P4) such that the subgraph induced by V (P4) ∪ {v}
has at least two induced P4’s.

A graph is a P4-tidy graph if every induced P4 has at most one partner (see [6]). It is not difficult to prove that the 
family of P4-tidy graphs is hereditary and self-complementary.

We will base our results on the following theorems. Notice that the result in Theorem 1 is not stated literally in [6]; 
nevertheless it can be derived from that paper:

Theorem 1 (Characterization of P4-tidy graphs). A graph G is a P4-tidy graph if and only if exactly one of the following conditions 
holds:

(1) G or the complement of the graph G is not connected and each one of its components is a P4-tidy graph;
(2) G is a quasi-spider (S, C, R) and G[R] is a P4-tidy graph;
(3) G is isomorphic to P5 , P5 , C5 or K1 , where P5 denotes the complement of the graph P5 .
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Theorem 2. (See [6].) Let G be a prime P4-tidy graph. Then, G is isomorphic to C5 , P5 , P5 , a starfish or an urchin, where P5 denotes 
the complement of the graph P5.

Theorem 3. (See [6].) Let G be a P4-tidy graph and M a neighborhood module of G. If the representative graph of M is a prime spider 
H = (S, C, R) (starfish or urchin) then G[M] is obtained from H by replacing at most one vertex of S ∪ C by a K2 or an S2 , and 
replacing R by the subgraph induced by a module.

In this paper, Z+ denotes the set of nonnegative integer numbers.
For a set H , ZH+ indicates the space consisting of vectors of nonnegative integer numbers of dimension |H | with entries 

indexed by elements of H .
The all ones vector is denoted by 1.
A shift of a vector a is a vector of the form a − r1, for r ∈ N.
For a vector k = (kv ) ∈ Z

V (G)
+ , kv denotes the capacity of v ∈ V (G).

For a graph G , A ⊆ V (G) and k = (kv ) ∈ Z
V (G)
+ , B ⊆ V (G) is a (k, A)-limited packing of G if B ⊆A and |NG [v] ∩ B| ≤ kv , 

for every v ∈ V (G). The size of a (k, A)-limited packing of G of maximum cardinality is denoted by Lk,A(G).
Let us introduce GLP formally [2].
The Generalized Limited Packing problem (GLP) is formulated as

INSTANCE: A graph G , a vector k ∈ Z
V (G)
+ , A ⊆ V (G) and α ∈ N.

QUESTION: Does G contain a (k, A)-limited packing of size at least α?

In order to simplify the presentation, an instance of GLP will be denoted by (G, k, A). Clearly, if kv ≥ |NG [v]| or kv ≥ |A|
for every v ∈ V (G) then Lk,A(G) = |A|. Also, given (G, k, A) and an induced subgraph G ′ of G , when we talk about 
(k, A)-limited packings of G ′ , we mean that k represents its projection onto ZV (G ′) and A represents the set A ∩ V (G ′).

Remark 4. Let (G, k, A) be an instance of GLP such that kv = 0 for a certain v ∈ V (G). Notice that solving (G, k, A) is 
equivalent to solving (G, k, A − NG [v]). Therefore, we assume that whenever such an instance is given, we will answer the 
corresponding question for the instance (G, k, A − NG [v]).

For a set X ⊆ V (G) and a vector k = (kv ) ∈ Z
V (G)
+ , we denote

mX := min{kv : v ∈ X}.
For instances of GLP given by complete graphs, the packing parameter Lk,A(G) is easily calculated in the following way, 

for every vector k and A:

Remark 5. For every instance (G, k, A) of GLP where G is a complete graph, we have Lk,A(G) = min{|A|, mV (G)}.

2. Union, join and generalized limited packings

In this section, we show how to handle generalized limited packings and some graph operations such as union and join.
We write V i to denote V (Gi) for i ∈ {1, 2}.
The first proposition is straightforward.

Proposition 6. Let (G1 ∪ G2, k, A) be an instance of GLP. Then,

Lk,A
(
G1 ∪ G2) = Lk,A

(
G1) + Lk,A

(
G2).

We also have:

Proposition 7. Let (G1 ∨ G2, k, A) be an instance of GLP. Then,

Lk,A
(
G1 ∨ G2) = max

s,r∈Z+,r≤mV 1 ,s≤mV 2

{
s + r : r ≤ Lk−s1,A

(
G2), s ≤ Lk−r1,A

(
G1)}.

Proof. Let h := maxs,r∈Z+,r≤mV 1 ,s≤mV 2 {s + r : r ≤ Lk−s1,A(G2), s ≤ Lk−r1,A(G1)}.

Let B be a (k, A)-limited packing of G1 ∨ G2 and let s := |B ∩ V 1| and r := |B ∩ V 2|. Given any v ∈ V 1, it follows 
that kv ≥ |NG [v] ∩ B| = |NG [v] ∩ B ∩ V 1| + r and then |NG [v] ∩ B ∩ V 1| ≤ kv − r. Thus r ≤ kv and moreover, B ∩ V 1 is a 
(k − r1, A)-limited packing of G1, implying that s ≤ Lk−r1,A(G1). Similarly, r ≤ Lk−s1,A(G2). Therefore, since |B| = s + r, 
Lk,A(G) ≤ h.
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In order to prove the other inequality, take s, r ∈ Z+ such that r ≤ mV 1 , r ≤ Lk−s1,A(G2), s ≤ mV 2 , s ≤ Lk−r1,A(G1). Let 
B1 be a (k − r1, A)-limited packing of G1 of size s and let B2 be a (k − s1, A)-limited packing of G2 of size r and define 
B := B1 ∪ B2. Given v ∈ V 1, we have |NG [v] ∩ B| = |NG [v] ∩ B1| + |NG [v] ∩ B2| ≤ kv − r + r = kv . In the same way, given 
v ∈ V 2 we have |NG [v] ∩ B| ≤ s + kv − s = kv . Then B is a (k, A)-limited packing of G1 ∨ G2 of size s + r. As a result, 
Lk,A(G1 ∨ G2) ≥ h. �

Notice that each of the two propositions shown above reduces the computation of Lk,A(G) (with G = G1 ∪ G2 or G =
G1 ∨ G2) to the computation on two disjoint subgraphs of G . This computation only needs to be done for the vector k and 
a finite number of shifts of k.

3. Generalized limited packings of quasi-spider graphs

The results in this section will be used later to construct a polynomial time algorithm for P4-tidy graphs.
We begin our study analyzing generalized limited packings of spider graphs, although not giving the exact value of the 

packing parameter for a general spider.
From now on, we will consider instances (H, k, A) of GLP where H is a spider graph with partition (S, C, R), S =

{s1, . . . , sr} and C = {c1, . . . , cr}. We denote AS :=A ∩ S , AC :=A ∩ C and AR :=A ∩ R .

3.1. Thin spider graphs

We will show that, for solving GLP on an instance (H, k, A), it is enough to solve GLP on the instance given by H[R ∪ C]
and appropriate capacities and allowed vertices.

First we can establish:

Proposition 8. For every instance (H, k, A) of GLP with H thin, there exists a maximum (k, A)-limited packing of H containing AS .

Proof. Let B be a maximum (k, A)-limited packing of H with the maximum possible number of vertices in AS . If AS − B �=
∅, let s j ∈ AS − B . By Remark 4, ks j ≥ 1 and kc j ≥ 1, and since B is maximum, |NH [v] ∩ B| = kv for v = c j or v = s j . Thus, 
there exists w ∈ (R ∪ C) ∩ B and it follows that B ′ = (B − {w}) ∪ {s j} is a maximum (k, A)-limited packing of H such that 
|B ′ ∩AS | > |B ∩AS |. �

As an immediate corollary we obtain:

Corollary 9. Let (H, k, A) be an instance of GLP where H is thin. If there exists ci ∈ C such that kci = 0 (or kci = 1 and si ∈AS ), then 
Lk,A(H) = |AS |.

The remaining instances concerning thin spider graphs are covered by the next proposition:

Proposition 10. Let (H, k, A) be an instance of GLP where H is thin and kci ≥ 2 for each ci ∈ C for which si ∈ AS . Defining Â and 
k̂ by

Â := A− {ci ∈ C : si ∈ AS ∧ ksi = 1} and k̂v := kv − |NH [v] ∩AS | if v ∈ R ∪ C,

it follows that, if B̂ is a maximum (k̂, Â)-limited packing of H[R ∪ C], then B̂ ∪AS is a maximum (k, A)-limited packing of H.

Proof. Let B̂ be a maximum (k̂, Â)-limited packing of H[R ∪ C] and consider B̂ ∪ AS . From the definitions of k̂ and Â, 
B̂ ∪AS is a (k, A)-limited packing of H , thus it remains to be proved that it is maximum.

Take a maximum (k, A)-limited packing T̂ ∪ AS of H , with T̂ ⊆ R ∪ C . Let us show that T̂ is a (k̂, Â)-limited packing 
of H[R ∪ C]. Indeed, for any ci ∈ C , kci ≥ |NH [ci] ∩ (T̂ ∪ AS )| = |NH[R∪C][ci] ∩ T̂ | + |{si} ∩ AS | for each ci ∈ C , thus k̂ci ≥
|NH[R∪C][ci] ∩ T̂ | for each ci ∈ C . For each v ∈ R , the corresponding inequality trivially holds.

Since B̂ is maximum, |T̂ | ≤ |B̂|. The maximality of T̂ ∪ AS implies that |T̂ ∪ AS | = |B̂ ∪ AS | and therefore, B̂ ∪ AS is 
maximum. �
3.2. Thick spider graphs

Let us start by noting that if there exists ci ∈ C with kci = 0, we can use Remark 4 to conclude that Lk,A(H) = 1 when 
si ∈AS or Lk,A(H) = 0 when si /∈AS .

Recalling that mC = min{kci : ci ∈ C}, it is straightforward to see that Lk,A(H) ≤ mC + 1, for every k and A, whenever H
is thick.
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We also denote:

C1 := {ci ∈ C : kci = mC } and S1 := {
si ∈ AS : ci ∈ C1}.

Clearly, |C1| ≥ |S1|.
Instances considered in the following proposition are easily solved:

Proposition 11. Let (H, k, A) be an instance of GLP where H is thick. Then,

(1) if |S1| ≥ mC + 2, then Lk,A(H) = mC ;
(2) if |S1| ≤ mC + 1 ≤ |AS |, then

Lk,A(H) =
{

mC if |C1| > |S1|
mC + 1 if |C1| = |S1|.

Proof. (1) Any subset of S1 with mC elements is a (k, A)-limited packing of H , thus Lk,A(H) ≥ mC . Let B be a 
(k, A)-limited packing of H with |B| = mC + 1. By hypothesis, there exists c j ∈ C1 such that s j ∈ S1 − B . Thus |NH [c j] ∩ B| =
|B| > mC = kc j , leading to a contradiction. Therefore Lk,A(H) = mC .

(2) When |C1| > |S1|, any subset B of AS with mC elements is a (k, A)-limited packing of H . To see that B is maximum, 
notice that there exists c j ∈ C1 such that s j /∈ AS . Then, for any (k, A)-limited packing B ′ of H , we have mC = kc j ≥
|NH [c j] ∩ B ′| = |B ′|, concluding that Lk,A(H) = mC . When |C1| = |S1|, any subset B of AS with S1 ⊆ B and |B| = mC + 1 is 
a maximum (k, A)-limited packing of H . Since Lk,A(H) ≤ mC + 1, the statement holds. �

Next, in Propositions 12 and 16, we complete the study of instances (H, k, A) where H is thick and |AS | ≤ mC .

Proposition 12. Let (H, k, A) be an instance of GLP with H thick and |AS | ≤ mC . There exists a maximum (k, A)-limited packing of 
H containing AS .

Proof. Let B be a maximum (k, A)-limited packing of H . If AS ⊆ B , we are done. If not, take si ∈ AS − B and notice that 
there exists v ∈ NH [si] such that |NH [v] ∩ B| = kv . Since |AS | ≤ mC and si ∈AS − B , |B ∩AS | ≤ mC − 1, thus it follows that 
there exists w ∈ (NH [v] ∩ B) −AS . It turns out that B ′ := (B −{w}) ∪ {si} is another maximum (k, A)-limited packing of H , 
since for any x ∈ V (H), |NH [x] ∩ B ′| ≤ |NH [x] ∩ B|. Clearly, |B ′ ∩AS | > |B ∩AS |. �

To complete the study of the remaining instances given by thick spiders H , it is enough to consider the subgraph 
H[R ∪ C]. First observe the following straightforward fact:

Remark 13. Let (H, k, A) be an instance of GLP with H thick and F be a (k, A)-limited packing of H[R ∪ C]. For every 
c j ∈AC − F and ci ∈AC ∩ F , (F − {ci}) ∪ {c j} is a (k,A)-limited packing of H[R ∪ C].

Definition 14. Let (H, k, A) with H thick be an instance of GLP that has a maximum (k, A)-limited packing containing AS . 
We define ̃k ∈ Z

V (H[R∪C])
+ in the following way:

k̃v :=
{

kv − |AS − {si}| if v = ci for ci ∈ C
kv otherwise.

From the way ̃k was defined, it is clear that

Remark 15. Let (H, k, A) be an instance of GLP with H thick and F ⊆ R ∪ C . If F ∪ AS is a (k, A)-limited packing of H , 
then F is a (̃k, A)-limited packing of H[R ∪ C].

We have:

Proposition 16. Let (H, k, A) be an instance of GLP where H is thick and |AS | ≤ mC . There exists ÃC ⊆AC such that

Lk,A(H) = Lk̃,AR∪ÃC

(
H[R ∪ C]) + |AS |,

where ̃k is given in Definition 14 and ÃC can be obtained in linear time.
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Proof. We will analyze two cases:

• Case 1: |AC | ≤ mS − 1.
Set ÃC =AC and consider T , a maximum (̃k, A)-limited packing of H[R ∪ C]. We will show that T ∪AS is a maximum 
(k, A)-limited packing of H . For every si ∈ S , we have |NH [si] ∩ (T ∪AS )| = |(C − {ci}) ∩ T | + |{si} ∩AS | ≤ |AC | + 1 ≤
mS − 1 + 1 ≤ ksi . To see that T ∪ AS is maximum, let B be a (k, A)-limited packing of H . By Proposition 12, we 
may assume that B contains A S . It is easy to see that B − AS is a (̃k, A)-limited packing of H[R ∪ C] and |B| ≤
|B −AS | + |AS | ≤ |T | + |AS |.

• Case 2: |AC | ≥ mS . We consider the sets

D := {si ∈ AS : ksi = mS} and F := {si ∈ S : ksi − |si ∩AS | = mS}.
◦ Subcase 2.1: There exists si ∈D such that ci /∈AC or (|D| ≥ mS + 1 and ci ∈AC for every si ∈D).

By Proposition 12, there is a maximum (k, A)-limited packing of H containing AS , say F ∪AS , with F ⊆ R ∪ C and 
Lk,A(H) = |F | + |AS |. Each of the two hypotheses implies |F ∩AC | ≤ mS − 1.
By Remark 15, F is a (̃k, A)-limited packing of H[R ∪ C]. Take any ÃC ⊆AC with |ÃC | = mS −1. By Remark 13, there 
exists a (̃k, AR ∪ ÃC )-limited packing F̃ of H[R ∪ C] such that |̃F | = |F |. The result follows from Case 1.

◦ Subcase 2.2: |D| ≤ mS and ci ∈AC for every si ∈D.
– |D| ≥ 1.

Take ÃC ⊆ AC with {c j ∈ AC : s j ∈ D} ⊆ ÃC and |ÃC | = mS . Given a (̃k, AR ∪ ÃC )-limited packing T ′ of H[R ∪ C], 
there exists a (̃k, AR ∪ ÃC )-limited packing T of H[R ∪ C] such that |T | = |T ′| and T ∪ AS is a (k, A)-limited 
packing of H (if |T ′ ∩ C | ≤ mS − 1, take T = T ′; otherwise, Remark 13 allows us to choose T satisfying {ci ∈ AC :
si ∈ D} ⊆ T ). Thus Lk̃,AR∪ÃC

(H[R ∪ C]) + |AS | ≤ Lk,A(H). In order to prove the reverse inequality, let B be a 
maximum (k, A)-limited packing of H such that AS ⊆ B . By Remark 15, B − AS is a (̃k, A)-limited packing of 
H[R ∪ C]. In this case, we have |B ∩ AC | ≤ mS . By Remark 13, there exists a (̃k, AR ∪ ÃC )-limited packing T̃ of 
H[R ∪ C] with |̃T | = |B −AS |. Therefore Lk,A(H) = |B| = |B −AS | + |AS | ≤ Lk̃,AR∪ÃC

(H[R ∪ C]) + |AS |.
– D = ∅.

When |F | ≥ mS + 2, the statement holds for any ÃC ⊆ AC with |ÃC | = mS (since for every (k, A)-limited packing 
B of H , |B ∩AC | ≤ mS ).
When |F | ≤ mS + 1, do the following: if |AC | ≥ mS + 1 and c j ∈ AC for all j such that s j ∈ F , take ÃC ⊆ AC

such that {c j ∈ AC : s j ∈ F} ⊆ ÃC and |ÃC | = mS + 1; otherwise, take ÃC = AC . In both cases, the result clearly 
follows. �

Let us recall that a quasi-spider graph H that is not a spider is obtained from a spider graph by replacing at most 
one vertex of exactly one leg by a graph with two vertices. Observe that these two vertices are twins in H . The next 
straightforward proposition shows how to obtain the objective involved in GLP on instances given by graphs with twins.

Proposition 17. Let (G, k, A) be an instance of GLP where G is any graph and let u and w be twins in G. Then, assuming without loss 
of generality that ku ≥ kw , we have,

i. Lk,A(G − u) ≤ Lk,A(G) ≤ Lk,A(G − u) + 1.
ii. If u /∈A then Lk,A(G) = Lk,A(G − u).

iii. If w /∈A and ku = kw , then Lk,A(G) = Lk,A(G − w).
iv. If u ∈A then Lk,A(G) = Lk,A(G − u) + 1 if and only if:

• Lk∗,A(G − u) = Lk,A(G − u) when u and w are false twins, ku > kw and k∗ is defined by k∗
v := kv − 1 if v ∈ NG(w) and 

k∗
v := kv otherwise;

• Lk′,A−{u,w}(G − u) ≥ Lk,A(G − u) − 1 when u and w are false twins, w ∈ A, ku = kw and k′ is defined by k′
v := kv − 2 if 

v ∈ NG−u(w), k′
w := kw − 1 and k′

v := kv otherwise;
• Lk′′,A(G − u) = Lk,A(G − u), when u and w are true twins and k′′ is defined by k′′

v := kv − 1 if v ∈ NG−u[w] and k′′
v := kv

otherwise.

Going back to P4-tidy graphs, the results achieved so far allow us to state the following theorem, which generalizes that 
in [3]:

Theorem 18. GLP can be solved in polynomial time for P4-tidy graphs.

Sketch of the proof. Let (G, k, A) be an instance of GLP where G is a P4-tidy graph.
Consider T (G), the modular decomposition tree of G . The results up to now give a dynamic programming algorithm to 

recursively compute Lk,A(G) from T (G).
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Traverse T (G) down-top, computing the packing parameters for each strong module that occurs in it. For each node of 
T (G) representing a module H of G , you have to follow the scheme below in order to tackle the next level of T (G). In the 
worst case, you have to dynamically compute Lk−r1,A(H) for each r such that 0 ≤ r ≤ min{mV (H), |A ∩ V (H)|}.

Notice that for any subgraph H of G and shift c of k such that min{cv : v ∈ V (H)} ≥ |A ∩ V (H)|, we have Lc,A(H) =
|A ∩ V (H)|.
Scheme:

(1) It is straightforward to compute Lk,A(H) when H is a single vertex, P5, C5 or P5.
(2) If H is a thin spider (S, C, R) with R = ∅, then Lk,A(H) can be calculated using Corollary 9 or Proposition 10. In the 

latter case, use Remark 5 for the calculation of Lk̂,AC
(H[C]).

(3) If H is a thick spider (S, C, R) with R = ∅, then Lk,A(H) can be calculated using Proposition 11 or 16. In the latter case, 
use Remark 5 for the calculation of Lk̃,AC

(H[C]).
(4) If H is a parallel node, then use Proposition 6 to obtain the value of Lk,A(H).
(5) If H is a series node, then use Proposition 7 to obtain the value of Lk,A(H).

Moreover, both Proposition 6 and Proposition 7 reduce the computation of Lk,A(H) to the computation on disjoint 
subgraphs of H , as already stated. Thus, there are at most |V (H)| occurrences of such reduction steps.

(6) If H is a spider (S, C, R) with R �= ∅, then apply Corollary 9, Proposition 10, Proposition 11 or Proposition 16 where, in 
order to evaluate the packing parameter for H[R ∪ C], use Proposition 7 with G1 = H[R] and G2 = H[C]. Recursively, 
compute the packing parameter for the P4-tidy graph H[R] and, for H[C], recall Remark 5.

(7) If H is a quasi-spider that is not a spider, it was obtained from a spider graph with partition (S, C, R) where at most 
one vertex of S ∪ C was replaced by a graph on two vertices, let us call these vertices u and w with ku ≥ kw . Observe 
that u and w are twins in H and H − u (H − w) is a P4-tidy spider. Apply Proposition 17, taking into account that 
k∗ , k′ and k′′ are shifts of the vector k when restricted to the set R and that the set AR is unchanged. Calculate the 
packing parameters for H − u (H − w) according to cases (2), (3) or (6) above. In this way, Lk,A(H) can be obtained 
linearly.

4. Connection with dominating sets

To end this paper, we connect our findings on limited packings with certain dominating sets in graphs.
Given a graph G , R ⊆ V (G) and r = (rv ) ∈ Z

V (G)
+ , D ⊆ V (G) is an (r, R)-tuple dominating set of G if R ⊆ D and |NG [v] ∩

D| ≥ rv , for every v ∈ V (G) [9]. Notice that G has (r, R)-tuple sets if and only if rv ≤ |NG [v]| for every v .
The Generalized Multiple Domination problem (GMD) is formulated as

INSTANCE: A graph G , a vector r ∈ Z
V (G)
+ , R ⊆ V (G) and α ∈ Z+ .

QUESTION: Does G contain a (r, R)-tuple dominating set of size at most α?

GMD was proved to be NP-complete, by proving the NP-completeness for the instances corresponding to rv = r for every 
v ∈ V (G) and each r ∈N and R = ∅ [9].

The following result shows that an optimal solution of GLP can be obtained linearly from an optimal solution of GMD 
and vice versa.

Proposition 19. (See [2].) Let (G, k, A) be an instance of GLP and B ⊆ V (G). Then, B is a (k, A)-limited packing of G if and only if 
V (G) − B is an (r, V (G) −A)-tuple dominating set of G, where rv := max{0, |NG [v]| − kv}, for v ∈ V (G).

Due to the relationship between GLP and GMD shown above, we are able to obtain new polynomial time solvable 
instances of GMD, as a corollary of Theorem 18:

Corollary 20. GMD can be solved in polynomial time for P4-tidy graphs.
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