Generalized limited packings of some graphs with a limited number of P_{4}-partners

M.P. Dobson ${ }^{\text {b }}$, E. Hinrichsen ${ }^{\text {b }}$, V. Leoni ${ }^{\text {a,b, }}{ }^{\text {, }}$
${ }^{\text {a }}$ Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
${ }^{\text {b }}$ Depto. de Matemática, Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Av. Pellegrini 250, 2000 Rosario, Argentina

A R T I CLE IN F O

Article history:

Received 26 April 2013
Received in revised form 12 November 2014
Accepted 14 November 2014
Available online 20 November 2014
Communicated by G. Ausiello

Keywords:

Generalized limited packing
Join
Union
P_{4}-partners

Abstract

By using modular decomposition and handling certain graph operations such as join and union, we show that the Generalized Limited Packing Problem-NP-complete in generalcan be solved in polynomial time in some graph classes with a limited number of P_{4}-partners; specifically P_{4}-tidy graphs, which contain cographs and P_{4}-sparse graphs. In particular, we describe an algorithm to compute the associated numbers in polynomial time within these graph classes. In this way, we generalize some of the previous results on the subject. We also make some progress on the study of the computational complexity of the Generalized Multiple Domination Problem in graphs.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The notion of 2-packing in graphs, introduced by Meir and Moon in [11], was generalized to k-limited packing for a positive integer k by Gallant et al. [5]. These concepts are good graph models for many utility location problems in operations research.

In this paper we consider a problem, already introduced in [2], that models several such scenarios as the location of obnoxious facilities-e.g. garbage dumps-in a city. In these scenarios, no neighborhood should be close to too many of such facilities, nor should the facilities themselves be too close together. If a graph G models the scenario, we consider a subset \mathcal{A} of its vertex set representing the possible locations for the facilities. We are interested in a maximum sized subset of these facilities we can build subject to the condition that, for every vertex v, the number of facilities located inside its closed neighborhood does not exceed k_{v}, a positive integer representing the capacity of v. We call this problem the Generalized Limited Packing Problem (GLP). The concept of k-limited packing introduced in [5] is a special case of ours, where $k_{v}=k$ for every vertex v and \mathcal{A} is the whole vertex set of G. It is known that GLP is NP-complete, even for split graphs when $k_{v}=k$ for every vertex v and \mathcal{A} is the whole vertex set [3].

The main purpose of the present work is to show that GLP is polynomial time solvable in P_{4}-tidy graphs-a non-perfect graph class with a limited number of P_{4}-partners that generalizes cographs and P_{4}-sparse graphs-for any capacity vector and any subset of allowed vertices. In this way, the result in [3] regarding uniform capacity vectors and \mathcal{A} being the whole vertex set can be seen as a corollary of this more general result. We also connect our results with a related problem

[^0]

Fig. 1. A quasi-spider G obtained from a thin spider H.
in graphs-the Generalized Multiple Domination Problem [9]-and make some progress on the study of its computational complexity.

Throughout this work, graphs are simple and $V(G)$ and $E(G)$ denote, respectively, the vertex and edge sets of the graph G. For other definitions and notation not defined here, the reader is referred to [12].

For $v \in V(G), N_{G}[v]$ denotes the closed neighborhood and $N_{G}(v)$ the (open) neighborhood of v. Two vertices u and w are false twins in G if $N_{G}(u)=N_{G}(w)$ and true twins in G if $N_{G}[u]=N_{G}[w]$. Given a graph G and $R \subseteq V(G), G[R]$ denotes the subgraph induced by the vertices in R, i.e. $V(G[R])=R$ and $E(G[R])$ is the subset of $E(G)$ consisting of those edges with both endpoints belonging to R. In particular, $G-v$ denotes the induced subgraph $G[V(G)-\{v\}]$. For $n \in \mathbb{N}, S_{n}, C_{n}, K_{n}$ and P_{n} denote respectively a graph without edges, a cycle, a complete graph and a path on n vertices.

Given two graphs G^{1} and G^{2}, with $V\left(G^{1}\right) \cap V\left(G^{2}\right)=\emptyset$, the (disjoint) union of G^{1} and G^{2}, denoted by $G^{1} \cup G^{2}$, is the graph with $V(G)=V\left(G^{1}\right) \cup V\left(G^{2}\right)$ and $E(G)=E\left(G^{1}\right) \cup E\left(G^{2}\right)$. The join of G^{1} and G^{2}, denoted by $G^{1} \vee G^{2}$, is the graph with $V(G)=V\left(G^{1}\right) \cup V\left(G^{2}\right)$ and $E(G)=E\left(G^{1}\right) \cup E\left(G^{2}\right) \cup\left\{i j: i \in V\left(G^{1}\right), j \in V\left(G^{2}\right)\right\}$.

Let G and G^{\prime} be two graphs such that $V(G) \cap V\left(G^{\prime}\right)=\emptyset$ and $v \in V(G)$. The graph obtained by replacing v by G^{\prime} is the graph whose vertex set is $(V(G)-\{v\}) \cup V\left(G^{\prime}\right)$ and whose edge set is $E(G-v) \cup E\left(G^{\prime}\right) \cup\left\{i j: i \in V\left(G^{\prime}\right), j \in N_{G}(v)\right\}$.

Let G be an arbitrary graph. A set M of vertices is a module if every vertex in $V(G)-M$ is either adjacent to all the vertices in M or to none of them. Hence, a module M of G is also a module of the complement graph of G. The empty set, the singletons and $V(G)$ are the trivial modules of G. A module M is a strong module if, for any other module $A, M \cap A=\emptyset$ or one module is contained into the other. Any graph distinct from K_{1}, K_{2} and S_{2} and having only trivial modules is a prime graph.

There are several methods for decomposing the structure of a graph. A consequence of a decomposition process is the simplification of NP-hard problems, for instance. In this paper we will use modular decomposition [4], a form of decomposition of a graph G that associates with G a unique modular decomposition tree $T(G)$. The leaves of $T(G)$ are the vertices of G and the nodes of $T(G)$ are modules of G. The modular decomposition tree can be recursively defined as follows: the root of the tree corresponds to the entire graph; if the graph is not connected, the root is called parallel and its children are the modular decomposition trees of its components; if the complement graph of G is not connected, the root is called series and its children are the decomposition trees of the components of \bar{G}; if G and \bar{G} are both connected, the root is called neighborhood and its children are the modular decomposition trees of the graphs induced by its maximal strong modules. In this last case, a representative graph is associated with the node; this graph has one vertex representing each maximal strong module and two vertices are adjacent if and only if there is an edge in G with one extreme in each module. The representative graph of a neighborhood module is a prime graph. The efficient construction of the modular decomposition tree had been extensively studied. In [1] and [10], independent linear-time algorithms are provided.

A spider graph, introduced in [7], is a graph whose vertex set can be partitioned into S, C and R, where $S=\left\{s_{1}, \ldots, s_{r}\right\}$ is a stable set; $C=\left\{c_{1}, \ldots, c_{r}\right\}$ is a clique, $r \geq 2$; s_{i} is adjacent to c_{j} if and only if $i=j$ (a thin spider), or s_{i} is adjacent to c_{j} if and only if $i \neq j$ (a thick spider); R, called the head, is allowed to be empty and if it is not, all vertices in R are adjacent to all vertices in C and non-adjacent to all vertices in S. A leg of the spider is any edge with one endpoint in S and the other in C. It is straightforward to see that the complement of a thin spider graph is a thick spider graph, and vice-versa. The triple (S, C, R) is called the (spider) partition and can be found in linear time [8]. If the head R is empty or contains one vertex, then a spider with thin (thick) legs is called an urchin (starfish). Urchins and starfish are prime graphs.

A graph is a quasi-spider graph (see Fig. 1) if it can be obtained from a spider graph with partition (S, C, R) by replacing at most one vertex of $S \cup C$ by a graph with two vertices. Observe that every spider graph is also a quasi-spider graph.

A partner of an induced P_{4} in a graph G is a vertex $v \in V(G)-V\left(P_{4}\right)$ such that the subgraph induced by $V\left(P_{4}\right) \cup\{v\}$ has at least two induced P_{4} 's.

A graph is a P_{4}-tidy graph if every induced P_{4} has at most one partner (see [6]). It is not difficult to prove that the family of P_{4}-tidy graphs is hereditary and self-complementary.

We will base our results on the following theorems. Notice that the result in Theorem 1 is not stated literally in [6]; nevertheless it can be derived from that paper:

Theorem 1 (Characterization of P_{4}-tidy graphs). A graph G is a P_{4}-tidy graph if and only if exactly one of the following conditions holds:
(1) G or the complement of the graph G is not connected and each one of its components is a P_{4}-tidy graph;
(2) G is a quasi-spider (S, C, R) and $G[R]$ is a P_{4}-tidy graph;
(3) G is isomorphic to $P_{5}, \overline{P_{5}}, C_{5}$ or K_{1}, where $\overline{P_{5}}$ denotes the complement of the graph P_{5}.

Theorem 2. (See [6].) Let G be a prime P_{4}-tidy graph. Then, G is isomorphic to $C_{5}, P_{5}, \overline{P_{5}}$, a starfish or an urchin, where $\overline{P_{5}}$ denotes the complement of the graph P_{5}.

Theorem 3. (See [6].) Let G be a P_{4}-tidy graph and M a neighborhood module of G. If the representative graph of M is a prime spider $H=(S, C, R)$ (starfish or urchin) then $G[M]$ is obtained from H by replacing at most one vertex of $S \cup C$ by $a K_{2}$ or an S_{2}, and replacing R by the subgraph induced by a module.

In this paper, \mathbb{Z}_{+}denotes the set of nonnegative integer numbers.
For a set H, \mathbb{Z}_{+}^{H} indicates the space consisting of vectors of nonnegative integer numbers of dimension $|H|$ with entries indexed by elements of H.

The all ones vector is denoted by $\mathbf{1}$.
A shift of a vector \mathbf{a} is a vector of the form $\mathbf{a}-r \mathbf{1}$, for $r \in \mathbb{N}$.
For a vector $\mathbf{k}=\left(k_{v}\right) \in \mathbb{Z}_{+}^{V(G)}, k_{v}$ denotes the capacity of $v \in V(G)$.
For a graph $G, \mathcal{A} \subseteq V(G)$ and $\mathbf{k}=\left(k_{v}\right) \in \mathbb{Z}_{+}^{V(G)}, B \subseteq V(G)$ is a $(\mathbf{k}, \mathcal{A})$-limited packing of G if $B \subseteq \mathcal{A}$ and $\left|N_{G}[v] \cap B\right| \leq k_{v}$, for every $v \in V(G)$. The size of a $(\mathbf{k}, \mathcal{A})$-limited packing of G of maximum cardinality is denoted by $L_{\mathbf{k}, \mathcal{A}}(G)$.

Let us introduce GLP formally [2].
The Generalized Limited Packing problem (GLP) is formulated as
INSTANCE: A graph G, a vector $\mathbf{k} \in \mathbb{Z}_{+}^{V(G)}, \mathcal{A} \subseteq V(G)$ and $\alpha \in \mathbb{N}$.
QUESTION: Does G contain a $(\mathbf{k}, \mathcal{A})$-limited packing of size at least α ?
In order to simplify the presentation, an instance of GLP will be denoted by $(G, \mathbf{k}, \mathcal{A})$. Clearly, if $k_{v} \geq\left|N_{G}[v]\right|$ or $k_{v} \geq|\mathcal{A}|$ for every $v \in V(G)$ then $L_{\mathbf{k}, \mathcal{A}}(G)=|\mathcal{A}|$. Also, given $(G, \mathbf{k}, \mathcal{A})$ and an induced subgraph G^{\prime} of G, when we talk about $(\mathbf{k}, \mathcal{A})$-limited packings of G^{\prime}, we mean that \mathbf{k} represents its projection onto $\mathbb{Z}^{V\left(G^{\prime}\right)}$ and \mathcal{A} represents the set $\mathcal{A} \cap V\left(G^{\prime}\right)$.

Remark 4. Let $(G, \mathbf{k}, \mathcal{A})$ be an instance of GLP such that $k_{v}=0$ for a certain $v \in V(G)$. Notice that solving $(G, \mathbf{k}, \mathcal{A})$ is equivalent to solving $\left(G, \mathbf{k}, \mathcal{A}-N_{G}[v]\right)$. Therefore, we assume that whenever such an instance is given, we will answer the corresponding question for the instance ($G, \mathbf{k}, \mathcal{A}-N_{G}[v]$).

For a set $X \subseteq V(G)$ and a vector $\mathbf{k}=\left(k_{v}\right) \in \mathbb{Z}_{+}^{V(G)}$, we denote

$$
m_{X}:=\min \left\{k_{v}: v \in X\right\}
$$

For instances of GLP given by complete graphs, the packing parameter $L_{\mathbf{k}, \mathcal{A}}(G)$ is easily calculated in the following way, for every vector \mathbf{k} and \mathcal{A} :

Remark 5. For every instance $(G, \mathbf{k}, \mathcal{A})$ of $G L P$ where G is a complete graph, we have $L_{\mathbf{k}, \mathcal{A}}(G)=\min \left\{|\mathcal{A}|, m_{V(G)}\right\}$.

2. Union, join and generalized limited packings

In this section, we show how to handle generalized limited packings and some graph operations such as union and join. We write V^{i} to denote $V\left(G^{i}\right)$ for $i \in\{1,2\}$.
The first proposition is straightforward.
Proposition 6. Let $\left(G^{1} \cup G^{2}, \mathbf{k}, \mathcal{A}\right)$ be an instance of GLP. Then,

$$
L_{\mathbf{k}, \mathcal{A}}\left(G^{1} \cup G^{2}\right)=L_{\mathbf{k}, \mathcal{A}}\left(G^{1}\right)+L_{\mathbf{k}, \mathcal{A}}\left(G^{2}\right)
$$

We also have:
Proposition 7. Let $\left(G^{1} \vee G^{2}, \mathbf{k}, \mathcal{A}\right)$ be an instance of GLP. Then,

$$
L_{\mathbf{k}, \mathcal{A}}\left(G^{1} \vee G^{2}\right)=\max _{s, r \in \mathbb{Z}_{+}, r \leq m_{V^{1}}, s \leq m_{V^{2}}}\left\{s+r: r \leq L_{\mathbf{k}-s \mathbf{1}, \mathcal{A}}\left(G^{2}\right), s \leq L_{\mathbf{k}-r \mathbf{1}, \mathcal{A}}\left(G^{1}\right)\right\}
$$

Proof. Let $h:=\max _{s, r \in \mathbb{Z}_{+}, r \leq m_{V^{1}}, s \leq m_{V^{2}}}\left\{s+r: r \leq L_{\mathbf{k}-s \mathbf{1}, \mathcal{A}}\left(G^{2}\right), s \leq L_{\mathbf{k}-r \mathbf{1}, \mathcal{A}}\left(G^{1}\right)\right\}$.
Let B be a $(\mathbf{k}, \mathcal{A})$-limited packing of $G^{1} \vee G^{2}$ and let $s:=\left|B \cap V^{1}\right|$ and $r:=\left|B \cap V^{2}\right|$. Given any $v \in V^{1}$, it follows that $k_{v} \geq\left|N_{G}[v] \cap B\right|=\left|N_{G}[v] \cap B \cap V^{1}\right|+r$ and then $\left|N_{G}[v] \cap B \cap V^{1}\right| \leq k_{v}-r$. Thus $r \leq k_{v}$ and moreover, $B \cap V^{1}$ is a $(\mathbf{k}-r \mathbf{1}, \mathcal{A})$-limited packing of G^{1}, implying that $s \leq L_{\mathbf{k}-r \mathbf{1}, \mathcal{A}}\left(G^{1}\right)$. Similarly, $r \leq L_{\mathbf{k}-\mathbf{s} 1, \mathcal{A}}\left(G^{2}\right)$. Therefore, since $|B|=s+r$, $L_{\mathbf{k}, \mathcal{A}}(G) \leq h$.

In order to prove the other inequality, take $s, r \in \mathbb{Z}_{+}$such that $r \leq m_{V^{1}}, r \leq L_{\mathbf{k}-s \mathbf{1}, \mathcal{A}}\left(G^{2}\right), s \leq m_{V^{2}}, s \leq L_{\mathbf{k}-r \mathbf{1}, \mathcal{A}}\left(G^{1}\right)$. Let B_{1} be a $(\mathbf{k}-r \mathbf{1}, \mathcal{A})$-limited packing of G^{1} of size s and let B_{2} be a $(\mathbf{k}-s \mathbf{1}, \mathcal{A})$-limited packing of G^{2} of size r and define $B:=B_{1} \cup B_{2}$. Given $v \in V^{1}$, we have $\left|N_{G}[v] \cap B\right|=\left|N_{G}[v] \cap B_{1}\right|+\left|N_{G}[v] \cap B_{2}\right| \leq k_{v}-r+r=k_{v}$. In the same way, given $v \in V^{2}$ we have $\left|N_{G}[v] \cap B\right| \leq s+k_{v}-s=k_{v}$. Then B is a $(\mathbf{k}, \mathcal{A})$-limited packing of $G^{1} \vee G^{2}$ of size $s+r$. As a result, $L_{\mathbf{k}, \mathcal{A}}\left(G^{1} \vee G^{2}\right) \geq h$.

Notice that each of the two propositions shown above reduces the computation of $L_{\mathbf{k}, \mathcal{A}}(G)$ (with $G=G_{1} \cup G_{2}$ or $G=$ $G_{1} \vee G_{2}$) to the computation on two disjoint subgraphs of G. This computation only needs to be done for the vector \mathbf{k} and a finite number of shifts of \mathbf{k}.

3. Generalized limited packings of quasi-spider graphs

The results in this section will be used later to construct a polynomial time algorithm for P_{4}-tidy graphs.
We begin our study analyzing generalized limited packings of spider graphs, although not giving the exact value of the packing parameter for a general spider.

From now on, we will consider instances $(H, \mathbf{k}, \mathcal{A})$ of GLP where H is a spider graph with partition $(S, C, R), S=$ $\left\{s_{1}, \ldots, s_{r}\right\}$ and $C=\left\{c_{1}, \ldots, c_{r}\right\}$. We denote $\mathcal{A}_{S}:=\mathcal{A} \cap S, \mathcal{A}_{C}:=\mathcal{A} \cap C$ and $\mathcal{A}_{R}:=\mathcal{A} \cap R$.

3.1. Thin spider graphs

We will show that, for solving GLP on an instance $(H, \mathbf{k}, \mathcal{A})$, it is enough to solve GLP on the instance given by $H[R \cup C]$ and appropriate capacities and allowed vertices.

First we can establish:
Proposition 8. For every instance $(H, \mathbf{k}, \mathcal{A})$ of $G L P$ with H thin, there exists a maximum $(\mathbf{k}, \mathcal{A})$-limited packing of H containing \mathcal{A}_{S}.
Proof. Let B be a maximum $(\mathbf{k}, \mathcal{A})$-limited packing of H with the maximum possible number of vertices in \mathcal{A}_{S}. If $\mathcal{A}_{S}-B \neq$ \emptyset, let $s_{j} \in \mathcal{A}_{S}-B$. By Remark $4, k_{s_{j}} \geq 1$ and $k_{c_{j}} \geq 1$, and since B is maximum, $\left|N_{H}[v] \cap B\right|=k_{v}$ for $v=c_{j}$ or $v=s_{j}$. Thus, there exists $w \in(R \cup C) \cap B$ and it follows that $B^{\prime}=(B-\{w\}) \cup\left\{s_{j}\right\}$ is a maximum $(\mathbf{k}, \mathcal{A})$-limited packing of H such that $\left|B^{\prime} \cap \mathcal{A}_{S}\right|>\left|B \cap \mathcal{A}_{S}\right|$.

As an immediate corollary we obtain:
Corollary 9. Let $(H, \mathbf{k}, \mathcal{A})$ be an instance of GLP where H is thin. If there exists $c_{i} \in C$ such that $k_{c_{i}}=0$ (or $k_{c_{i}}=1$ and $s_{i} \in \mathcal{A}_{S}$), then $L_{\mathbf{k}, \mathcal{A}}(H)=\left|\mathcal{A}_{S}\right|$.

The remaining instances concerning thin spider graphs are covered by the next proposition:
Proposition 10. Let $(H, \mathbf{k}, \mathcal{A})$ be an instance of $G L P$ where H is thin and $k_{c_{i}} \geq 2$ for each $c_{i} \in C$ for which $s_{i} \in \mathcal{A}_{s}$. Defining $\hat{\mathcal{A}}$ and $\hat{\mathbf{k}}$ by

$$
\hat{\mathcal{A}}:=\mathcal{A}-\left\{c_{i} \in C: s_{i} \in \mathcal{A}_{S} \wedge k_{s_{i}}=1\right\} \text { and } \hat{k}_{v}:=k_{v}-\left|N_{H}[v] \cap \mathcal{A}_{S}\right| \text { if } v \in R \cup C,
$$

it follows that, if \hat{B} is a maximum $(\hat{\mathbf{k}}, \hat{\mathcal{A}})$-limited packing of $H[R \cup C]$, then $\hat{B} \cup \mathcal{A}_{S}$ is a maximum $(\mathbf{k}, \mathcal{A})$-limited packing of H.
Proof. Let \hat{B} be a maximum $(\hat{\mathbf{k}}, \hat{\mathcal{A}})$-limited packing of $H[R \cup C]$ and consider $\hat{B} \cup \mathcal{A}_{S}$. From the definitions of $\hat{\mathbf{k}}$ and $\hat{\mathcal{A}}$, $\hat{B} \cup \mathcal{A}_{S}$ is a $(\mathbf{k}, \mathcal{A})$-limited packing of H, thus it remains to be proved that it is maximum.

Take a maximum $(\mathbf{k}, \mathcal{A})$-limited packing $\hat{T} \cup \mathcal{A}_{S}$ of H, with $\hat{T} \subseteq R \cup C$. Let us show that \hat{T} is a $(\hat{\mathbf{k}}, \hat{\mathcal{A}})$-limited packing of $H[R \cup C]$. Indeed, for any $c_{i} \in C, k_{c_{i}} \geq\left|N_{H}\left[c_{i}\right] \cap\left(\hat{T} \cup \mathcal{A}_{S}\right)\right|=\left|N_{H[R \cup C]}\left[c_{i}\right] \cap \hat{T}\right|+\left|\left\{s_{i}\right\} \cap \mathcal{A}_{S}\right|$ for each $c_{i} \in C$, thus $\hat{k}_{c_{i}} \geq$ $\left|N_{H[R \cup C]}\left[c_{i}\right] \cap \hat{T}\right|$ for each $c_{i} \in C$. For each $v \in R$, the corresponding inequality trivially holds.

Since \hat{B} is maximum, $|\hat{T}| \leq|\hat{B}|$. The maximality of $\hat{T} \cup \mathcal{A}_{S}$ implies that $\left|\hat{T} \cup \mathcal{A}_{S}\right|=\left|\hat{B} \cup \mathcal{A}_{S}\right|$ and therefore, $\hat{B} \cup \mathcal{A}_{S}$ is maximum.

3.2. Thick spider graphs

Let us start by noting that if there exists $c_{i} \in C$ with $k_{c_{i}}=0$, we can use Remark 4 to conclude that $L_{\mathbf{k}, \mathcal{A}}(H)=1$ when $s_{i} \in \mathcal{A}_{S}$ or $L_{\mathbf{k}, \mathcal{A}}(H)=0$ when $s_{i} \notin \mathcal{A}_{S}$.

Recalling that $m_{C}=\min \left\{k_{c_{i}}: c_{i} \in C\right\}$, it is straightforward to see that $L_{\mathbf{k}, \mathcal{A}}(H) \leq m_{C}+1$, for every \mathbf{k} and \mathcal{A}, whenever H is thick.

We also denote:

$$
C^{1}:=\left\{c_{i} \in C: k_{c_{i}}=m_{C}\right\} \quad \text { and } \quad S^{1}:=\left\{s_{i} \in \mathcal{A}_{S}: c_{i} \in C^{1}\right\}
$$

Clearly, $\left|C^{1}\right| \geq\left|S^{1}\right|$.
Instances considered in the following proposition are easily solved:
Proposition 11. Let $(H, \mathbf{k}, \mathcal{A})$ be an instance of GLP where H is thick. Then,
(1) if $\left|S^{1}\right| \geq m_{C}+2$, then $L_{\mathbf{k}, \mathcal{A}}(H)=m_{C}$;
(2) if $\left|S^{1}\right| \leq m_{C}+1 \leq\left|\mathcal{A}_{S}\right|$, then

$$
L_{\mathbf{k}, \mathcal{A}}(H)= \begin{cases}m_{C} & \text { if }\left|C^{1}\right|>\left|S^{1}\right| \\ m_{C}+1 & \text { if }\left|C^{1}\right|=\left|S^{1}\right|\end{cases}
$$

Proof. (1) Any subset of S^{1} with m_{C} elements is a $(\mathbf{k}, \mathcal{A})$-limited packing of H, thus $L_{\mathbf{k}, \mathcal{A}}(H) \geq m_{C}$. Let B be a $(\mathbf{k}, \mathcal{A})$-limited packing of H with $|B|=m_{C}+1$. By hypothesis, there exists $c_{j} \in C^{1}$ such that $s_{j} \in S^{1}-B$. Thus $\left|N_{H}\left[c_{j}\right] \cap B\right|=$ $|B|>m_{C}=k_{c_{j}}$, leading to a contradiction. Therefore $L_{\mathbf{k}, \mathcal{A}}(H)=m_{C}$.
(2) When $\left|C^{1}\right|>\left|S^{1}\right|$, any subset B of \mathcal{A}_{S} with m_{C} elements is a $(\mathbf{k}, \mathcal{A})$-limited packing of H. To see that B is maximum, notice that there exists $c_{j} \in C^{1}$ such that $s_{j} \notin \mathcal{A}_{S}$. Then, for any $(\mathbf{k}, \mathcal{A})$-limited packing B^{\prime} of H, we have $m_{C}=k_{c_{j}} \geq$ $\left|N_{H}\left[c_{j}\right] \cap B^{\prime}\right|=\left|B^{\prime}\right|$, concluding that $L_{\mathbf{k}, \mathcal{A}}(H)=m_{C}$. When $\left|C^{1}\right|=\left|S^{1}\right|$, any subset B of \mathcal{A}_{S} with $S^{1} \subseteq B$ and $|B|=m_{C}+1$ is a maximum $(\mathbf{k}, \mathcal{A})$-limited packing of H. Since $L_{\mathbf{k}, \mathcal{A}}(H) \leq m_{C}+1$, the statement holds.

Next, in Propositions 12 and 16 , we complete the study of instances $(H, \mathbf{k}, \mathcal{A})$ where H is thick and $\left|\mathcal{A}_{S}\right| \leq m_{C}$.
Proposition 12. Let $(H, \mathbf{k}, \mathcal{A})$ be an instance of $G L P$ with H thick and $\left|\mathcal{A}_{S}\right| \leq m_{C}$. There exists a maximum $(\mathbf{k}, \mathcal{A})$-limited packing of H containing \mathcal{A}_{s}.

Proof. Let B be a maximum $(\mathbf{k}, \mathcal{A})$-limited packing of H. If $\mathcal{A}_{S} \subseteq B$, we are done. If not, take $s_{i} \in \mathcal{A}_{S}-B$ and notice that there exists $v \in N_{H}\left[s_{i}\right]$ such that $\left|N_{H}[v] \cap B\right|=k_{v}$. Since $\left|\mathcal{A}_{S}\right| \leq m_{C}$ and $s_{i} \in \mathcal{A}_{S}-B,\left|B \cap \mathcal{A}_{S}\right| \leq m_{C}-1$, thus it follows that there exists $w \in\left(N_{H}[v] \cap B\right)-\mathcal{A}_{s}$. It turns out that $B^{\prime}:=(B-\{w\}) \cup\left\{s_{i}\right\}$ is another maximum $(\mathbf{k}, \mathcal{A})$-limited packing of H, since for any $x \in V(H),\left|N_{H}[x] \cap B^{\prime}\right| \leq\left|N_{H}[x] \cap B\right|$. Clearly, $\left|B^{\prime} \cap \mathcal{A}_{S}\right|>\left|B \cap \mathcal{A}_{S}\right|$.

To complete the study of the remaining instances given by thick spiders H, it is enough to consider the subgraph $H[R \cup C]$. First observe the following straightforward fact:

Remark 13. Let $(H, \mathbf{k}, \mathcal{A})$ be an instance of GLP with H thick and F be a $(\mathbf{k}, \mathcal{A})$-limited packing of $H[R \cup C]$. For every $c_{j} \in \mathcal{A}_{C}-F$ and $c_{i} \in \mathcal{A}_{C} \cap F,\left(F-\left\{c_{i}\right\}\right) \cup\left\{c_{j}\right\}$ is a $(\mathbf{k}, \mathcal{A})$-limited packing of $H[R \cup C]$.

Definition 14. Let $(H, \mathbf{k}, \mathcal{A})$ with H thick be an instance of GLP that has a maximum $(\mathbf{k}, \mathcal{A})$-limited packing containing \mathcal{A}_{S}. We define $\widetilde{\mathbf{k}} \in \mathbb{Z}_{+}^{V(H[R \cup C])}$ in the following way:

$$
\widetilde{k}_{v}:= \begin{cases}k_{v}-\left|\mathcal{A}_{S}-\left\{s_{i}\right\}\right| & \text { if } v=c_{i} \text { for } c_{i} \in C \\ k_{v} & \text { otherwise }\end{cases}
$$

From the way $\widetilde{\mathbf{k}}$ was defined, it is clear that
Remark 15. Let $(H, \mathbf{k}, \mathcal{A})$ be an instance of GLP with H thick and $F \subseteq R \cup C$. If $F \cup \mathcal{A}_{S}$ is a $(\mathbf{k}, \mathcal{A})$-limited packing of H, then F is a $(\tilde{\mathbf{k}}, \mathcal{A})$-limited packing of $H[R \cup C]$.

We have:
Proposition 16. Let $(H, \mathbf{k}, \mathcal{A})$ be an instance of $G L P$ where H is thick and $\left|\mathcal{A}_{S}\right| \leq m_{C}$. There exists $\widetilde{\mathcal{A}}_{C} \subseteq \mathcal{A}_{C}$ such that

$$
L_{\mathbf{k}, \mathcal{A}}(H)=L_{\widetilde{\mathbf{k}}, \mathcal{A}_{R} \cup \widetilde{\mathcal{A}}_{C}}(H[R \cup C])+\left|\mathcal{A}_{S}\right|
$$

where $\widetilde{\mathbf{k}}$ is given in Definition 14 and $\widetilde{\mathcal{A}}_{C}$ can be obtained in linear time.

Proof. We will analyze two cases:

- Case 1: $\left|\mathcal{A}_{C}\right| \leq m_{S}-1$.

Set $\widetilde{\mathcal{A}}_{C}=\mathcal{A}_{C}$ and consider T, a maximum $(\widetilde{\mathbf{k}}, \mathcal{A})$-limited packing of $H[R \cup C]$. We will show that $T \cup \mathcal{A}_{S}$ is a maximum $(\mathbf{k}, \mathcal{A})$-limited packing of H. For every $s_{i} \in S$, we have $\left|N_{H}\left[s_{i}\right] \cap\left(T \cup \mathcal{A}_{S}\right)\right|=\left|\left(C-\left\{c_{i}\right\}\right) \cap T\right|+\left|\left\{s_{i}\right\} \cap \mathcal{A}_{S}\right| \leq\left|\mathcal{A}_{C}\right|+1 \leq$ $m_{S}-1+1 \leq k_{s_{i}}$. To see that $T \cup \mathcal{A}_{S}$ is maximum, let B be a $(\mathbf{k}, \mathcal{A})$-limited packing of H. By Proposition 12, we may assume that B contains A_{S}. It is easy to see that $B-\mathcal{A}_{S}$ is a $(\widetilde{\mathbf{k}}, \mathcal{A})$-limited packing of $H[R \cup C]$ and $|B| \leq$ $\left|B-\mathcal{A}_{S}\right|+\left|\mathcal{A}_{S}\right| \leq|T|+\left|\mathcal{A}_{S}\right|$.

- Case 2: $\left|\mathcal{A}_{C}\right| \geq m_{S}$. We consider the sets

$$
\mathcal{D}:=\left\{s_{i} \in \mathcal{A}_{S}: k_{s_{i}}=m_{S}\right\} \quad \text { and } \quad \mathcal{F}:=\left\{s_{i} \in S: k_{s_{i}}-\left|s_{i} \cap \mathcal{A}_{S}\right|=m_{S}\right\} .
$$

- Subcase 2.1: There exists $s_{i} \in \mathcal{D}$ such that $c_{i} \notin \mathcal{A}_{C}$ or ($|\mathcal{D}| \geq m_{S}+1$ and $c_{i} \in \mathcal{A}_{C}$ for every $\left.s_{i} \in \mathcal{D}\right)$.

By Proposition 12, there is a maximum $(\mathbf{k}, \mathcal{A})$-limited packing of H containing \mathcal{A}_{S}, say $F \cup \mathcal{A}_{S}$, with $F \subseteq R \cup C$ and $L_{\mathbf{k}, \mathcal{A}}(H)=|F|+\left|\mathcal{A}_{S}\right|$. Each of the two hypotheses implies $\left|F \cap \mathcal{A}_{C}\right| \leq m_{S}-1$.
By Remark $15, F$ is a $(\widetilde{\mathbf{k}}, \mathcal{A})$-limited packing of $H[R \cup C]$. Take any $\widetilde{\mathcal{A}_{C}} \subseteq \mathcal{A}_{C}$ with $\left|\widetilde{\mathcal{A}}_{C}\right|=m_{S}-1$. By Remark 13 , there exists a $\left(\widetilde{\mathbf{k}}, \mathcal{A}_{R} \cup \widetilde{\mathcal{A}}_{C}\right.$)-limited packing \widetilde{F} of $H[R \cup C]$ such that $|\widetilde{F}|=|F|$. The result follows from Case 1 .

- Subcase 2.2: $|\mathcal{D}| \leq m_{S}$ and $c_{i} \in \mathcal{A}_{C}$ for every $s_{i} \in \mathcal{D}$.
- $|\mathcal{D}| \geq 1$.

Take $\tilde{\mathcal{A}}_{C} \subseteq \mathcal{A}_{C}$ with $\left\{c_{j} \in \mathcal{A}_{C}: s_{j} \in \mathcal{D}\right\} \subseteq \widetilde{\mathcal{A}}_{C}$ and $\left|\widetilde{\mathcal{A}}_{C}\right|=m_{S}$. Given a $\left(\tilde{\mathbf{k}}, \mathcal{A}_{R} \cup \widetilde{\mathcal{A}}_{C}\right)$-limited packing T^{\prime} of $H[R \cup C]$, there exists a ($\widetilde{\mathbf{k}}, \mathcal{A}_{R} \cup \widetilde{\mathcal{A}}_{C}$)-limited packing T of $H[R \cup C]$ such that $|T|=\left|T^{\prime}\right|$ and $T \cup \mathcal{A}_{S}$ is a (\mathbf{k}, \mathcal{A})-limited packing of H (if $\left|T^{\prime} \cap C\right| \leq m_{S}-1$, take $T=T^{\prime}$; otherwise, Remark 13 allows us to choose T satisfying $\left\{c_{i} \in \mathcal{A}_{C}\right.$: $\left.\left.s_{i} \in \mathcal{D}\right\} \subseteq T\right)$. Thus $L_{\widetilde{\mathbf{k}}, \mathcal{A}_{R} \cup \tilde{\mathcal{A}}_{C}}(H[R \cup C])+\left|\mathcal{A}_{S}\right| \leq L_{\mathbf{k}, \mathcal{A}}(H)$. In order to prove the reverse inequality, let B be a maximum $(\mathbf{k}, \mathcal{A})$-limited packing of H such that $\mathcal{A}_{S} \subseteq B$. By Remark $15, B-\mathcal{A}_{S}$ is a $(\tilde{\mathbf{k}}, \mathcal{A})$-limited packing of $H[R \cup C]$. In this case, we have $\left|B \cap \mathcal{A}_{C}\right| \leq m_{S}$. By Remark 13, there exists a $\left(\widetilde{\mathbf{k}}, \mathcal{A}_{R} \cup \widetilde{\mathcal{A}}_{C}\right.$)-limited packing \widetilde{T} of $H[R \cup C]$ with $|\widetilde{T}|=\left|B-\mathcal{A}_{S}\right|$. Therefore $L_{\mathbf{k}, \mathcal{A}}(H)=|B|=\left|B-\mathcal{A}_{S}\right|+\left|\mathcal{A}_{S}\right| \leq L_{\widetilde{\mathbf{k}}, \mathcal{A}_{R} \cup \widetilde{\mathcal{A}}_{C}}(H[R \cup C])+\left|\mathcal{A}_{S}\right|$.

- $\mathcal{D}=\emptyset$.

When $|\mathcal{F}| \geq m_{S}+2$, the statement holds for any $\widetilde{\mathcal{A}}_{C} \subseteq \mathcal{A}_{C}$ with $\left|\widetilde{\mathcal{A}}_{C}\right|=m_{S}$ (since for every $(\mathbf{k}, \mathcal{A})$-limited packing B of $\left.H,\left|B \cap \mathcal{A}_{C}\right| \leq m_{S}\right)$.
When $|\mathcal{F}| \leq m_{S}+1$, do the following: if $\left|\mathcal{A}_{C}\right| \geq m_{S}+1$ and $c_{j} \in \mathcal{A}_{C}$ for all j such that $s_{j} \in \mathcal{F}$, take $\tilde{\mathcal{A}}_{C} \subseteq \mathcal{A}_{C}$ such that $\left\{c_{j} \in \mathcal{A}_{C}: s_{j} \in \mathcal{F}\right\} \subseteq \widetilde{\mathcal{A}}_{C}$ and $\left|\widetilde{\mathcal{A}}_{C}\right|=m_{S}+1$; otherwise, take $\widetilde{\mathcal{A}}_{C}=\mathcal{A}_{C}$. In both cases, the result clearly follows.

Let us recall that a quasi-spider graph H that is not a spider is obtained from a spider graph by replacing at most one vertex of exactly one leg by a graph with two vertices. Observe that these two vertices are twins in H. The next straightforward proposition shows how to obtain the objective involved in GLP on instances given by graphs with twins.

Proposition 17. Let $(G, \mathbf{k}, \mathcal{A})$ be an instance of GLP where G is any graph and let u and w be twins in G. Then, assuming without loss of generality that $k_{u} \geq k_{w}$, we have,
i. $L_{\mathbf{k}, \mathcal{A}}(G-u) \leq L_{\mathbf{k}, \mathcal{A}}(G) \leq L_{\mathbf{k}, \mathcal{A}}(G-u)+1$.
ii. If $u \notin \mathcal{A}$ then $L_{\mathbf{k}, \mathcal{A}}(G)=L_{\mathbf{k}, \mathcal{A}}(G-u)$.
iii. If $w \notin \mathcal{A}$ and $k_{u}=k_{w}$, then $L_{\mathbf{k}, \mathcal{A}}(G)=L_{\mathbf{k}, \mathcal{A}}(G-w)$.
iv. If $u \in \mathcal{A}$ then $L_{\mathbf{k}, \mathcal{A}}(G)=L_{\mathbf{k}, \mathcal{A}}(G-u)+1$ if and only if:

- $L_{\mathbf{k}^{*}, \mathcal{A}}(G-u)=L_{\mathbf{k}, \mathcal{A}}(G-u)$ when u and w are false twins, $k_{u}>k_{w}$ and \mathbf{k}^{*} is defined by $k_{v}^{*}:=k_{v}-1$ if $v \in N_{G}(w)$ and $k_{v}^{*}:=k_{v}$ otherwise;
- $L_{\mathbf{k}^{\prime}, \mathcal{A}-\{u, w\}}(G-u) \geq L_{\mathbf{k}, \mathcal{A}}(G-u)-1$ when u and w are false twins, $w \in \mathcal{A}, k_{u}=k_{w}$ and \mathbf{k}^{\prime} is defined by $k_{v}^{\prime}:=k_{v}-2$ if $v \in N_{G-u}(w), k_{w}^{\prime}:=k_{w}-1$ and $k_{v}^{\prime}:=k_{v}$ otherwise;
- $L_{\mathbf{k}^{\prime \prime}, \mathcal{A}}(G-u)=L_{\mathbf{k}, \mathcal{A}}(G-u)$, when u and w are true twins and $\mathbf{k}^{\prime \prime}$ is defined by $k_{v}^{\prime \prime}:=k_{v}-1$ if $v \in N_{G-u}[w]$ and $k_{v}^{\prime \prime}:=k_{v}$ otherwise.

Going back to P_{4}-tidy graphs, the results achieved so far allow us to state the following theorem, which generalizes that in [3]:

Theorem 18. GLP can be solved in polynomial time for P_{4}-tidy graphs.
Sketch of the proof. Let $(G, \mathbf{k}, \mathcal{A})$ be an instance of GLP where G is a P_{4}-tidy graph.
Consider $T(G)$, the modular decomposition tree of G. The results up to now give a dynamic programming algorithm to recursively compute $L_{\mathbf{k}, \mathcal{A}}(G)$ from $T(G)$.

Traverse $T(G)$ down-top, computing the packing parameters for each strong module that occurs in it. For each node of $T(G)$ representing a module H of G, you have to follow the scheme below in order to tackle the next level of $T(G)$. In the worst case, you have to dynamically compute $L_{\mathbf{k}-r \mathbf{1}, \mathcal{A}}(H)$ for each r such that $0 \leq r \leq \min \left\{m_{V(H)},|\mathcal{A} \cap V(H)|\right\}$.

Notice that for any subgraph H of G and shift \mathbf{c} of \mathbf{k} such that $\min \left\{c_{v}: v \in V(H)\right\} \geq|\mathcal{A} \cap V(H)|$, we have $L_{\mathbf{c}, \mathcal{A}}(H)=$ $|\mathcal{A} \cap V(H)|$.

Scheme:

(1) It is straightforward to compute $L_{\mathbf{k}, \mathcal{A}}(H)$ when H is a single vertex, P_{5}, C_{5} or $\overline{P_{5}}$.
(2) If H is a thin spider (S, C, R) with $R=\emptyset$, then $L_{\mathbf{k}, \mathcal{A}}(H)$ can be calculated using Corollary 9 or Proposition 10 . In the latter case, use Remark 5 for the calculation of $L_{\hat{\mathbf{k}}, \mathcal{A}_{C}}(H[C])$.
(3) If H is a thick spider (S, C, R) with $R=\emptyset$, then $L_{\mathbf{k}, \mathcal{A}}(H)$ can be calculated using Proposition 11 or 16 . In the latter case, use Remark 5 for the calculation of $L_{\widetilde{\mathbf{k}}, \mathcal{A}_{c}}(H[C])$.
(4) If H is a parallel node, then use Proposition 6 to obtain the value of $L_{\mathbf{k}, \mathcal{A}}(H)$.
(5) If H is a series node, then use Proposition 7 to obtain the value of $L_{\mathbf{k}, \mathcal{A}}(H)$.

Moreover, both Proposition 6 and Proposition 7 reduce the computation of $L_{\mathbf{k}, \mathcal{A}}(H)$ to the computation on disjoint subgraphs of H, as already stated. Thus, there are at most $|V(H)|$ occurrences of such reduction steps.
(6) If H is a spider (S, C, R) with $R \neq \emptyset$, then apply Corollary 9, Proposition 10, Proposition 11 or Proposition 16 where, in order to evaluate the packing parameter for $H[R \cup C]$, use Proposition 7 with $G_{1}=H[R]$ and $G_{2}=H[C]$. Recursively, compute the packing parameter for the P_{4}-tidy graph $H[R]$ and, for $H[C]$, recall Remark 5 .
(7) If H is a quasi-spider that is not a spider, it was obtained from a spider graph with partition (S, C, R) where at most one vertex of $S \cup C$ was replaced by a graph on two vertices, let us call these vertices u and w with $k_{u} \geq k_{w}$. Observe that u and w are twins in H and $H-u(H-w)$ is a P_{4}-tidy spider. Apply Proposition 17, taking into account that $\mathbf{k}^{*}, \mathbf{k}^{\prime}$ and $\mathbf{k}^{\prime \prime}$ are shifts of the vector \mathbf{k} when restricted to the set R and that the set \mathcal{A}_{R} is unchanged. Calculate the packing parameters for $H-u(H-w)$ according to cases (2), (3) or (6) above. In this way, $L_{\mathbf{k}, \mathcal{A}}(H)$ can be obtained linearly.

4. Connection with dominating sets

To end this paper, we connect our findings on limited packings with certain dominating sets in graphs.
Given a graph $G, \mathcal{R} \subseteq V(G)$ and $\mathbf{r}=\left(r_{v}\right) \in \mathbb{Z}_{+}^{V(G)}, D \subseteq V(G)$ is an $(\mathbf{r}, \mathcal{R})$-tuple dominating set of G if $\mathcal{R} \subseteq D$ and $\mid N_{G}[v] \cap$ $D \mid \geq r_{v}$, for every $v \in V(G)$ [9]. Notice that G has (\mathbf{r}, \mathcal{R})-tuple sets if and only if $r_{v} \leq\left|N_{G}[v]\right|$ for every v.

The Generalized Multiple Domination problem (GMD) is formulated as
INSTANCE: A graph G, a vector $\mathbf{r} \in \mathbb{Z}_{+}^{V(G)}, \mathcal{R} \subseteq V(G)$ and $\alpha \in \mathbb{Z}_{+}$.
QUESTION: Does G contain a (r, \mathcal{R})-tuple dominating set of size at most α ?
GMD was proved to be NP-complete, by proving the NP-completeness for the instances corresponding to $r_{v}=r$ for every $v \in V(G)$ and each $r \in \mathbb{N}$ and $\mathcal{R}=\emptyset[9]$.

The following result shows that an optimal solution of GLP can be obtained linearly from an optimal solution of GMD and vice versa.

Proposition 19. (See [2].) Let $(G, \mathbf{k}, \mathcal{A})$ be an instance of $G L P$ and $B \subseteq V(G)$. Then, B is $a(\mathbf{k}, \mathcal{A})$-limited packing of G if and only if $V(G)-B$ is an $(\mathbf{r}, V(G)-\mathcal{A})$-tuple dominating set of G, where $r_{v}:=\max \left\{0,\left|N_{G}[v]\right|-k_{v}\right\}$, for $v \in V(G)$.

Due to the relationship between GLP and GMD shown above, we are able to obtain new polynomial time solvable instances of GMD, as a corollary of Theorem 18:

Corollary 20. GMD can be solved in polynomial time for P_{4}-tidy graphs.

Acknowledgements

We are grateful to the anonymous referee for his many suggestions that improved the presentation of this paper.

References

[1] A. Cournier, M. Habib, A New Linear Algorithm for Modular Decomposition, LNCS, vol. 787, Springer Verlag, 1994, pp. 68-84.
[2] M.P. Dobson, V. Leoni, G. Nasini, The k-limited packing and k-tuple domination problems in strongly chordal, P_{4}-tidy and split graphs, Electron. Notes Discrete Math. 36 (2010) 559-566.
[3] M.P. Dobson, V. Leoni, G. Nasini, The limited packing and tuple domination problems in graphs, Inform. Process. Lett. 111 (2011) 1108-1113.
[4] T. Gallai, Transitiv orientbare graphen, Acta Math. Acad. Sci. Hung. 18 (1967) 25-66.
[5] R. Gallant, G. Gunther, B. Hartnell, D. Rall, Limited packings in graphs, Discrete Appl. Math. 158 (12) (2010) 1357-1364.
[6] V. Giakoumakis, F. Roussel, H. Thuillier, On P_{4}-tidy graphs, Discrete Math. Theor. Comput. Sci. series1 (1997) 17-41.
[7] C.T. Hoàng, Perfect graphs, PhD thesis, School of Computer Science, McGill University, 1985.
[8] B. Jamison, S. Olariu, Recognizing P_{4}-tidy graphs in linear time, SIAM J. Comput. 21 (1992) 381-406.
[9] C. Liao, G.J. Chang, k-tuple domination in graphs, Inform. Process. Lett. 87 (2003) 45-50.
[10] R.M. McConnel, J. Spinrad, Linear-time modular decomposition and efficient transitive orientation of comparability graphs, Dept. of Computer Science, University of Colorado, CO 80309, USA, 1993.
[11] A. Meir, J.W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61 (1975) 225-233.
[12] D. West, Introduction to Graph Theory, Prentice-Hall, 2001.

[^0]: The Partially supported by Grants CONICET PIP 0241 and ANPCyT PICT 2010-0482.

 * Corresponding author at: Depto. de Matemática Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Av. Pellegrini 250, 2000 Rosario, Argentina. E-mail address: valeoni@fceia.unr.edu.ar (V. Leoni).

