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Abstract— New equations involving the un-
known final states and initial costates corres-
ponding to families of LQR problems are shown
to be useful in calculating optimal strategies
when bounded control restrictions are present,
and in approximating the solution to fixed-end
problems. The missing boundary values of the
Hamiltonian equations are obtained by (off-
line) solving two uncoupled, first-order, linear
partial differential equations for two auxiliary
n×n matrices, whose independent variables are
the time-horizon duration T and the eigenval-
ues of the final-penalty matrix S. The solutions
to these PDEs give information on the behavior
of the whole (T, S)-family of control problems.
Illustrations of numerical results are provided
and checked against analytical solutions of the
cheapest stop of a train’ problem.

Keywords— optimal control; constrained
control; linear-quadratic problem; first order
PDEs; boundary-value problems; Riccati equa-
tions.

I. INTRODUCTION

The linear-quadratic regulator (LQR) is probably the
most studied and quoted problem in the state-space
optimal control literature. The main line of work in
this direction has evolved around the algebraic (ARE,
for infinite-horizon problems) and differential (DRE,
for finite-horizon ones) Riccati equations. When ex-
pressed in 2n-phase space, i.e. introducing the costate
(in the smooth case, the gradient of the value func-
tion), the dynamics of the optimal control problem
takes the form of Hamilton’s classical equations of fun-
damental Physics.

Since the early sixties, Hamiltonian formalism has
also been at the core of the development of modern
optimal control theory (see Pontryagin et al., 1962).
When the problem concerning an n-dimensional sys-
tem and an additive cost objective is regular (Kalman
et al., 1969), i.e. when the Hamiltonian of the problem
can be uniquely optimized by a control value u0 de-
pending on the remaining variables (t, x, λ), then a set
of 2n ordinary differential equations (ODEs) with two-
point boundary-value conditions, known as Hamilton’s
(or Hamiltonian) Canonical Equations (HCEs), has

to be solved. This is often a rather difficult numer-
ical problem for nonlinear systems. For the linear-
quadratic regulator (LQR) with a finite horizon, there
exist well known methods (see for instance Bernhard,
1972; and Sontag, 1998) to transform the boundary-
value problem into an initial-value one. In the infinite-
horizon, bilinear-quadratic regulator and change of
set-point servo, there also exists an attempt to find
the missing initial condition for the costate variable,
which allows to integrate the equations on-line with
the underlying control process (Costanza and Neuman,
2006).

Usual Hamiltonian systems are those modelled by
a 2n-dimensional ODE whose vector field can be ex-
pressed in terms of the partial derivatives of an under-
lying ‘total energy’ function -called ‘the Hamiltonian’-
which is constant along trajectories. The ODEs for the
state and costate of an optimal control problem con-
stitute a Hamiltonian system from this general point
of view. Richard Bellman has contributed in many
fields, but he was particularly interested in symplectic
systems coming from Physics (see for instance Abra-
ham and Marsden, 1978) when he devised a partial
differential equation (PDE) for the final value of the
state x(tf ) = ρ(T, c) as a function of the duration of
the process T = tf − t0, and of the final value imposed
on the costate λ(tf ) = c (one of the boundary condi-
tions, the other being the fixed initial value of the state
x(t0) = x0, see Bellman and Kalaba, 1963). Bellman
exploited in that case ideas common to the ‘invariant
imbedding’ numerical techniques, also associated with
his name.

In Costanza (2008a) the invariant imbedding ap-
proach was generalized and new PDEs were found for
the one-dimensional nonlinear-quadratic finite-horizon
optimal control situation, where the final value of the
costate depends on the final value of the state, i.e.
c = c(ρ). The procedure followed in this proof in-
duces a quasilinear PDE for the initial value σ of the
costate λ(t0), which was actually the main concern
from the optimal control point of view. The first-
order equation for σ can be integrated after the PDE
for the final state ρ (independent of σ) has been solved.
The ‘initial’ condition for σ depends on the final value
of the state and on the weight matrix S involved in
the quadratic final penalty x′(T )Sx(T ). Therefore it
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seems more natural to choose here (T, S) as the inde-
pendent parameters of the family of control problems
under consideration. Provided the solution σ(T, S)
is obtained, then the HCE can be integrated on-line
for each particular pair of parameter values, and the
optimal control can be constructed at each time the
HCE solution becomes available.

The solutions ρ(T, S), σ(T, S) are also useful to
generate a compensation component for the control,
needed when the state solution to the HCE differs from
the actual state of the system, due to perturbations.
This allows to device a whole ‘two-degrees-of-freedom’
scheme for nonlinear optimal regular problems (see
Costanza, 2009; for more details).

In this paper the application of these solutions to
treat fixed-end and bounded-control problems in the
linear quadratic context is explored and some promis-
ing results are shown. The main contributions are: (i)
the formulation of new first order linear PDEs for the
LQR problem in the n−dimensional case for a general
nonnegative semidefinite final penalty matrix S, and
(ii) the proposal of a technique to approximate the so-
lutions to LQR problems with fixed final states under
unbounded or bounded controls.

After some notation and general characteristics of
the problem are exposed in section II, then the main
PDEs for auxiliary matrices leading to the missing
boundary conditions accepting a general nonnegative
matrix S are proved in section III. The fixed-endpoint
and bounded-control problems, with numerical vali-
dations and illustrations are discussed in section IV,
in the context of a classical two-dimensional problem.
There it is shown that the optimal control obtained
through the analytical treatment of the case-study can
also be calculated from the main objects substanti-
ated in this paper, namely, the solutions to the matrix
PDEs introduced in Section III. The whole approach
is summarized in the final section V.

II. FORMULATION OF THE LQR
PROBLEM FOR FREE FINAL STATES
AND UNCONSTRAINED CONTROLS.

The classical finite-horizon, time-constant formulation
of the ‘LQR problem’ for finite-dimensional systems
with free final states and unconstrained controls, a-
ttempts to minimize the (quadratic) cost

J (u)=

T∫

0

[x′(τ)Qx(τ) + u′(τ)Ru(τ)] dτ + x′(T )Sx(T ),

(1)
with respect to all admissible (let us assume piecewise-
continuous) control trajectories u : [0, T ] → Rm of
duration T applied to some fixed, deterministic (li-
near) plant; i.e. those controls affecting the Rn-valued
states x of the system through the initialized dynamic
constraint

ẋ = f(x, u) = Ax + Bu , x(0) = x0 6= 0. (2)

The (real, time-constant) matrices in Eqs. (1, 2) nor-
mally have the following properties: Q,S are n × n,
symmetric and positive-semidefinite, R is m ×m and
positive-definite, A is n× n, B is n×m, and the pair
(A,B) is controllable. The expression under the in-
tegral is usually known as the ‘Lagrangian’ L of the
cost, i.e.

L(x, u)
def
= x′Qx + u′Ru . (3)

Under these conditions the Hamiltonian of the pro-
blem, namely the Rn×Rn×Rm → R function defined
by

H(x, λ, u)
def
= L(x, u) + λ′f(x, u) , (4)

is known to be regular, i.e. that H is uniquely mi-
nimized with respect to u, and this happens for the
explicit control value

u0(x, λ) = −1
2
R−1B′λ , (5)

(in this case, independent of x), which is usually called
‘the H-minimal control’. The ‘Hamiltonian’ form of
the problem (see for instance Sontag, 1998) requires
then to solve the two-point boundary-value problem

ẋ = H0
λ(x, λ) ; x(0) = x0 , (6)

λ̇ = −H0
x(x, λ) ; λ(T ) = 2Sx(T ) , (7)

where H0(x, λ) stands for H(x, λ, u0(x, λ)), and
H0

λ,H0
x for the column vectors with i-components

∂H0

∂λi
, ∂H0

∂xi
respectively, i.e. Eqs.(6,7) here take the form

{
ẋ = Ax− 1

2Wλ ,

λ̇ = −2Qx−A′λ ,
(8)

with W
def
= BR−1B′. In the following section a novel

approach to the solution (known to exist and be unique
in this case), based on imbedding the individual situa-
tion into a two-parameter family of similar problems,
will be presented and substantiated.

III. EQUATIONS FOR THE MISSING
BOUNDARY VALUES x(T ) AND λ(0).

It is well known that the LQR problem as posed above
can be solved via the Riccati differential equation
(DRE)

π̇ = πWπ − πA−A′π −Q ; π(T ) = S , (9)

leading to the optimal feedback

u∗(t) = −R−1B′P (t)x(t) , (10)

where P (t) is the (unique) positive-definite solution to
equation (9). An alternative classical approach (see
for instance Bernhard, 1972) transforms the original
boundary-value problem into an initial-value one, by
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introducing the following auxiliary objects:
(i) the Hamiltonian matrix H ,

H
def
=

(
A − 1

2W

−2Q −A′

)
, (11)

(ii) the augmented Hamiltonian system (a linear 2n-
dimensional matrix ODE with a final condition) de-
fined for the combination of two n × n matrices
X(t), Λ(t), t ∈ [0, T ] through

(
Ẋ

Λ̇

)
= H

(
X

Λ

)
;

(
X(T )

Λ(T )

)
=

(
I

2S

)
.

(12)
The solution to the augmented (linear) problem (12)
being unique, must verify

(
X(0)

Λ(0)

)
= e−HT

(
I

2S

)
, (13)

and since in this case Eq. (8) also reads
(

ẋ

λ̇

)
= H

(
x

λ

)
, (14)

then the missing boundary conditions can be explicitly
found, namely

(
x0

λ(0)

)
= e−HT

(
x(T )

2Sx(T )

)
= (15)

=

(
X(0)

Λ(0)

)
x(T ) , (16)

x(T ) = X−1(0)x0 , (17)

λ(0) = Λ(0)X−1(0)x0 , (18)

(see Sontag, 1998; for a proof of the invertibility of X
and other details). Actually, the whole solution to the
DRE can be recovered from the solution to problem
(12), explicitly

P (t) = Λ(t)X−1(t) , t ∈ [0, T ] . (19)

As will become clear in the following sections, it is
desirable to count with the missing boundary values
for different values of the parameters (T, S) without
solving either the DRE or the augmented system de-
scribed above. A novel approach (in what follows
called the ‘PDE method’) to solve the whole (T, S)-
family of LQR problems (with common A,B, Q,R, x0

values) is described below. The method starts by
defining, for each particular (T, S)-problem,

ρ(T, S)
def
= xT,S(T ); σ(T, S)

def
= λT,S(0); (20)

U(T )
def
= e−HT , (21)

(
α(T, S)

β(T, S)

)
def
=

(
XT,S(0)

ΛT,S(0)

)
, (22)

where the superscript
(
T,S

)
refers to the individual

problem of duration T and final penalty matrix S.
Then Eq. (13) can be rewritten in the form

(
α(T, S)

β(T, S)

)
= U(T ) ·

(
I

2S

)
. (23)

Since the subjacent Hamiltonian system is linear, its
solutions depend smoothly on parameters and initial
conditions, and then the (partial) derivative of Eq.
(23) with respect to T (denoted by the subscript (T ))
results (

αT

βT

)
= −UH

(
I

2S

)
, (24)

where the variables (T, S) have been dropped for clar-
ity here and whenever convenient and clear through
the rest of the paper. At this point, it is convenient to
start by adopting the simplest expressions for matrix
S, to make sense of the partial derivatives

(
∂

∂S

)
with

respect to the second parameter.

A. The scalar (S = sI) case

In this subsection the form of the final penalty matrix
will be scalar, i.e. S = sI, s ∈ R+

0 . The partial
derivatives of Eq. (23) with respect to the real variable
s are then (

αs

βs

)
= U

(
0

2I

)
. (25)

Now, by partitioning U into n×n submatrices Ui , i =
1, . . . 4 in the form

U =

(
U1 U2

U3 U4

)
, (26)

then Eq. (25) reads

1
2
αs = U2 ,

1
2
βs = U4 , (27)

which combined with Eq. (23) gives

U1 = α− αsS , U3 = β − βsS . (28)

By inserting these results in Eq. (24), the following
relations are obtained

αT − αsM = −αN , (29)

βT − βsM = −βN , (30)

where

M
def
= A′S + SA + Q− SWS , (31)

N
def
= A−WS . (32)
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These are first-order quasilinear PDEs for the matrices
α, β. Boundary conditions for a process of zero horizon
are imposed in view of Eqs. (22, 17, 18), i.e.

α(0, s) = I , β(0, s) = 2S . (33)

If the solutions α, β for this problem are found, then
the desired missing values for the state and costate,
for any (T, s)-problem may be recovered immediately,
namely

ρ = α−1x0 , σ = βα−1x0 = βρ . (34)

Illustrations of the behavior of solutions to these PDEs
can be found for instance in Costanza (2008a) and
Costanza and Neuman (2009).

B. Extension to a general S

Although in Section IV only scalar S matrices will
be used, the general case of a positive semi-definite
symmetric final penalty matrix S is discussed be-
low. First, for the diagonal case, i.e. for S =
diag(s1, s2, . . . , sn), where si ≥ 0, i = 1, . . . , n, the
following identity can be easily obtained after differ-
entiating the first equality in (23):

(
αsi

βsi

)
=




∂α

∂si
(T, s1, s2, . . . , sn)

∂β

∂si
(T, s1, s2, . . . , sn)


 = U

(
0

2Ii
n

)
,

(35)
where Ii

n = diag(0, . . . , 0, 1, 0, . . . , 0), with the “1” in
the ith position (the sub-index n refers to the dimen-
sion of the state space). Then, by defining

αS
def
=

n∑

i=1

αsi , βS
def
=

n∑

i=1

βsi , (36)

the condensed expression of Eq. (35) follows
(

αS

βS

)
= U

(
0

2I

)
. (37)

As a consequence, Eqs. (27) need only a slight modi-
fication in this context (S instead of s), i.e.:

1
2
αS = U2 ,

1
2
βS = U4 , (38)

which combined with Eq. (23) gives

U1 = α− αSS , U3 = β − βSS , (39)

and it is immediate to confirm that Eqs. (29-32) retain
their form, i.e.

(
αT

βT

)
=

(
αSM − αN

βSM − βN

)
. (40)

Therefore, for a diagonal S the PDEs remain linear
but they should be integrated in the (n + 1) inde-
pendent variables (T, s1, . . . , sn). Finally, for a general

(symmetric, positive-semidefinite) matrix S, it is well
known that S can be diagonalized via an orthogonal
matrix E (which depends on S), i.e.

S̃
def
= ESE′ = diag(s1, . . . , sn), si ≥ 0, i = 1, . . . , n.

Then, after defining
(

α̃(T, S)

β̃(T, S)

)
def
= U

(
In

2S̃

)
=

(
U1 + 2U2S̃

U3 + 2U4S̃

)
, (41)

and maintaining the original definition (23) for α and
β, and by using definitions (36) and Eq. (37), then the
following relations can be easily derived:

(
α̃S̃

β̃S̃

)
= U

(
0

2I

)
=

(
2U2

2U4

)
, (42)

(
α

β

)
= U

(
I

2S

)
=

(
U1 + 2U2S

U3 + 2U4S

)
= (43)

=

(
α̃ + 2U2(S − S̃)

β̃ + 2U4(S − S̃)

)
=

(
α̃ + α̃S̃(S − S̃)

β̃ + β̃S̃(S − S̃)

)
, (44)

(
ρ

σ

)
=

(
α−1x0

βα−1x0

)
. (45)

C. Relations amongst PDEs’ solutions,
Riccati equations, and feedback control.

For any (T, S)-LQR problem the optimal initial
costate has the form

σ = λT,S(0) = 2P (0)x0 ; (46)

where P (·) is the numerical solution of the correspond-
ing DRE, i.e. the final-value matrix ODE in Eq. (9).
Therefore, from Eqs. (34, 46), for each (T, S)-problem
the Riccati matrix P (·) should also verify

P (0) =
1
2
β(T, S) [α(T, S)]−1

, (47)

allowing to solve the DRE as an initial-value problem
(eventually on-line with the dynamics). But actually,
as shown below (see Eq. 51) the PDE method for miss-
ing boundary conditions avoids solving the DRE for
each particular (T, S)-problem. It also avoids storing,
necessarily as an approximation, the Riccati matrix
P (t) for the values of t ∈ [0, T ] chosen by the numeri-
cal integrator, possibly different from the time instants
for which the control u(t) is constructed. Instead, the
HCEs (6, 7) can be integrated with initial conditions

x(0) = x0, λ(0) = σ(T, S), (48)

rendering the optimal trajectories x∗(t), λ∗(t) for 0 ≤
t ≤ T, which allow to generate the optimal control at
each sampling time

u∗(t) = u0 (x∗(t), λ∗(t)) = −1
2
R−1B′λ∗(t) . (49)
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Even better, the feedback form for the control becomes
directly available due to the linear dependence of Eqs.
(34) on initial conditions, namely

u∗(t) = −1
2
R−1B′β(T − t, S) [α(T − t, S)]−1

x∗(t) ,

(50)
since λ∗(t) is also the optimal initial costate for the
problem with parameters (T − t, S) starting at x(0) =
x∗(t). Then, as a side-product, an alternative formula
for the Riccati matrix results:

P (t) =
1
2
β(T − t, S) [α(T − t, S)]−1 ∀t ∈ [0, T ] . (51)

More complex PDEs have been derived and applied,
for the one-dimensional nonlinear case, in Costanza
(2008a) and Costanza and Rivadeneira (2008); and
for the n−dimensional nonlinear case, in Costanza
(2008b) and Costanza et al. (2011).

IV. FIXED-ENDPOINT AND
BOUNDED-CONTROL PROBLEMS

Optimal control problems with hard restrictions on fi-
nal state values, or with other constraints on states
or control values, require for their solution some ver-
sion of the Pontryagin Maximum Principle (PMP).
The objective of this Section is to show that, notwith-
standing the generality of PMP, the solution to the
PDEs described above may be also helpful in: (i)
approximating the PMP solution of some fixed-end
problems, (ii) approximating some fixed-end problems
whose PMP solutions under constrained controls turn
unfeasible in practice, and solving these approximate
problems. These assertions will be substantiated
through the treatment of a classical example (see for
instance Agrachev and Sachkov, 2004; and for simi-
lar problems concerning the determination of optimal
switching times, see Howlett et al., 2009, and their
references therein).

A. The cheapest stop of a train

The case-study will have dynamics with the following
simple linear form:

ẋ1 = x2 ; ẋ2 = u , (52)

or, in matrix notation,

ẋ = f(x, u) = Ax + Bu , (53)

A =
(

0 1
0 0

)
, B =

(
0
1

)
, (54)

where the real-valued control u may be interpreted as
a braking action over an imaginary train with position
x1 and velocity x2. The objective (in the original for-
mulation) is to optimize the ‘braking energy’ needed to
‘stop the train’, i.e. to arrive at the exact final states

x1(T ) = x2(T ) = 0 , (55)

Succinctly, the optimal control problem under study
is defined by Eqs. (52, 55) and

JT,0,x0(u(.))=

T∫

0

[x′(τ)Qx(τ) + u′(τ)Ru(τ)] dτ , (56)

L(x, u)
def
=

u2

2
, Q = 0 , R =

1
2

, T = 1 . (57)

Unless indicated, the initial conditions x(0) = x0 cho-
sen for illustration will be kept fixed at

x1(0) = 1 ; x2(0) = −1 . (58)

A.1. Unbounded controls. The PMP solution.

When the admissible control values are all the real
numbers, then the rigorous treatment of this problem
along the lines of the PMP is given below. The Hamil-
tonian H of the problem reads

H(x, λ, u) = L + λ′f =
u2

2
+ λ1x2 + λ2u , (59)

which admits a global u-minimization, with explicit
forms for the H-minimal control u0 and the minimized
Hamiltonian H0, i.e.

∂H

∂u
= u + λ2 , (60)

u0(x, λ) = arg min
u

H(x, λ, u) = −λ2 , (61)

H0(x, λ) = H(x, λ, u0(x, λ)) = λ1x2 − λ2
2

2
, (62)

leading to the canonical adjoint equations




λ̇1 = −∂H0

∂x1
= 0 ,

λ̇2 = −∂H0

∂x2
= −λ1 .

(63)

Then there should exist real constants a, b such that
the optimal costate λ∗ and control trajectory u∗ have
the form

λ∗1(t) = −b , (64)
λ∗2(t) = a + bt , (65)

u∗(t) = u0(x∗(t), λ∗(t)) = −a− bt , (66)

and consequently the dynamic Eqs. (52) can be sym-
bolically integrated to obtain the form of the optimal
state trajectories, namely





x∗2(t) = −at− b t2

2 − 1 ,

x∗1(t) = −a t2

2 − b t3

6 − t + 1 .
(67)

Final conditions are compatible (the system is con-
trollable), therefore the value of the constants can be
uniquely determined, and the optimal control strategy
results

x∗1(1) = x∗2(1) = 0 =⇒ a = 2, b = −6, (68)
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Figure 1: Optimal (PMP) states and control trajecto-
ries for the fixed end and unbounded control case.

u∗(t) = −2 + 6t. (69)

In Fig. 1 the optimal control and state trajectories
are shown. The unbounded-control solution found
above uses (intuitively unexpected) negative control
values, i.e. the optimal solution prescribes that the
train should be accelerated before beginning the ac-
tual braking process. So an obvious question comes to
mind: what would the optimal solution be if only (pos-
itive) braking is admitted? That will be discussed in
detail, but first it will be shown that the solution to the
fixed endpoint problem is the limit of flexible-endpoint
solutions corresponding to increasing final penalties.

A.2. Unbounded controls. Flexible endpoints. The
PDE solution.

The ‘flexible endpoint’ problem for the same system
and the same Lagrangian replaces the hard constraints
in Eqs. (55) by an alternative ‘quadratic final penalty’
K(x(T )) = x′(T )Sx(T ) in the cost objective function,
as announced in equation (1). In this example only
scalar matrices S = sI will be considered for simplic-
ity. The Riccati matrix P (·) solution to Eq. (9) can be
analytically found, having the following components





P11(t) = 3s+6s2(1−t)
3−6s(t−1)−2s(t−1)3+s2(t−1)4 ,

P12(t) = P21(t) = −3s(t−1)+3s2(t−1)2

3−6s(t−1)−2s(t−1)3+s2(t−1)4 ,

P22(t) = 3s+3s(t−1)2−2s2(t−1)3

3−6s(t−1)−2s(t−1)3+s2(t−1)4 ,

(70)
and therefore the optimal dynamics (corresponding to
the optimal feedback in Eq. (10)) can be integrated
and plotted for increasing values of s (see Fig. 2) to
ascertain the limiting behavior

lim
s→∞

x∗s(t) = x∗(t) , t ∈ [0, T ] , (71)
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Figure 2: Phase-space optimal trajectories for increas-
ing final penalty. Flexible endpoint, unbounded con-
trol case.

where x∗(t) denotes the solution to the fixed-end prob-
lem resulting from Eqs. (67, 68), i.e.

x∗(t) =

(
t3 − t2 − t + 1

3t2 − 2t− 1

)
. (72)

Actually, the convergence of solutions from flexible to
fixed final-point problems can be proved through the
relevant PDE objects as follows. The limiting form of
PDEs (40) for s →∞ is obtained by making αs = βs =

0. Since W = BR−1B′ =
(

0 0
0 2

)
(notice that, in

general, W 6= 0), then the following self-explaining
steps lead to the expected result:

αT ≈ −αN, α(0, s) = I, (73)
α ≈ e−NT = e(sW−A)T , (74)

|α| ≈
∣∣∣e(sW−A)T

∣∣∣ ≤ e|(sW−A)T | ≤ e(|sTW |+T |A|)

= eT |A|esT |W | →∞ =⇒ ∣∣α−1
∣∣ → 0 (75)

|ρ| ≈
∣∣α−1x0

∣∣ → 0. (76)

In Fig. 2 phase-space trajectories are shown for dif-
ferent values of the parameter s.

A.3. Constrained controls. The case u ≥ 0.

In what follows only nonnegative controls will be al-
lowed (pure braking action), and the initial conditions
will remain as in Eq. (58). Since the Hamiltonian
has to be minimized at each point, and given that the
optimal control begins with a negative value in the un-
bounded case (or equivalently, λ2(0) > 0), then from
Eq. (59) there should exist an initial time interval
where the control u assumes the value of the lower
bound, namely

u(t) ≡ 0 ∀ t ∈ [0, τ) ⊂ [0, T ] , (77)

where τ is still to be determined. Now, while
the control variable is kept at its lower bound,
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the system evolves along a state trajectory denoted
{x(t), t ∈ [0, τ ]} . As time increases it is possible to
pose successive unbounded control problems starting
at x(t) and with optimization horizon [t, T ]. By con-
tinuity, near t = 0 the optimal solutions to those un-
bounded control problems will remain negative. If the
optimal control for the bounded problem were nontriv-
ial, there should exist a switching time τ where the
optimal control ũτ (t) for the unbounded problem cor-
responding to: (i) the remaining horizon {t ∈ [τ, T ]} ,
and (ii) the initial condition x(τ), turns nonnegative,
i.e. ũτ (τ) ≥ 0 (for alternative arguments leading to the
same statement see for instance Alt, 2003; and Bryson
and Ho, 1975). Let us assume that such a τ ∈ (0, T ]
exists, thus during the interval [0, τ) the dynamics can
be integrated, to obtain

x1(t) = 1− t , x2(t) = −1. (78)

After time τ the optimal control (denoted uτ ) must
be linear, because it behaves as the u0 of a regular
problem (the Eqs. (60-63) must be met), i.e. real
numbers c, d,m, n exist such that ∀t ∈ [τ, T ],

λ1(t) ≡ d ,

λ2(t) = −c− dt , (79)

uτ (t) = c + dt , (80)

and then, after integration, the corresponding state
trajectories take the forms

x2(t) = ct + d
t2

2
+ m , (81)

x1(t) = c
t2

2
+ d

t3

6
+ mt + n .

The concatenation of the lower-bound control followed
by ũτ is an admissible control strategy, so the states
must match at t = τ. In view of Eqs. (78, 81), this
amounts to say

x2(τ) = cτ + d
τ2

2
+ m = −1 , (82)

x1(τ) = c
τ2

2
+ d

τ3

6
+ mτ + n = 1− τ .

Continuity of the control values uτ (τ) with respect to
τ follows from the regularity of the unbounded optimal
control problem and the smoothness of their governing
equations, which implies in this case

0 = uτ (τ) = c + dτ =⇒ τ = − c

d
. (83)

Then, Eqs. (82, 83) require that the unknowns must
be solutions to the following pair of equations:

m =
c2

2d
− 1 , n =

c3

6d2
+ 1 . (84)

The final conditions should provide two additional
equations to solve the problem. Two cases can in
principle be studied:

1. Original (sharp) restrictions: x1(T ) =
x2(T ) = 0. In this case, keeping T = 1, Eq.
(81) and the final conditions require

c +
d

2
+ m = 0 , (85)

c

2
+

d

6
+ m + n = 0 ,

which, together with Eqs. (83, 84), lead succes-
sively to: (τ − 1)3 = 0, τ = 1, d →∞, c → −∞.
Then, starting at the original initial conditions,
only the unfeasible ‘infinite braking at the end’
solution to the problem is allowed. Thus, the
conjecture about the existence of a finite switch-
ing time τ is wrong in this case.

2. Flexible case:

Let us denote x̃0 = φ(−τ, x(τ), ũτ ), where φ is

the transition map of the system and ũτ (t)
def
=

c + dt , t ∈ [0, τ), i.e. the continuation of uτ to
the initial ‘saturation’ interval (where the opti-
mal control is u(t) ≡ 0). This x̃0 results then the
proper initial condition of an unbounded-control
problem with (full) optimization horizon [0, T ] ,
whose optimal control solution is

ũ∗(t)
def
=

{
ũτ (t), t ∈ [0, τ)

uτ (t), t ∈ [τ, T ]
. (86)

Consequently, the optimal costates λ̃(·) for such
unbounded-control problem will obey the HCEs
in [0, τ ] , resulting in

λ̃1(t) = λ̃1(τ) = λ1(τ) = d , (87)

λ̃2(t) = −ũτ (t) = −c− dt . (88)

Then the costates trajectories λ(·) in Eqs. (79)
can be seen as the continuation of trajectories
λ̃(·), i.e. the trajectories

{(
d

−c− dt

)
, t ∈ [0, T ]

}
(89)

are the optimal costate trajectories correspond-
ing to the initial condition x̃0 and control ũ∗.
This implies, in particular, that at the final time
T , the boundary condition for the unbounded
problem should be met, precisely

λ(T ) = 2sx(T ) . (90)

The analysis can then be continued as follows:

d = λ1(1) = 2sx1(1) =⇒ x1(1) =
d

2s
, (91)

λ2(1) = −c− d = 2sx2(1) =⇒ x2(1) = −c + d

2s
,
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Figure 3: Optimal (PDE) states and control trajecto-
ries for the flexible endpoint (s = 100) and bounded
control case.

and combining with Eqs. (81, 84), the desired
pair of new conditions are obtained:

c +
d

2
+

c2

2d
− 1 = −c + d

2s
, (92)

c

2
+

d

6
+

c2

2d
+

c3

6d2
=

d

2s
.

At this point it should be noticed that, whatever
the final values of the costates, Eqs. (91) already
reflect the expected limiting behavior

lim
s→∞

xT,s(T ) = 0 .

In order to approximate the fixed-endpoint situ-
ation, a large enough value of s should eventually
be chosen. Taking for instance s = 100, there ex-
ist 5 solutions to Eqs. (92) for (c, d) , but only
one of them lies in R2, namely c = −13.8331,
d = 20.069, τ = − c

d = 0.6893; and then, by
using Eqs. (91), the final states for this case
are obtained: x1(1) = 0.1004, x2(1) = −0.0312.
The resulting state and control strategies are de-
picted in Fig. 3. The train does not arrive
to rest, but the solution is more like what can
be found in practice: at time T the velocity
x2(T ) is small enough as to let the train iner-
tially continue from x1(T ) to its stoppage with-
out any braking action (u = 0). By using stan-
dard mathematical software, analytical expres-
sions for c(s), d(s), τ(s) should be obtained, con-
firming that

s →∞⇒




τ → 1
d →∞
c → −∞

. (93)

In Fig. A.3. the relations between (some com-
ponentes of) x0, x̃0, x, x̃, λ, λ̃, uτ , ũτ , are depicted
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Figure 4: Optimal state x1, costate λ2, and control u
trajectories for the bounded-from-below control case,
and their hidden parts during saturation.

for a fixed value of s. The treatment of this prob-
lem along PDE lines will be pursued in subsec-
tion B..

Comment: The smallest absolute velocity that
admits pure braking. In the regular (unbounded)
linear-quadratic case the solutions to optimal con-
trol problems depend continuously on the parameters
(initial and final conditions, matrix coefficients, final
penalties, and the like). It is important to ascertain
this continuous behavior in the non regular situation,
as an extension of the arguments used above. For in-
stance, the influence of the lower bound on the struc-
ture of the optimal control also varies continuously
with other parameters. In this subsection it will
be shown that not all initial conditions require calcu-
lation of broken-line trajectories and their correspond-
ing switching times in order to avoid negative control
values. Clearly, absolute values for the initial veloc-
ity |x2(0)| < 1 will lead to acceleration periods (with
u < 0). But, let us explore whether there exists a
smallest absolute value χ for the initial velocity, i.e.

x1(0) = 1 , x2(0) = −χ , (94)

such that the optimal (unbounded) control results al-
ways nonnegative. Using the notation in Subsection
A.1. and supposing as a limiting condition that the
control starts at its bound-value, then

u(0) = 0 ⇒ a = 0 , (95)

and the following relations become valid from state
and costate dynamics:

λ1(t) = b,

λ2(t) = bt,
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u(t) = −bt, (96)

x2(t) = −b
t2

2
− χ,

x1(t) = −b
t3

6
− χt + 1.

Now, in order to reach the final target x1(1) =
x2(1) = 0, the unknowns should be

0 = − b

2
− χ ⇒ χ = − b

2
, (97)

0 = − b

6
+

b

2
+ 1 ⇒ b = −3 .

This gives the desired bound on the initial velocities
for pure braking optimal control, namely,

χ = |x2(0)| = 1.5 ,

and the optimal control

u∗(t) = 3t

requires half the slope than the case with |x2(0)| = 1.
For |x2(0)| ≥ χ the optimal control will be always
nonnegative (pure braking), and for |x2(0)| < χ there
will be an initial acceleration period.

B. Approximating the original problem via
the PDE solutions.

In subsection A it became clear that meeting sharp
restrictions on final states with PMP is not practi-
cable when only nonnegative controls and initial ve-
locities with smaller absolute values than χ are al-
lowed. Then an approximate solvable problem was
sought and analytically solved. The alternative was
found by making the endpoint flexible, precisely by im-
posing a quadratic final penalty on the states. In the
literature (see Alt (2003), Bryson and Ho (1975) and
the references therein) little theoretical advances have
been made in the treatment of these situations, other
than including extra Lagrange multipliers to take into
account the control bounds (a major inconvenience of
such an approach is the appearing of inequalities, dif-
ficult to handle analytically).

From now on the same flexible-endpoint bounded-
control linear-quadratic problem above will be treated
along PDE lines. Notice however that all relevant
equations in this subsection are expressed in terms
of the auxiliary matrices solving the main PDEs, and
therefore these results are applicable to general LQR
problems. It will be assumed that a reasonably high
value of s has been fixed. It was shown that an inter-
mediate time τ ∈ (0, 1) exists such that the optimal
control strategy is of the form

u(t) =

{
ub(t) ≡ 0 ∀t ∈ [0, τ)

us,τ (t) ∀t ∈ [τ, 1]
, (98)
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Figure 5: Isocline (PDE, s = 100) for the controls
evaluated at time t and present state value eAtx0, each
one optimal with respect to the horizon T − t.

where ub(t) is the control assuming the bound value,
and us,τ (t) is the optimal control for the free-endpoint
problem corresponding to the horizon T − τ = 1 − τ ,
final penalization s ‖x‖2, and initial condition

x1(τ) = 1− τ , x2(τ) = −1 . (99)

Then, according to Eq. (50),

us,τ (t) = −1
2
R−1B′β(T − t, s) [α(T − t, s)]−1

x(t) =

(100)

= −
(

0
1

)′
β(1− t, s) [α(1− t, s)]−1

x(t) =

= −
[
β(1− t, s) [α(1− t, s)]−1

x(t)
]
2
∀t ∈ [τ, 1] ,

where the subscript (2) denotes ‘the second compo-
nent’of the vector inside the brackets.

Using Eq. (101) for t = τ, and noticing that u(t) =
ub(t) ≡ 0 ∀t ∈ [0, τ) implies that x(τ) = eAτx0, then
the matching condition reads

0 = us,τ (τ) = −R−1B′P (τ)x(τ) = (101)

= −1
2
R−1B′β(T − τ, s) [α(T − τ, s)]−1

eAτx0 .

The value of τ is the only unknown in Eq. (102).
Assuming that α(T, s), β(T, s) have been calculated
for a wide range of (T, s)-values, then the problem of
finding τ may reduce to find the zero of the function
ûs : [0, T ] → R defined by

t → −
[
β(T − t, s) [α(T − t, s)]−1

eAtx0

]
2

, t ∈ [0, T ] .

(102)
In Fig. 5 a plot of the curve ûs(t) obtained by the

PDE method is shown. It can be seen that the cross-
point is very close to τ = 0.6892 as predicted ana-
lytically. The curve is an isocline (s = 100) for the
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Figure 6: Relative errors in calculations of x and u
from the numerical solutions of the first order PDEs,
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Figure 7: Variations to the optimal control strategy
with a unique switching time τ , used for cost compar-
isons.

controls evaluated at time t and present state value
eAtx0. Each control value ûs(t) is optimal at time t for
an optimal control problem with: (i) the ‘initial’ state
eAtx0 (no braking has been applied before t), (ii) the
optimization horizon T − t, and (iii) the final penalty
coefficient s.

Some numerical calculations have been performed
to test these results. Figure 5 also illustrates other
isoclines for different values of s and their correspond-
ing switching times τ(s), all constructed from PDEs’
solutions. Figure 6 shows the relative deviations in
states and control trajectories generated by the PDE
method (Eqs. (101, 102) and numerical integration of
Eqs. (52)), from those corresponding to the analyti-
cal solution of the problem Eqs. (78-81), for s = 100
and times greater than the relevant switching time τ .
An empirical test for optimality can be observed in
Table 1, where total and partial costs for several con-
trol variations have been reported. The names given

in Table 1 for the control variations are self-explaining
when associated to their graphical versions shown in
Fig. 7, except for the ‘shortsighted’ curve. That label
has been assigned to the strategy consisting in apply-
ing the saturation control u(t) ≡ 0 up to the time(
t = τ0 = 1

3

)
where the optimal control u∗(t) for the

fixed-end problem stops being negative (see Fig. 1 and
Eq. (69)), and then continue by using u(t) = u∗(t) for
t ∈ [t0, T ].

C. Extension to the treatment of both lower
and upper bounds in control values.

Let us consider now the existence of two bounds on
control values, for instance 0 ≤ u(t) ≤ D. In case
the control is saturated at both constrains, that will
happen at least for two switching times τ1, τ2. Assume
0 < τ1 < τ2 < T, and applying the same arguments
than before to the example at hand, the three emerging
subintervals can be analyzed as follows:

(i) For t ∈ [0, τ1] , u ≡ 0. This first part is analogous
to the case with only the lower bound at u = 0, so the
Eqs. (78): x2(t) = −1 , x1(t) = 1− t , remain valid.

(ii) For t ∈ [τ1, τ2] , the optimal control will be a lin-
ear function of t, since in this subinterval the problem
has a regular structure. Then, after writing

p
def
=

D

τ2 − τ1
, ũ = p(t− τ1) , (103)

and using ĉ, d̂, z, w to denote unknown constants, rela-
tions between the states’ trajectories and the bound-
ary conditions can be obtained by direct integration,
namely

x2(t) = p

(
t2

2
− τ1t

)
+ ĉ , (104)

x2(τ1) = −1 =⇒ ĉ = −1 +
pτ2

1

2
, (105)

x1(t) = p

(
t3

6
− τ1t

2

2

)
+ ĉt + d̂ , (106)

x1(τ1) = 1− τ1 =⇒ d̂ = 1− pτ3
1

6
. (107)

Using the same arguments, the costates and control
trajectories become

λ̇1 = 0 =⇒ λ1(t) ≡ z , (108)

λ̇2 = −λ1 =⇒ λ2(t) = −zt− w , (109)

ũ = −λ2 = zt + w =⇒
{

z = p
w = −pτ1

, (110)

and therefore, at the next switching time the following
relations must be true

x1(τ2) = p

(
τ3
2

6
− τ1τ

2
2

2

)
+ ĉτ2 + d̂ , (111)

x2(τ2) = p

(
τ2
2

2
− τ1τ2

)
+ ĉ , (112)
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Variations (S = 100 I) J (u)

∫
L(u)dt x′T SxT x1(T ) x2(T )

Optimal control 3.1180 2.0138 1.1042 0.1004 -0.0312
Variation with higher control 18.4373 2.3156 16.1217 0.2509 0.3134
Variation with less control 6.9048 1.6203 5.2845 0.0650 -0.2205
Variation with mixed control 5.6532 1.3208 4.3324 0.1282 -0.1640
‘Shortsighted’ variation control 21.6680 1.7777 19.8903 0.2963 0.3333

Table 1: Costs and final states’ values and final states for the solution strategy to the optimal control
problem with a unique switching point, and for some control variations.
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Figure 8: Optimal states and control trajectories when
lower and upper constraints are present.

λ1(τ2) = p , (113)

λ2(τ2) = −pτ2 + pτ1 = −D . (114)

As shown when u was only bounded from below, the
condition for the final instant of this period should be

λ(τ2) = 2P (τ2)x(τ2) , (115)

where the expression for P (τ2) can be obtained from
Eq. (70). Then, from Eqs. (103-115) the values of the
remaining unknowns τ1 and τ2 can be obtained:

τ1 = 0.689277 , τ2 = 0.938417 , (116)

which shows that τ1 is the same as the τ previously
found, and also that the second switching time τ2 ver-
ifies uτ1(τ2) = D , where uτ1 must be interpreted as
in Eq. (80) for the lower-bound case. The calculation
of τ2, assuming τ1 is known, is also possible from the
solutions to the PDEs. In fact, it reduces to solve

D = ũ(τ2) = us,τ1(τ2) = (117)

= −1
2
R−1B′β(T − τ2, s) [α(T − τ2, s)]

−1
x(τ2) ,

with the provision of replacing x(τ2) by the optimal
final state for an horizon of duration τ2−τ1 and initial
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Figure 9: Second switching times τ2 and corresponding
optimal control strategies, for different final penalty
coefficients s.

condition x(τ1), i.e.

x(τ2) = [α(τ2 − τ1, s)]
−1

x(τ1) , x(τ1) = eAτ1x0 .
(118)

This can be simplified by using the properties of ma-
trix α as the fundamental matrix of the system

Ẋ = (A−WP )X , X(0) = I , (119)

(see Eqs. (12, 19)), i.e.

[α(T − τ2, s)]
−1 [α(τ2 − τ1, s)]

−1 =

= [α(τ2 − τ1, s)α(T − τ2, s)]
−1 = [α(T − τ1, s)]

−1
.

(120)
Then the appropriate equation to solve for τ2 is

D = −1
2
R−1B′β(T − τ2, s) [α(T − τ1, s)]

−1
eAτ1x0 .

(121)
The value τ2 = 0.938417 found this way coincides with
the one obtained analytically (see also Fig. 9).
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Figure 10: Variations to the optimal control strategy
with two switching times (τ1, τ2), used for cost com-
parisons.

(iii) Finally, for time t ∈ [τ2, T ] = [τ2, 1],

u ≡ D

x2(t) = Dt + E

E = x2(τ2)−Dτ2 = −5.0692

x1(t) = D
t2

2
+ Et + F

F = x1(τ2)−D
τ2
2

2
− Eτ2 = 2.6688

x1(1) =
D

2
+ E + F = 0.0996

x2(1) = D + E = −0.0692

Summarizing, the switching times can be obtained
from the PDE method by solving algebraic equations
like (102) and (121). This in principle may be done nu-
merically, since all values for matrices α, β are stored.
During the ‘regular’ subintervals the optimal feedback
is also generated from the PDEs’ solutions as required
by Eq. (29). Results are illustrated in Fig. 8. The
empirical optimality comparisons for the two-bounds
case are condensed in Table 2 and Fig. 10. The s-
isoclines for determining the switching time τ2 from
PDE’s solutions are depicted in Fig. 9.

V. CONCLUSIONS

The first-order PDEs for the final states and initial
costates of optimal control regular problems have been
proved useful in non regular and fixed-final-state sit-
uations. Solutions to these PDEs allow to transform
the classical two-point boundary-value ODE system
associated with the Hamiltonian formulation, into an
initial-value set-up with unique solution. In the LQR
context, two matrix, quasilinear, first-order PDEs for
auxiliary variables α, β were here made explicit, and
their treatment was extended for the first time to a
general final coefficient matrix S. From their solu-
tions, the missing boundary conditions can be effec-

tively recovered after simple manipulations. Actually,
the auxiliary variables are found for a two-parameter
family of LQR problems posed for fixed plant dynam-
ics and trajectory costs, but with variable final penal-
ties and horizon spans. This immersion allows a whole
range of (T, S)-problems to be assessed by looking at
the final reachable state ρ(T, S) and the associated
marginal cost σ(T, S).

It has been found that the solution to a twice-infinite
family of LQR problems requires little numerical ef-
fort, roughly similar to the one involved in running
the associated DRE for just one individual situation.
The solution for a range of (T, S)-values provides de-
sign information, useful when flexible choice of the pa-
rameters to improve performance is required. It is
even more important the fact that these solutions can
also be used to find the optimal strategy when the
admissible control values are bounded. The eventual
switching times τi, i = 1, 2, . . ., can either be: (i) calcu-
lated a priori (off-line) by solving algebraic equations
like (102, 121) associated with all control saturation
possibilities, or (ii) detected on-line by continuously
evaluating the right-hand-side-members of the same
equations until they reach/leave the saturation condi-
tions.

The novel PDEs were developed and proved for
flexible-final-state problems with a quadratic final
penalty of the type (x(T )− x̄)′ S (x(T )− x̄) , were x̄
is a target. But when S = sI, s ≥ 0, then for s →∞
their solutions approach that of the corresponding
fixed-final-state problem (with condition x(T ) = x̄).
Therefore solutions to ‘flexible’ problems can be re-
garded as approximations to the ‘fixed endpoint’ situ-
ation. This turns out to be relevant in solving non-
regular (here just bounded-control) problems. It has
been shown through the chosen example that the lim-
iting, fixed endpoint solution for bounded control may
not exist (or may be not realizable in practical terms),
while the flexible approximations give appropriate en-
gineering answers.
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