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FOR ARBITRARY NUMBER FIELDS
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CP 5000 Córdoba, Argentina.

E-mail: pacharon@mate.uncor.edu

1. Introduction

Let K be a number field with ring of integers O. Let I be an ideal in O
and let φ,ψ be characters of the abelian group O/I. We shall denote by
(O/I)̂ the character group of O/I.

We shall consider the following exponential sums: the generalized Kloos-
terman sums and the generalized Salié sums given respectively by

(1) S(φ,ψ, I) =
∑

x∈(O/I)∗
φ(x)ψ(x−1)

(2) T (φ,ψ, I) =
∑

x∈(O/I)∗

(x
I

)
φ(x)ψ(x−1)

where
(
x
I

)
denotes the Legendre symbol in O. Thus the Salié sums are

twisted Kloosterman sums.
The main purpose of this paper is to give methods for the evaluation of

these sums explicitly.

In [3], Theorem 1, we prove that (O/I)̂ is a cyclic O/I-module, in others
words there exist φ ∈ (O/I)̂ such that any character ψ is of the form
ψ(x) = (r φ)(x) = φ(rx) for some r ∈ O.

In the case of Kloosterman sums the main result is given in Theorem 3.3.
We evaluate sums of the form S(rφ, r′φ,Pm) for P an odd prime ideal and
m ≥ 2. As usual, the case m = 1 resists any explicit evaluation. In Theorem
4.6 we evaluate Salié sums of the form T (rφ, r′φ, I) for I an odd prime ideal
and (r′, I) = 1.

These results generalize to an arbitrary number field corresponding re-
sults on Salié sums and Kloosterman sums in the classical case, obtained by
Sarnak and Salié respectively (cf. [2], §4.3, 4.6).

This generalization is based on results obtained in [3], which allow us
to use the main ideas of the corresponding proofs in the classical case, as
presented by Iwaniec, in [2].
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We became interested in the evaluation of these sums because they are
useful to study the spectrum of adjacency operators of euclidean graphs
associated to finite rings of the form (O/I)n. In fact, the eigenvalues of
these operators can be expressed in terms of Gauss sums and Kloosterman
sums, when n is even, and Salié sums, when n is odd. Explicit evaluations
of these eigenvalues are needed in order to decide when the algebra of all
operators of L2((O/I)n) which commute with the group of all isometries of
(O/I)n is generated by a single adjacency operator. The knowledge of the
above sums is also important to decide which of these graphs are Ramanujan
graphs. Results in this direction will be the subject of a future publication.

2. Preliminaries

2.1. Character groups of O/I. Any character φ of O/I can be seen as a
homomorphism from O to S1 such that I ⊂ kerφ.

We proved in [3] Theorem 1, that there exist φ ∈ (O/I)̂ such that
any character ψ can be written in the form ψ(x) = rφ(x), with r ∈ O.
Characters φ with this property are called generators of (O/I)̂ and they
are characterized by the condition that no proper divisor of I is contained
in kerφ. Moreover, ψ = rφ is also a generator of (O/I)̂ if and only if
(r, I) = 1.

2.2. Gauss sums. Our evaluations of Salié sums and Kloosterman sums
involve the following Gauss sums associated to an integral ideal I and φ ∈
(O/I)̂ :
(3) G(φ, I) =

∑
x∈O/I

φ(x2).

Hecke, in [1], considers Gauss sums in a number field K associated to an
element ω ∈ K. Let d be the different ideal of K. So there exist a, b relative
prime integral ideals such that (ω) = b

da . The Gauss sum considered by
Hecke is

(4) C(ω) =
∑
x∈O/a

e2πi Tr(ωx
2).

Both definitions coincide in the following way: Given (ω) = b
da , let I = a

and let φ ∈ (O/I)̂ be the character defined by φ(x) = e2πi Tr(ωx). Then
C(w) = G(φ, I). Reciprocally, given an ideal I and an element ω ∈ 1

dI , we

have (ω) = b
da . The map ψω : x 7→ e2πi Tr(ωx) defines a character in O/I.

Moreover any character in O/I is of this form for some ω. Choosing ω such
that φ = ψω we have G(φ, I) = C(w).

Now we describe the main properties of Gauss sums. In most of the cases
we refer to [1] for the proofs.



If I = AB with A,B coprime ideals then O/I ≃ O/A × O/B (Chinese
remainder theorem); correspondingly any φ ∈ (O/I)̂ is of the form φ =
φ1 × φ2 where φ1 ∈ (O/A)̂ and φ2 ∈ (O/B)̂ .
Lemma 2.1. If I = AB with A,B coprime ideals and φ = φ1 × φ2 then

G(φ, I) = G(φ1, A)G(φ2, B).

In a number field an integer ideal is said to be odd if it is coprime with
the ideal (2). We restrict ourselves to odd ideals.

For an odd prime ideal the Legendre symbol is given by (see [1] §54)

( x
P

)
=


1 if x is a quadratic residue mod P .

−1 if x is not a quadratic residue mod P .

0 if (x, P ) ̸= 1.

The definition extends to any odd ideal I in the following way: If I =
∏
j P

aj
j ,

with Pj prime ideals we define
(
x
I

)
=

∏
j

(
x
Pj

)aj
.

Lemma 2.2. Let P be an odd prime ideal and let φ ∈ (O/P )̂ be non
trivial. Then

G(φ,P ) =
∑

x∈(O/P )∗

( x
P

)
φ(x)

Proof. See (171) in [1].

Proposition 2.3. Let P be an odd prime ideal, and φ a non trivial character

in O/P . Let εP =

{
1 if N(P ) ≡ 1 (mod 4),

i if N(P ) ≡ 3 (mod 4).

Then

G(φ, P ) = εP N(P )
1
2 or G(φ,P ) = −εP N(P )

1
2 .

Proof.

G(φ,P )2 =
∑

x,y∈(O/P )∗

( x
P

) ( y
P

)
φ(x+ y) =

=
∑

t∈(O/P )∗

(
t

P

) ∑
x∈(O/P )∗

φ(x(1 + t))

The inner sum is equal to N(P )− 1 if 1 + t ≡ 0 (mod P ), otherwise it is
equal to −1. Thus

G(φ,P )2 =
(−1
P

)
(N(P )− 1)−

∑
t̸=−1

(
t
P

)
.

In O/P there exists an equal number of quadratic residues and non qua-
dratic residues. Hence

∑
t∈(O/P )∗

(
t
P

)
= 0 and therefore

G(φ,P )2 =
(−1
P

)
(N(P )− 1) +

(−1
P

)
=

(−1
P

)
N(P ).



Moreover
(−1
P

)
≡ (−1)

N(P )−1
2 (mod P ). Then

(−1
P

)
= 1 or −1 according

to N(P ) ≡ 1 (mod 4) or N(P ) ≡ 3 (mod 4).

Remark. We define the sign of the Gauss sum G(φ,P ), and denote it by sφ,
as the number 1 or -1 such that

G(φ,P ) = sφεP N(P )
1
2 .

We shall see in Corollary 2.6 that there exists a non trivial character φ such
that sφ = 1.

Proposition 2.4. Let P be an odd prime ideal, k ∈ N and φ a generator of
(O/P k)̂ . We have

i) If k = 2m then G(φ,P k) = N(P )m.
ii) If k = 2m+ 1, let p ∈ P r P 2 and ψ = p2mφ ∈ (O/P )̂ . Then

G(φ,P k) = N(P )mG(ψ, P ).

Proof. Let k ≥ 2. If s (respectively t) runs through a complete system of
representatives of O/P k−1 (respectively P k−1/P k) then s+ t runs through
a complete system of representatives of O/P k. Thus,

G(φ,P k) =
∑

s∈O/Pk−1

φ(s2)
∑

t∈Pk−1/Pk

φ(2st)

The map t 7→ φ(2st) defines a character of the group P k−1/P k. It is
the trivial character if and only if s ∈ P . By the orthogonality relations in
P k−1/P k we have

G(φ,P k) = N(P )
∑

s∈P/Pk−1

φ(s2).

We fix p ∈ P r P 2. The map u 7→ pu defines an isomorphism of abelian
groups from O/P k−2 onto P/P k−1. Therefore

G(φ,P k) = N(P )
∑

u∈O/Pk−2

φ(p2u2) = N(P )G(p2 φ,P k−2).

By repeated application of this formula we complete the proof of the
proposition.

For k odd and any character φ ∈ (O/P k)̂ we extend the definition of sφ
given above:

(5) sφ =
G(φ, P k)

εP N(P )k/2

By Propositions 2.3 and 2.4 we have sφ ∈ {1,−1}. Moreover if ψ = pk−1φ
with p ∈ P r P 2 then sφ = sψ.



Proposition 2.5. Let φ be a generator of (O/I)̂ and let r ∈ O be relative
prime with I. Then

G(r φ, I) =
(r
I

)
G(φ, I).

Proof. See Theorem 155 in [1].

Corollary 2.6. Let P be an odd prime ideal. Then there exists λ a generator
of (O/P )̂ such that

G(λ, P ) = εP N(P )
1
2 .

Proof. If φ generates (O/P )̂ and satisfies G(φ,P ) = −εPN(P )1/2, we
take λ = aφ for any a, a non quadratic residue mod P . Then

G(aφ, P ) =
( a
P

)
G(φ,P ) = εPN(P )1/2.

3. Kloosterman sums

Kloosterman sums have the following multiplicative property (see [3]):
Let I = Pn1

1 · · ·Pnr
r and let φ,ψ ∈ (O/I)̂ . We write the characters φ,ψ in

the form φ = ×r
1 φj and ψ = ×r

1 ψj where φj , ψj ∈ (O/Pnj

j )̂ . Then
S(φ,ψ, I) =

r∏
j=1

S(φj , ψj , P
nj ).

Therefore we may restrict ourself to evaluate Kloosterman sums of the
form S(φ,ψ, Pm) with P a prime ideal. In this section we shall consider the
case where P is an odd prime ideal and m ≥ 2.

Lemma 3.1. Let P be an odd prime ideal, m ≥ 1 and let φ be a generator
of (O/P 2m)̂ . Then

S(φ,φ, P 2m) = 2N(P )mRe (φ(2)) .

Proof. (cf. [2], Lemma 4.1) If x runs through (O/P 2m)∗ and y runs through
Pm/P 2m, then x(1 + y) runs, N(P )m times, through (O/P 2m)∗ . Moreover
in O/P 2m the inverse of x(1 + y) is the element x−1(1− y). Hence

S(φ,φ, P 2m) =
∑

x∈(O/P 2m)∗

φ(x+ x−1)

= N(P )−m
∑

x∈(O/P 2m)∗

∑
y∈Pm/P 2m

φ(x(1 + y) + x−1(1− y))

= N(P )−m
∑

x∈(O/P 2m)∗

φ(x+ x−1)
∑

y∈Pm/P 2m

φ((x− x−1)y)

The character φ generates (O/P 2m)̂ , then the ideals P j with j < 2m
are not contained in kerφ (Proposition 2, in [3]). Thus by the orthogonality
relations between characters in the group Pm/P 2m, the inner sum is zero if
x− x−1 ̸≡ 0 (mod Pm); otherwise it is N(P )m.



If x ∈ O/P 2m satisfies the equations xx−1 ≡ 1 (mod P 2m) and x ≡ x−1

(mod Pm) then x2 ≡ 1 (mod Pm). Since P is relative prime to (2), we have
that x ≡ 1 (mod P )m or x ≡ −1 (mod P )m. Thus x is of the form

x = 1 + t or x = −1 + t

where t is any element of Pm/P 2m. In this way we have

S(φ,φ, P 2m) =
∑

x∈(O/P 2m)∗

x≡x−1 mod Pm

φ(x+ x−1) =
∑

t∈Pm/P 2m

(φ(2) + φ(−2))

= 2N(P )mRe(φ(2))

Lemma 3.2. Let P be an odd prime ideal, m ≥ 1 and let λ be a generator
of (O/P 2m+1)̂ such that sλ = 1. Let φ = r λ, with (r, P ) = 1. Then

S(φ,φ, P 2m+1) = 2N(P )m+1/2
(
r
P

)
Re (εP φ(2)))

where εP was defined in Proposition 2.3.

Note. See (5) for the definition of sλ.
Proof. (cf. [2], Lemma 4.2) If x runs through (O/P 2m+1)∗ and y runs
through Pm+1/P 2m+1, then x(1 + y) runs through (O/P 2m+1)∗, N(P )m

times. Thus

S(φ,φ, P 2m+1) =
∑

x∈(O/P 2m+1)∗

x≡x−1 mod Pm

φ(x+ x−1)

In O/P 2m+1 the solutions of the equations xx−1 ≡ 1 (mod P 2m+1) and
x ≡ x−1 (mod Pm+1) are of the form x = ±1 + t where t ∈ Pm+1/P 2m+1.
We have (1 + t)−1 = 1− t+ t2 and (−1 + t)−1 = −1− t− t2. So x+ x−1 =
±(2 + t2). Therefore,

S(φ,φ, P 2m+1) =
∑

t∈Pm/P 2m+1

φ(2 + t2) + φ(−(2 + t2))

= 2 Re

φ(2) ∑
t∈Pm/P 2m+1

φ(t2)


Putting t = t1 + t2, with t1 ∈ Pm/Pm+1 and t2 ∈ Pm+1/P 2m+1 we have

t2 ≡ t21 (mod P 2m+1). Then∑
t∈Pm/P 2m+1

φ(t2) = N(P )m
∑

t1∈Pm/Pm+1

φ(t21).

This sum is a Gauss sum in O/P , by any isomorphism Pm/Pm+1 ≃ O/P ,
and it is equal to

(
r
P

)
εPN(P )1/2 because sλ = 1 and φ = r λ. Then

S(φ,φ, P 2m+1) = 2N(P )mRe
(
φ(2)

(
r
P

)
εPN(P )

1
2

)
= 2N(P )m+ 1

2
(
r
P

)
Re (εP φ(2)) .



Theorem 3.3. Let P be an odd prime ideal, m ≥ 2, and let φ a generator
of (O/Pm)̂ with sφ = 1. We denote

εm,P =

{
εP if m is odd

1 if m is even
.

Let r, r′ ∈ O with (rr′, P ) = 1. Then

i) S(rφ, r′φ,Pm) = 0 if r ̸≡ r′ℓ2 (mod Pm), for any ℓ ∈ O.

ii) S(rφ, rℓ2φ,Pm) = 2N(P )
m
2

(
rℓ
Pm

)
Re (εm,Pφ(2rℓ)) .

Proof. i) Let k ∈ O. By Lemma 6 in [3] we have

S(φ, kφ, Pm) =
∑

s∈(O/Pm−1)∗

φ(s+ ks−1)
∑

t∈Pm−1/Pm

φ
(
(1− ks−2)t

)
.

Hence

S(φ, kφ, Pm) = 0 if

(
k

P

)
= −1.

Furthermore if
(
k
P

)
= 1 then k ≡ ℓ2 (mod Pm) for some ℓ ∈ O. In fact if k

is a residue quadratic mod P then k ≡ s2+ t (mod Pm) for some t ∈ Pm−1.
Thus k ≡ (s+ t̃)2 (mod Pm) where t̃ ∈ Pm−1 satisfies 2t̃ ≡ t (mod Pm−1).

Therefore S(rφ, r′φ,Pm) = S(φ, rr′φ, Pm) = 0 if rr′ ̸≡ k2 (mod Pm) or
equivalently if r ̸≡ r′ℓ2 (mod Pm), for any ℓ ∈ O.

ii) We have S(rφ, rℓ2φ, Pm) = S(rℓφ, rℓφ, Pm). Hence the statement fol-
lows from Lemmas 3.1 and 3.2.

4. Salié sums

In this section we study some basic properties of Salié sums and we also
give an explicit evaluation of T (rφ, r′φ, I) for (2r′, I) = 1.

Lemma 4.1. Let I be an ideal and r ∈ O coprime with I. Let φ,ψ be
characters in O/I. Then we have:

i) T (φ,ψ, I) = T (ψ,φ, I).

ii) T (rφ, ψ, I) =
(
r
I

)
T (φ, rψ, I).

iii) T (φ,ψ, I) =
(−1
I

)
T (φ,ψ, I).

Proof. i) If we change the variable x by y = x−1 we have
(
x
I

)
=

(y
I

)
and

then

T (φ,ψ, I) =
∑

x∈(O/I)∗

(
x
I

)
φ(x)ψ(x−1) =

∑
y∈(O/I)∗

(y
I

)
φ(y−1)ψ(y).

ii) As r is coprime with I we put y = rx. So,

T (rφ, ψ, I) =
∑

x∈(O/I)∗

(
x
I

)
φ(rx)ψ(x−1) =

∑
y∈(O/I)∗

(
r
I

)(y
I

)
φ(y)ψ(ry−1).

iii) T (φ,ψ, I) = T (−φ,−ψ, I) =
(−1
I

)
T (φ,ψ, I).



The following lemma establishes the multiplicative property of the Salié
sums.

Lemma 4.2. Let I = Pn1
1 · · ·Pnr

r an ideal in O, φ,ψ ∈ (O/I)̂ , φ = ×r
1 φj ,

and ψ = ×r
1 ψj with φj , ψj ∈ (O/Pnj )̂ . Then

T (φ,ψ, I) =

r∏
j=1

T (φj , ψj , P
nj ).

Proof. If d = (d1, · · · , dr) ∈ O/I then(
d
I

)
=

(
d1
P

n1
1

)
· · ·

(
dr
Pnr
r

)
.

Now the proof follows in the same way as for Kloosterman sums. (Lemma
4, in [3]).

We denote by Φ the Euler phi function and by 1 the trivial character.

Proposition 4.3. Let I = P r11 · · ·P rkk . Then

T (1, 1, I) =

{
Φ(I) if ri ≡ (2) for all i,

0 otherwise.

Proof. f(I) = T (1, 1, I) is a multiplicative function. So we need only
consider the following cases.

Case I = P . In a finite field there exists an equal number of quadratic
residues and non quadratic residues. Thus

∑
t∈(O/P )∗

(
t
P

)
= 0.

Case I = P 2k+1. By definition we have
(

x
P 2k+1

)
=

(
x
P

)2k+1
=

(
x
P

)
. Then

f(I) =
∑

d∈O/P 2k+1

(
d
P

)
=

∑
s∈O/P

∑
t∈P/P 2k+1

(
s+t
P

)
=

∑
s∈O/P

∑
t∈P/P 2k+1

(
s
P

)
= N(P )2k

∑
s∈O/P

(
s
P

)
= N(P )2kf(P ) = 0.

Case I = P 2k. As
(

x
P 2k

)
=

(
x
P

)2k
= 1, then f(P 2k) = Φ(P 2k).

Lemma 4.4. Let 0 < n ≤ m and φ,ψ ∈ (O/Pm)̂ . Then

T (φ,ψ, Pm) =
∑

s∈(O/Pn)∗

(
s
P

)m
φ(s)ψ(s−1)

∑
t∈Pn/Pm

φ(t)ψ
( m∑
j=2

(−1)j+1s−jtj−1
)
.

Proof. See the proof of Lemma 6 in [3].

Given φ ∈ (O/Pm)̂ we set Nφ = min{n ≥ 0 : Pn ⊆ kerφ}, that is PNφ
is the largest power of P on which φ is trivial.

Corollary 4.5. Let φ,ψ ∈ (O/Pm)̂ , r1, r2 ∈ O.



i) If Nφ ̸= Nψ and max{Nφ, Nψ} ≥ 2, then T (φ,ψ, Pm) = 0.

ii) If N > 0 is such that N ≡ m (mod 2) and Nφ, Nψ ≤ N < m, then

T (φ,ψ, Pm) = N(P )m−N T (φ,ψ, PN ).

iii) If
(
r1
P

)
̸=

(
r2
P

)
then T (r1 φ, r2 φ,P

m) = 0.

Proof. Parts i) and ii) follow from Lema 4.4 with the same proof as in the
case of Kloosterman sums (Lemma 7 in [3]). We need the condition N ≡ m

(mod 2) in order to have
(
s
P

)m
=

(
s
P

)N
.

iii) We take n = m− 1 in Lemma 4.4. Then

T (r1φ, r2φ,P
m) =

∑
s∈(O/Pm−1)∗

(
s
P

)m
φ(r1s+ r2s

−1)
∑

t∈Pm−1/Pm

φ
(
(r1 − r2s

−2)t
)

The inner sum is zero unless r1 − r2s
−2 ∈ P .

Theorem 4.6. Let I be an odd ideal, and φ a generator of (O/I)̂ . Let
r, r′ ∈ O, r′ coprime with I. Then

T (rφ, r′φ, I) =

(
r′

I

)
G(φ, I)

∑
y2≡rr′ (I)

φ(2y).

Proof. (cf. [2], Lemma 4.9) We define the following functions in O/I:

F (x) =
∑

d∈(O/I)∗

(
d
I

)
φ(rd̄+ r′dx2) , F̂ (y) =

∑
x∈O/I

F (x)φ(−xy)

where d̄ denotes the inverse of d module I. Then

F̂ (y) =
∑
x∈O/I

∑
d∈(O/I)∗

(
d
I

)
φ(rd̄+ r′dx2)φ(−xy)

=
∑

d∈(O/I)∗

(
d
I

)
φ(rd̄)

∑
x∈O/I

φ(r′dx2 − xy)

=
∑

d∈(O/I)∗

(
d
I

)
φ(rd̄)

∑
x∈O/I

φ(r′d (x− 2r′d y)2)φ(−4r′d y2)

The last identity follows by completing the square. The inner sum can be
written in terms of Gauss sums:∑

x∈O/I

φ(r′d (x− 2r′d y)2) = G(r′dφ, I) =
(
r′d
I

)
G(φ, I).

Hence

F̂ (y) =
(
r′

I

)
G(φ, I)

∑
d∈(O/I)∗

φ(rd̄)φ(−4r′d y2).



Using that (2r′, I) = 1 we change the variable d′ = 4r′d.

F̂ (y) =
(
r′

I

)
G(φ, I)

∑
d∈(O/I)∗

φ((4rr′ − y2) d)

=
(
r′

I

)
G(φ, I)S[4rr′ − y2, 0, I]

where S[a, b, I] denotes the Kloosterman sum S(aφ, b φ, I).
By the decomposition formula for Kloosterman sums, given in [3] (Corollary
3), we have

S(nφ, 1, I) = N(I)
∑
J |I

J⊆ ker nφ

N(J)−1 µ(J),

where µ denotes the Möbius function.
If J ⊆ ker nφ then (n)J ⊆ ker φ. So, (n)J ⊆ I since φ generates (O/I)̂ .

Hence if I = J J ′ then J ′ divides to (n). Therefore

S[(4rr′ − y2), 0, I] =
∑

J |(4rr′−y2,I)

N(J)µ( IJ ).

We have

F (x) = N(I)−1
∑
y∈O/I

F̂ (y)φ(xy)

= N(I)−1
∑
y∈O/I

(
r′

I

)
G(φ, I)

∑
J |(4rr′−y2,I)

N(J)µ( IJ ) φ(xy)

= N(I)−1
(
r′

I

)
G(φ, I)

∑
J |I

N(J)µ( IJ )
∑
y∈O/I

y2≡4rr′(J)

φ(xy).

If s (resp. t) runs through a system of representatives of O/J (resp. J/I),
then y = s+t runs through a system mod I. We have (s+t)2 ≡ s2 (mod J).
Thus ∑

y∈O/I
y2≡4rr′(J)

φ(xy) =
∑
s∈O/J

s2≡4rr′(J)

∑
t∈J/I

φ(xs)φ(xt).

If (x, I) = 1 then xφ defines a non trivial character of the group J/I, unless
J = I. Hence

∑
t∈J/I φ(xt) = 0. Therefore for any x coprime to I we have

F (x) =
(
r′

I

)
G(φ, I)

∑
y∈O/I

y2≡4rr′(I)

φ(xy).

We evaluate in x = 1 and we obtain

T (rφ, r′φ, I) =
(
r′

I

)
G(φ, I)

∑
y∈O/I

y2≡rr′(J)

φ(2y).



The theorem is now proved.
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