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 25 

ABSTRACT 26 

Pseudomonas aeruginosa exploits intrinsic and acquired resistance mechanisms to resist almost 27 

every antibiotic used in chemotherapy. Antimicrobial resistance in P. aeruginosa isolated from 28 

cystic fibrosis (CF) patients is further enhanced by the occurrence of hypermutator strains, a 29 

hallmark of chronic CF infections. However, the within-patient genetic diversity of P. aeruginosa 30 

populations related to antibiotic resistance remains unexplored. Here, we show the evolution of 31 

the mutational resistome profile of a P. aeruginosa hypermutator lineage by performing 32 

longitudinal and transversal analyses of isolates collected from a CF patient throughout 20 years 33 

of chronic infection. Our results show the accumulation of thousands of mutations with an overall 34 

evolutionary history characterized by purifying selection. However, mutations in antibiotic 35 

resistance genes appear to be positively selected, driven by antibiotic treatment. Antibiotic 36 

resistance increased as infection progressed towards the establishment of a population constituted 37 

by genotypically diversified coexisting sub-lineages, all of which converged to multi-drug 38 

resistance. These sub-lineages emerged by parallel evolution through distinct evolutionary 39 

pathways, which affected genes of the same functional categories. Interestingly, ampC and fstI, 40 

encoding the β-lactamase and penicillin-binding protein 3, respectively, were found among the 41 

most frequently mutated genes. In fact, both genes were targeted by multiple independent 42 

mutational events, which led to a wide diversity of coexisting alleles underlying β-lactam 43 

resistance. Our findings indicate that hypermutators, apart from boosting antibiotic resistance 44 

evolution by simultaneously targeting several genes, favor the emergence of adaptive innovative 45 

alleles by clustering beneficial/compensatory mutations in the same gene, hence expanding P. 46 

aeruginosa strategies for persistence. 47 

IMPORTANCE  48 
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By increasing mutation rates, hypermutators boost antibiotic resistance evolution by enabling 49 

bacterial pathogens to fully exploit their genetic potential and achieve resistance mechanisms for 50 

almost every known antimicrobial agent. Here, we show how co-existing clones from a P. 51 

aeruginosa hypermutator lineage that evolved during 20 years of chronic infection and antibiotic 52 

chemotherapy, converged to multidrug resistance by targeting genes from alternative genetic 53 

pathways that are part of the broad P. aeruginosa resistome. Within this complex assembly of 54 

combinatorial genetic changes, in some specific cases, multiple mutations are needed in the same 55 

gene to reach a fine tuned resistance phenotype. Hypermutability enables this genetic edition 56 

towards higher resistance profiles by recurrently targeting these genes, thus promoting new 57 

epistatic relationships and the emergence of innovative resistance-conferring alleles. Our findings 58 

help to understand this link between hypermutability and antibiotic resistance, a key challenge for 59 

the design of new therapeutic strategies. 60 

  61 
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INTRODUCTION 62 

Antibiotic resistance has emerged as a global health concern with serious economic, social and 63 

political implications. Accordingly, it is becoming widely accepted that we are close to a post-64 

antibiotic era due to the increasing occurrence of multidrug-resistant pathogens and the failure to 65 

compensate this phenomenon with drug discovery (1).  66 

Among high-risk pathogens, Pseudomonas aeruginosa is one of the leading causes of nosocomial 67 

infections and the third most common bacterium isolated from infections acquired in intensive 68 

care units (2). Likewise, P. aeruginosa chronically infects the airways of cystic fibrosis (CF) 69 

patients and constitutes their main cause of morbidity and mortality (3).  70 

The effective intrinsic and acquired resistance mechanisms of P. aeruginosa to different types of 71 

antibiotics (4) and the emergence of multidrug-resistant (MDR) clones (5), severely compromise 72 

the treatment of these infections. Notably, several resistance genes, including different classes of 73 

carbapenemases, have spread among an increasing number of P. aeruginosa clones through 74 

horizontal gene transfer. In many cases, this makes colistin, and to some extent amikacin, the only 75 

available drugs to treat MDR P. aeruginosa infections (2).  76 

Intrinsic mechanisms of resistance involve mutations in chromosomal genes leading to the 77 

inactivation of the carbapenem porin OprD, the overexpression of AmpC and the upregulation of 78 

efflux pumps (4, 6, 7). Importantly, the concomitant accumulation of these mutations can lead to 79 

the emergence of MDR strains, which constitute a major concern in clinical setting (5).  80 

Frequently, the acquisition of these adaptive mutations is enhanced by increments in mutation 81 

rates like that observed in hypermutator strains of P. aeruginosa. Thus, it has been reported that 82 

36-54% of chronically infected CF patients are infected with hypermutator strains of P. 83 

aeruginosa, which are deficient in the DNA mismatch repair (MMR) system (8-13). The 84 

hypermutator phenotype has been correlated with increased development of antibiotic resistance 85 
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(8, 12, 14-16), acquisition of chronic infection adaptive variants (16-19), as well as metabolic 86 

adaptive transformations (20).  87 

Recent advances in whole-genome sequencing (WGS) techniques have provided insights into the 88 

evolutionary trajectories of adaptation of P. aeruginosa to the CF environment, particularly with 89 

regard to patho-adaptive mutations, such as those associated with antibiotic resistance (11, 21-90 

26). In this sense, “the mutational resistome” was recently defined as the set of mutations involved 91 

in modulation of antibiotic resistance levels in absence of horizontal gene transfer (27, 28). 92 

In a previous investigation, we studied the evolutionary trajectories of P. aeruginosa hypermutator 93 

lineages in long-term CF chronic infection (24). Comparative WGS analyses showed extensive 94 

within-patient genomic diversification, with populations composed of different sub-lineages that 95 

had coexisted for many years since the initial colonization of the patient. Importantly, certain 96 

genes were particularly enriched for mutations and underwent convergent evolution across the 97 

sub-lineages, suggesting that they are involved in the optimization process of the P. aeruginosa 98 

pathogenic fitness. Here, we characterize the mutational resistome and the antibiotic susceptibility 99 

profile of a hypermutator lineage sampled throughout a period of 20 years of evolution from the 100 

airways of a CF patient. To gain a comprehensive picture of the evolution of antibiotic resistance, 101 

we performed a longitudinal analysis by exploring WGS data of three sequentially isolated clones 102 

and a transversal study on a collection of 11 isolates obtained from a single sputum sample, which 103 

provided a snapshot of the genetic diversity at population level.  104 

  105 
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 RESULTS  106 

Emergence of multidrug-resistant isolates in the CFD collection. In our previous study, we 107 

sequenced whole genomes of 14 isolates belonging to the same clonal lineage of P. aeruginosa, 108 

spanning 20 years of a patient’s infection history (referred to as patient CFD) (24). This collection 109 

included a normo-mutator isolate obtained in 1991, which we used as the ancestral reference, two 110 

hypermutator isolates one from 1995 and the other from 2002, and 11 isolates obtained from the 111 

same sputum sample in 2011. 112 

All the hypermutator isolates harbor the same mutS mutation, which inactivates the MMR system 113 

(24). As shown in Fig. 1, patient CFD received prolonged treatment with a large and varied set of 114 

antibiotics during the course of chronic infection between 1986 and 2012. Treatment included five 115 

classes of antibiotics: β-lactams, aminoglycosides, quinolones, polymyxins and macrolides. To 116 

investigate the impact of antibiotic treatment on the resistance profiles of the CFD isolates, 117 

susceptibility to antibiotics representing all these major classes was tested by the agar diffusion 118 

method according to the CLSI guidelines. As observed in Fig. 2, all except for the 1991 isolate 119 

showed multidrug-resistance, meaning a reduced susceptibility to two or more classes of 120 

antibiotics. Starting from the general susceptible phenotype of the 1991 isolate, the 1995 exhibited 121 

resistance to β-lactams, whereas the 2002 isolate, in addition to β-lactams, gained resistance to 122 

ciprofloxacin, tobramycin, and colistin. Importantly, the collection of 2011 isolates showed the 123 

highest levels of resistance to ciprofloxacin, tobramycin, azithromycin, colistin and particularly 124 

to β-lactams such as cephalosporins and the monobactam aztreonam. Interestingly, in contrast to 125 

the 1995 isolate, the 2002 and all the 2011 isolates showed susceptibility to piperacillin-126 

tazobactam, resistance to which seems to have been lost after the acquisition of resistance to 127 

tobramycin, thus suggesting collateral sensitivity to penicillin-type-β-lactams as previously 128 

described by Barbosa et al. (29). On the other hand, even though colistin was used from 2004, all 129 
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isolates showed MIC values ranging from 8 to 32 µg/ml, which are relatively high compared to 130 

other data sets from clinical isolates (27, 28, 30, 31) (Fig. 2). Finally, although P. aeruginosa has 131 

no clinical breakpoints established for azithromycin, the evolved isolates showed relatively higher 132 

MICs than the 1991 and 1995 isolates. 133 

Mutations for antibiotic resistance are positively selected during evolution. In order to 134 

investigate the molecular bases of the antimicrobial resistance observed in CFD isolates, we 135 

explored the acquisition of mutations in a set of 168 chromosomal genes, here defined as the 136 

resistome, which have been described to be involved in P. aeruginosa antibiotic resistance 137 

mechanisms (27, 28, 32). Thus, using the 1991 genome as reference, we analyzed the distribution 138 

of a total of 5710 SNPs and 1078 indels accumulated in a period of 20 years of infection, which 139 

we have previously detected in the collection of isolates by WGS analysis (24). Furthermore, we 140 

also analyzed 39 SNPs (26 synonymous, 13 non-synonymous) detected in the genome sequence 141 

of the 1991 isolate when compared to the PAO1 genome. Sequence variations found within the 142 

resistome are documented in Supplementary Table 1 (Table S1). Interestingly, 93 (55%) of the 143 

168 investigated genes, showed non-synonymous SNPs and/or indels mutations of 1-3 bp in at 144 

least one of the isolates. On the other hand, 11 (6%) genes showed only synonymous mutations, 145 

and 64 (38%) showed no mutations (Fig. S1). Furthermore, 86 out of the 87 genes harboring non-146 

synonymous mutations (99%), were targeted with missense mutations, whereas a single gene (1%) 147 

showed a nonsense mutation (Fig. S1 and Table S1). By analyzing the ratio between non-148 

synonymous and synonymous mutations (dN/dS ratio) within the resistome in each CFD isolate 149 

(Table S2), we observed that in most isolates the signature of selection was higher than 1 and 150 

higher than the ratio obtained from SNPs affecting all the other genes (dN/dS=0.78). This indicates 151 

that these mutations were positively selected during chronic infection, and suggests that 152 

hypermutability may be linked to them as a key factor contributing to antibiotic resistance in CF. 153 
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Mutational resistome analysis was further focused on those genes that were targeted with non-154 

synonymous and/or frameshift mutations (Fig. 3), showing that accumulation of these mutations 155 

correlated with increased antibiotic resistance. Moreover, no mutations were detected in the 156 

ancestral 1991 isolate respect to the reference strain PAO1, in agreement with its general antibiotic 157 

susceptibility (Fig. 2). In some genes known to be involved in antibiotic resistance, single 158 

mutations were identified, such as D87G in GyrA and S278P in OprD (33, 34); in others, the 159 

accumulation of 3 to 5 different mutational events suggests that they have evolved under strong 160 

selective pressure. Such examples are amgS, mexX, fusA2 (involved in aminoglycoside resistance), 161 

mexF, oprN, poxB, mexI (involved in β-lactams resistance), polB, mexD, parE (involved in 162 

quinolone resistance), spuF (polyamines) and mexK (coding for a novel efflux system MexJK) 163 

(35). Remarkably, mexY, fusA1 (aminoglycoside resistance), ampC and ftsI (β-lactams resistance) 164 

accumulated more than 6 different mutations (Fig. 3), providing strong evidence for parallel 165 

evolution.  166 

The β-lactam resistome. As shown in Fig. 1, patient CFD received prolonged antibiotic courses 167 

with Ceftazidime as well as shorter courses of varying durations with different types of β-lactams, 168 

including other cephalosporins (Cefotaxime), penicillins (Piperacillin + tazobactam), 169 

monobactams (Aztreonam) and carbapenems (Thienamycin and Meropenem). As expected, 170 

resistance increased from the 1995 isolate to later isolates, reaching the highest resistance levels 171 

to cephalosporins, aztreonam and carbapenems in the 2011 isolates (Fig. 2). A total of 70 genes 172 

have been reported to be involved in the β-lactam resistome (27, 28), including: regulation of 173 

peptidoglycan-recycling genes (responsible for AmpC overproduction), genes encoding penicillin-174 

binding proteins (PBPs, targets of β-lactam antibiotics), or encoding regulators of efflux pumps 175 

such as mexAB-oprM (involved in β-lactam resistance) and mexEF-OprN (involved in 176 

carbapenem resistance) and, the oprD gene (involved in resistance to imipenem and susceptibility 177 
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to meropenem). We found that 42 of these 70 genes (60%) showed non-synonymous and/or 178 

frameshift mutations in at least one isolate of the CFD collection (Fig. 3). Of these 42 genes, 36 179 

showed accumulations of 1 to 2 mutations, most of them being unique to each specific cluster. It 180 

has been described that the emergence of resistance to penicillins and cephalosporins is mainly 181 

due to overproduction of the β-lactamase AmpC (36). However, the most frequent drivers of 182 

AmpC overproduction described in P. aeruginosa clinical strains, namely ampD, ampR and dacB 183 

(37-39), were not mutated among CFD isolates. Instead, all but the 1991 isolate showed a 184 

frameshift mutation in mpl, which encodes a UDP-N-acetylmuramate:l-alanyl-γ-d-glutamyl-meso-185 

diaminopimelate ligase, indicating that ampC could be overexpressed via this alternative negative 186 

regulator (40). Western blot analyses showed that all 2011 isolates showed an increased expression 187 

of AmpC compared to the 1991, 1995 and 2002 isolates, suggesting that alternative pathways may 188 

be responsible for AmpC overproduction in these isolates (Fig. S2). In addition, ampC was among 189 

the most mutated genes in the CFD collection together with the ftsI gene, showing 8 and 13 distinct 190 

missense mutations, respectively (Fig. 3). In fact, all CFD isolates, except 1991 and 1995, showed 191 

accumulation of mutations within ampC, with isolates from 2011 carrying up to four different 192 

mutations, combined in different ampC alleles. This strongly correlates with the increase in the 193 

MICs of cephalosporins and with aztreonam resistance in the evolved CFD isolates (Fig. 2), 194 

indicating that they were under high selective pressure during the CFD chronic infection process. 195 

Interestingly, the presence of mutations such as P154L, G216S and V213A, has been reported to 196 

be involved in β-lactam resistance (41). Likewise, all isolates except for 1991 showed mutations 197 

in ftsI, compared with isolates from 2011 showing up to six mutations combined in a single allele. 198 

Some of these mutations (Y367C, H394R, N427S, Q458R, Q475R, R504L, V523A, V523M and 199 

F533L) are located in the transpeptidase β-lactam binding site of the protein, and the latter mutation 200 

has been shown to play a key role in β-lactam recognition (42). Importantly, these mutations have 201 
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been documented to emerge among P. aeruginosa CF collections (28, 43, 44) and upon aztreonam 202 

exposure in vitro (45), whereas other mutations are described for the first time in this work (Table 203 

S1). The rest of the PBP encoding genes showed few mutations among the CFD collection.  204 

Although patient CFD received only short courses with carbapenems, we observed the emergence 205 

of high levels of resistance to carbapenems in all isolates except for the ancestral 1991 isolate. 206 

Previous reports have shown that loss of function mutations in the outer membrane protein OprD 207 

and/or overexpression of efflux pumps MexAB-OprM (meropenem resistance) and MexEF-OprN 208 

(imipenem and meropenem resistance) constitute main mechanisms to develop carbapenem 209 

resistance. However, only the 2002 isolate (Cluster I, defined according the phylogenetic tree 210 

showed in Figure 2) showed a missense mutation (S278P) within the oprD gene, which has been 211 

previously described to be involved in carbapenem resistance (34). Expression of the MexAB-212 

oprM system is controlled by the regulatory genes mexR, nalC and nalD (46, 47), and a missense 213 

mutation in nalC (M151T) was identified in the two isolates from Cluster V. Mutations F533L and 214 

R504 in PBP3 have been found to occur upon meropenem exposure during in vitro evolution 215 

studies and among CF patients treated with this drug (44, 48). Thus, high levels of carbapenem 216 

resistance may be associated with the presence of these ftsI mutations. Importantly, using 217 

ResFinder tool on WGS data from CFD isolates, we did not find genes coding for any class of β 218 

Metallo-beta-lactamases (MBLs) involved in carbapenem resistance, which are normally acquired 219 

through horizontal gene transfer (49). These results suggest that various different mutational 220 

mechanisms may be involved in carbapenem resistance in different coexisting CFD isolates, giving 221 

rise to distinct genetic pathways for the evolution of resistance to β-lactams. 222 

The aminoglycoside resistome. As shown in Fig. 1, patient CFD received extensive treatment 223 

courses of tobramycin. MIC determinations showed that all isolates, except for 1991 and 1995, 224 

became resistant to tobramycin. The main origin of high-level resistance to aminoglycosides is the 225 
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overexpression of MexXY-OprM efflux system (50), which is primarily caused by mexZ mutations 226 

(10, 21, 51). In addition, mutations in the amgRS and parRS two-component systems genes have 227 

also been involved in the regulation of MexXY expression (52). No mexZ mutations, however, 228 

were observed in the CFD collection of isolates, with the sole exception of isolate 2011_33 (Cluster 229 

VI), which showed a V29A mutation located within the DNA binding domain of the protein (Table 230 

S1) (53) and predicted to be deleterious (-3.351 PROVEAN v1.1.3). Instead, we found four 231 

different mutations in gene amgS, encoding the histidine kinase sensor of the membrane stress-232 

response two-component system, six mutations in mexY, encoding a component of the MexXY 233 

efflux pump, and six mutations in fusA1, which codes for the elongation factor G.  234 

MexY mutations have been frequently observed among drug-resistance isolates and CF epidemic 235 

clones (28, 31). Some mutations affect the general pump operation and impair the MexY-236 

dependent aminoglycoside resistance, whereas other mutations, located in domains associated with 237 

aminoglycoside recognition and export, may improve drug accommodation and consequently 238 

increase resistance (54). Furthermore, it was observed that the MexY mutation F1018L is able to 239 

increase pump-promoted resistance to aminoglycosides, cefepime, and fluoroquinolones (55). 240 

Importantly, here we describe for the first time the six mexY missense mutations. In this sense, 241 

their impact in MexXY pump function and aminoglycoside resistance remains unclear and 242 

deserves further investigation. 243 

Mutations in the amgS gene have been shown to be involved in intrinsic aminoglycoside resistance 244 

in P. aeruginosa (56). Although none of the four mutations in amgS found here have been 245 

previously reported (Table S1), all isolates from 2011 except 2011_33 showed an A203V mutation 246 

located within the linker HAMP domain. Interestingly, it has been reported that mutations in the 247 

linker domain of EnvZ, the closest E. coli homolog of AmgS, often cause activation of the kinase 248 

sensor (57, 58). Moreover, we found the P116L mutation, predicted to be deleterious (-2.539 249 
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PROVEAN v1.1.3). This mutation is located in the sensor domain of AmgS, where mutations 250 

involved in aminoglycoside resistance have been previously described (56). 251 

FusA1 mutations have been recently linked to the emergence of aminoglycoside resistance in vitro 252 

(59-61) as well as in clinical CF strains (28, 62-64). In fact, aminoglycoside resistance seems to 253 

be an indirect consequence of the alteration of elongation factor G (60). Isolate 2011_34 harbored 254 

two substitutions, V93A and D588G, located in domains G and IV of the protein, respectively, 255 

which have been reported to be gain-of-function mutations (28). Indeed, the V93A mutation was 256 

found to increase resistance to several aminoglycosides such as tobramycin, amikacin, and 257 

gentamycin (60). In several CFD isolates we identified four novel mutations in the fusA1 gene 258 

across the different domains of the protein sequence: domain II (V338A), domain III (A481V), 259 

domain IV (A595V) and domain V (Y683C). Isolate 1995, harboring the Y683C mutation, showed 260 

susceptibility to tobramycin (Fig. 2), suggesting that this mutation is not involved in 261 

aminoglycoside resistance. Moreover, Bolard et al. (60) recently reported that higher MICs are 262 

associated with mutations in domains II, IV and V, but not in domains G and III. Therefore, only 263 

mutations V338A (isolate 2002) and A595V (isolates 2011 from cluster III; Fig. 2) are expected 264 

to contribute to aminoglycoside resistance, although the effect of both substitutions needs to be 265 

characterized in future works. In conclusion, high-level of aminoglycoside resistance in the CFD 266 

population seems to have been acquired mostly by different mutations in the amgS and/or fusA1 267 

genes. 268 

The fluoroquinolone resistome. Patient CFD received two prolonged periods of treatment with 269 

ciprofloxacin, from 1992 to 2002 and from 2004 to 2012 (Fig. 1). MICs of ciprofloxacin revealed 270 

that most of the isolates exhibited high resistance levels to this antibiotic, whereas the 1991 and 271 

1995 isolates showed susceptibility and intermediate resistance, respectively (Fig. 2). High 272 

resistance to ciprofloxacin usually involves one or several mutations in quinolone resistance 273 
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determining (QRD) regions of the GyrAB subunits of topoisomerase II (gyrase), and the ParCE 274 

subunits of topoisomerase IV (28). Indeed, all CFD isolates except for the 1991, harbored the same 275 

D87G mutation in GyrA. In addition, isolate 2011_33 also carried a T83I mutation in this gyrase 276 

subunit. Importantly, both mutations are known to be involved in quinolone resistance (28, 31, 277 

33). Furthermore, two 2011 isolates from Cluster IV harbored an S618L substitution in GyrB. On 278 

the other hand, all isolates except for the 1991, accumulated mutations in the topoisomerase IV 279 

subunits ParC (P308L, T705A) and ParE (V199M, D462G, S492F), none of which have been 280 

previously described. Whether these mutations clustered in the chromosomally encoded 281 

topoisomerases II and IV were involved in quinolone resistance or were randomly fixed by genetic 282 

drift upon the high mutation supplies provided by hypermutability, remains to be elucidated. 283 

Nevertheless, the fact that many different mutations arose after fluoroquinolone treatments 284 

supports the previous observation that mutations involved in fluoroquinolone resistance can be 285 

highly variable (28). Importantly, with the use of the ResFinder tool we found the acquisition of a 286 

novel plasmid-encoded ciprofloxacin-modifying gene encoding the enzyme CrpP (65), which may 287 

explain the high-resistance profile observed in the two intermediate isolates from 1995 and 2002, 288 

and all isolates from 2011. 289 

Finally, we noticed that no mutations were observed in the negative regulator nfxB among the CFD 290 

isolates, which is commonly reported to achieve resistance to ciprofloxacin in a CF context due to 291 

the deregulation and concomitant overexpression of the efflux pump MexCD-OprJ (66). 292 

Furthermore, although all Cluster IV isolates from 2011 harbored a nonsense mutation in the 293 

transporter MexD (W1023STOP), which inactivates the efflux pump, it has been described that 294 

this mutation has no effect on the MIC of ciprofloxacin (67). 295 

The polymyxin resistome. Patient CFD received intensive treatment with colistin from 2004 to 296 

2011 (Fig. 1). According to CLSI, antibiotic susceptibility profiling revealed that every CFD 297 
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isolate was resistant to colistin (Fig. 2). However, the evolved 2011 isolates from cluster III, IV 298 

and V as well as the 2002 isolate, showed 2- to 4-fold increases in their MICs relative to 1991 and 299 

1995 isolates (8 μg/mL) (Fig. 2). Clinical strains of P. aeruginosa sometimes show resistance to 300 

polymyxins due to mutations in different two-component systems, such as PhoPQ, PmrAB, ParRS, 301 

CprRS and ColRS (68-72). Additionally, mutations causing derepression of the lipopolysaccharide 302 

(LPS) modifying (arn) operon, encoding the proteins necessary for the aminoarabinosylation of 303 

the lipid A moiety of the LPS, have been identified in colistin-resistant P. aeruginosa strains (30, 304 

70, 73). As shown in Fig. 3, the different CFD isolates accumulated unique mutations in genes 305 

phoP, pmrB, parR, colR and colS genes, which may affect each of the mentioned two-component 306 

systems. In fact, the 2002 isolate harbored a A45T mutation in ParR located in the receiver domain 307 

and close to the conserved phosphorylation residue D57, which was previously shown to be 308 

involved in colistin resistance (74). On the other hand, considering that mutations V30A in PhoP, 309 

and D138N in ColR were present in the more susceptible 1995 isolate, the increased resistance 310 

observed in the 2011 evolved isolates from clusters III, IV and V could be explained by the 311 

presence of mutations in PmrB (T132A), CprS (G396S), and/or ColS (T138A). These novel 312 

mutations are the first to suggest their contribution to polymyxin resistance and therefore need to 313 

be further explored. 314 

Other antibiotics. From the beginning of 2004 to 2012, patient CFD received systematic long-315 

term treatments with azithromycin combined with other antipseudomonal agents. Although 316 

macrolide resistance is frequent among CF isolates, only two reports describe the emergence of 317 

macrolide resistance in vivo (32, 75). As shown in Fig. 2, MICs of azithromycin for the later 318 

isolates within the 2011 collection showed a 4-fold increase or more, relative to the ancestral 319 

isolate from 1991. Consistent with this, all 2011 isolates carried mutations in gene PA4280.2, 320 

which encodes the 23S ribosomal subunit. In fact, isolate 2011_33 carried an A2044G substitution, 321 
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whereas the remaining isolates from 2011 carried a C2597T mutation, both located in the 322 

secondary structure of domain V of the ribosomal RNA gene and previously reported to confer 323 

macrolide resistance (32, 75). Thus, macrolide resistance in coexisting CFD 2011 isolates was 324 

acquired by distinct mutations in the same gene. This provides additional evidence for parallel 325 

molecular evolution at population level, with antibiotic chemotherapy as the key selection force 326 

during long-term CF chronic infections.    327 
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DISCUSSION 328 

The high prevalence of hypermutator clones in CF chronic infections is a matter of great relevance 329 

because their link to antibiotic resistance hampers infection management (8-10, 14, 24, 76). In this 330 

study, we explored the evolution of the mutational antibiotic resistome of a P. aeruginosa 331 

hypermutator lineage by combining a longitudinal and a transversal analysis that covered 20 years 332 

of CF chronic infection. Antibiotic resistance increased as infection progressed towards the 333 

establishment of a population consisting of genotypically diversified coexisting sub-lineages, all 334 

of which converged to multi-drug resistance. Particularly, while mutations observed in amgS are 335 

most likely altering the MexXY pump regulation, mutations affecting other multi-drug efflux 336 

pump regulators were only rarely observed among CFD isolates. Instead, multidrug resistance 337 

emerged through the combination of multiple resistance mutations in several independent loci.   338 

Hypermutators can be indirectly selected for and fixed by their genomic association with fitness-339 

improving alleles (77-80). Particularly, under selective conditions imposed by long-term antibiotic 340 

therapy in the CF airways, de novo beneficial mutations can be expected to accumulate over time. 341 

Early mutational events occurring during the course of long-term infection are expected to have a 342 

strong impact on the resistance phenotype and consequently on fitness. Later mutations, many of 343 

them compensatory, may lead to fine tuning of the activity/stability of the resistance related 344 

proteins, in which epistatic interactions may play important roles for the trajectories of resistance 345 

development (81-84). P. aeruginosa carries many different genes, which upon functional 346 

mutations provide a resistance phenotype (27, 28). Identification of these genes and the associated 347 

polymorphisms involved in resistance document how many of them converge through distinct 348 

genetic pathways to the same or similar resistance profiles (26, 85, 86).  349 

Hypermutability increases the likelihood of reaching the most appropriate combinations in 350 

adaptive terms. Considering the multiple genetic pathways in P. aeruginosa behind different 351 
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resistance mechanisms, our observations show how hypermutability increases the probability of 352 

exploiting these distinct pathways, which eventually converge towards antibiotic multi-resistance 353 

in the course of long-term chronic infections.  354 

We show how aggressive and persistent chemotherapy targeting a hypermutator population 355 

resulted in repeated but independent mutagenic events in resistance associated genes, providing 356 

clear evidence of parallel evolution in clones of the CFD population. This was for example the 357 

case with ampC and fstI, which for the CFD lineage constituted hot spots for the accumulation of 358 

mutations involved in β-lactam antibiotic resistance (39, 41, 48, 49). Some of these mutations have 359 

been previously described, whereas others are reported here for the first time. Most interestingly, 360 

novel alleles were observed, each harboring a combination of 2 to 6 mutations.  361 

Overproduction of the β-lactamase AmpC is considered to be the main cause of resistance to first- 362 

and second- generation cephalosporins as well as aminopenicillins in P. aeruginosa clinical strains 363 

(36). However, P. aeruginosa is also able to adapt to new and more effective β-lactams (87), 364 

through a variety of mutations affecting the AmpC β-lactamase (41, 48, 88). Here, we document 365 

the confluence of both strategies: variants overproducing AmpC, in which the combination of 366 

distinct mutations may contribute to even higher levels of resistance and/or substrate spectrum 367 

extension. Furthermore, the accumulation of several different mutations in the penicillin-binding 368 

protein PBP3 may be a complementary and/or additional pathway. PBP3 relevance in β-lactam 369 

resistance, including the new generation cephalosporins and carbapenems, has been very recently 370 

confirmed (27, 28, 31, 43, 48). The high number of different mutations clustered in both ampC 371 

and fstI genes combines into innovative resistance-conferring alleles, which demonstrate how 372 

drug-resistance mutations can become highly beneficial when combined with compensatory 373 

mutations, and thus document the extraordinary ability of P. aeruginosa to develop antibiotic 374 
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resistance. In this context, the emergence of such innovative alleles may be distinctly favored by 375 

hypermutator phenotypes, then limiting our available therapeutic arsenal.  376 

How can we understand co-existence of many different genetic variants showing the same 377 

resistance profile in patient airways, such as it has been documented here? One answer is based on 378 

the balance between clonal interference and multiple mutations (89, 90). We thus argue that 379 

hypermutability increases the rate of antibiotic resistance evolution by increasing piggy-backing 380 

of multiple resistance mutations, causing maintenance of a diversified population where adaptive 381 

variation is sustained by a dynamic equilibrium between mutation and selection. Moreover, in 382 

long-term evolutionary scenarios such as chronic infections, the selective forces imposed by 383 

antibiotics along with high mutation rates from hypermutability, may shape genetically diverse 384 

populations able to respond successfully to antibiotic treatments ensuring persistence of the 385 

bacterium. 386 

Our results provide new evidence concerning the way in which hypermutators can expedite the 387 

evolution of multidrug-resistance by increasing the probability of acquiring adaptive mutations to 388 

support long-term survival of P. aeruginosa in the airways of CF patients.  389 

  390 
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MATERIALS AND METHODS 391 

P. aeruginosa CFD collection. Clinical P. aeruginosa isolates were obtained from sputum 392 

samples from a CF patient attending the Copenhagen CF Centre at Rigshospitalet (Copenhagen, 393 

Denmark) (patient CFD). In a previous study (24), we sequenced the genomes of 14 isolates from 394 

this patient covering  ̴ 20 years of the patient lifespan (European Nucleotide Archive, ENA/SRA 395 

ERP002379). The CFD collection included: One normo-mutator isolate obtained in 1991 396 

(CFD_1991) five years after the onset of chronic P. aeruginosa infection in 1986; two sequential 397 

mismatch repair (MRS) deficient mutators from 1995 (CFD_1995) and 2002 (CFD_2002) that 398 

harbored the same ΔCG mutation in mutS at position 1551; and 11 P. aeruginosa isolates obtained 399 

from a single sputum sample in 2011 (CFD_2011), all harboring the ΔCG mutS mutation at 1551 400 

and belonging to the same hypermutator lineage. 401 

Profiling of antibiotic resistance genes. In order to correlate the documented resistance 402 

genotypes with the observed resistance phenotypes, single-nucleotide polymorphisms (SNPs) and 403 

indels (1- to 10-bp insertion/deletion mutations) for each isolate obtained from the previous study 404 

(24) were filtered based on an exhaustive literature review (27, 28). We also added PA0668.4, 405 

PA4280.2, PA4690.2 and PA5369.2 genes to the list, affecting macrolide resistance (32). Thus, 406 

we obtained a set of 168 genes known to be related to antibiotic resistance in P. aeruginosa. Indels 407 

and premature stop codons were considered to result in the inactivation of the corresponding 408 

protein product. The contribution of the documented SNPs to the phenotype was evaluated 409 

according to the available literature and by using online software tools for prediction of the effect 410 

of nucleotide substitutions on protein function, e.g. SIFT (91), PROVEAN (92) and SNAP2 (93). 411 

In addition, the online tool ResFinder v2.1 (https://cge.cbs.dtu.dk//services/ResFinder/) (94) was 412 

used to identify possible horizontally acquired antimicrobial resistance genes. 413 

https://cge.cbs.dtu.dk/services/ResFinder/
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Susceptibility testing. MICs determination was performed by using the broth dilution method, 414 

according to Clinical and Laboratory Standards Institute (CLSI) guidelines and breakpoints (95). 415 

Ten antimicrobials agents from five classes of antibiotics were tested. From the β-lactam class, 416 

shown as ≤susceptible/≥resistant breakpoints, ceftazidime (8/32µg/ml), cefepime (8/32µg/ml), 417 

piperacillin/tazobactam (16-4/128-4µg/ml), aztreonam (8/32µg/ml), imipenem (2/8 µg/ml) and 418 

meropenem (2/8 µg/ml) were used. Aminoglycosides: tobramycin (4/16µg/ml); fluoroquinolones: 419 

ciprofloxacin (0.5/2µg/ml); polymyxins: colistin (2/4µg/ml); macrolides: azithromycin (no 420 

information). P. aeruginosa ATCC 27853 was used as quality control strain.  421 

AmpC expression levels. CFD isolates were grown for 16 h on LB media and 1.5 mL of each 422 

culture was pelleted and resuspended in 20 mM Tris-HCl (pH 7.4), 0.5 M NaCl, 15% glycerol, 423 

amended with 0.2 mg/ml lysozyme, 1 mM 8 phenylmethylsulfonyl fluoride and 1 mM 424 

benzamidine, and incubating for 1 h on ice. After four sonication (2 min) and freeze/unfreeze 425 

cycles, intact cells were removed by centrifugation at 9000 g for 20 min and the extracts were 426 

stored at -20˚C. 25μg of total proteins were separated through sodium dodecyl sulfate (SDS)- 427 

polyacrylamide gel electrophoresis (PAGE) 12%, then proteins were transferred to 428 

polyvinylidene fluoride (PVDF) membranes for 1.5 hours at 350 mA. The blots were blocked for 429 

one hour in 5% milk in phosphate-buffered saline (PBS) solution at room temperature. 430 

Incubation with primary antibody (rabbit anti-PDC-3 policlonal, (96), was added at 1/1,000 431 

overnight at 4˚C in 5% milk/PBS, then washings were performed with PBS/Tween 20, and the 432 

secondary antibody (IRDye 680RD anti-rabbit, LI-COR) was added at a 1:20,000 dilution for 1 433 

hour in 5% milk/PBS. Membranes were scanned on Odyssey infrared imager instrument (LI-434 

COR Bioscience). 435 

 436 

 437 
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 755 

Figure 1. Overview of isolate sampling time points and antibiotic treatment. 756 
 757 
P. aeruginosa isolates were collected from patient CFD between 1991 and 2011. +/- symbols 758 

indicate hypermutability state of P. aeruginosa strains. Antibiotics used in chemotherapy through 759 

the 20 years study are listed in the Y axis. Grey circles indicate the start and end of an antibiotic 760 

dose.    761 
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 765 

Figure 2. Antibiotic resistance profiles of P. aeruginosa isolates from the CFD lineage. Each 766 

column represents the Minimal Inhibitory Concentration (MIC) values of the different antibiotic 767 

tested: piperacillin-tazobactam (TZP); ceftazidime (CAZ); cefepime (FEP);; aztreonam (ATM); 768 

imipenem (IMI); meropenem (MEM); ciprofloxacin (CIP); tobramycin (TOB); colistin (CST) and 769 

azithromycin (AZM). Red intensity indicates MIC levels for each antibiotic. Asterisks (*) indicate 770 

resistance according to CLSI. Left tree represents the genetic clustering of isolates (rows) based 771 

on the result of maximum-parsimony analysis. The phylogenetic tree on the left was constructed 772 

based on the accumulation of new SNPs relative to ancestor 1991 (24). 773 
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 774 

Figure 3. Resistome of the CFD isolate collection.  775 

Mutations potentially affecting protein function in 93 out of the 168 antibiotic resistance genes 776 

were analyzed. Genes and variants were grouped by antibiotic class. Upper panel: number of 777 

independent mutations found within each specific gene along the CFD lineage. Lower panel: 778 

heatmap of the number of mutations accumulated per gene in each genome. Isolates were grouped 779 

based on the genetic clustering defined in Fig. 2. *Asterisks indicate genes which are also involved 780 

in conferring resistance to other antibiotic classes; crc (β-lactams), sucC and PA5528 (quinolones).  781 
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SUPPLEMENTARY LEGENDS 788 

Figure S1. Analysis of type of mutations found in antibiotic resistance genes in P. aeruginosa 789 

isolates from CFD patient. 790 

Pie charts indicate the observed percentage for each kind of mutation respect to the total number 791 

of mutations occurring in the 168 belonging to the P. aeruginosa resistome.  792 

Figure S2. Western blot of CFD isolates.   793 

Total proteins (25μg) were obtained from whole-cell lysates from each P. aeruginosa clinical 794 

isolates, resolved in a 12% polyacrylamide gel, and tested with a PDC-3 antibody.  795 

Table S1. Nonsynonymous and frameshift mutations found within 93 out of 168 antibiotic 796 

resistance genes in CFD collection. 797 

Table S2. Number of genes mutated and type of mutations found in the sequenced 798 

genomes.  799 


