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Serratia fonticola is a human pathogen widely found in the environment, with birds being reported as possible
natural hosts. During an epidemiological and genomic surveillance study conducted to monitor the occurrence
of extended-spectrum b-lactamase (ESBL)-producing Enterobacterales in South American wild birds, we
identified an ESBL-positive S. fonticola in a fecal sample collected from a Hudsonian Whimbrel, during its non-
breeding range on the Pacific Coast of Chile. Whole genome sequencing analysis and ‘‘in silico’’ modeling
revealed a novel variant of the class A ESBLs FONA family, designated FONA-7, which shows 96.28% amino
acid identity with FONA-6; with amino acid substitutions occurring in the signal peptide sequence (Thr22/
Ser), and in the mature protein (Ser39/Asn and Thr227/Ile). This finding denotes that migratory birds can
be potential vectors for the transboundary spread of ESBL-producing bacteria, creating a further theoretical risk
for the origin of novel plasmid-encoded b-lactamases.
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Introduction

Serratia fonticola is a member of the Yersiniaceae
family, order Enterobacterales; widely found in the en-

vironment (i.e., drinking water, sewage, and soil), with birds
being reported as possible natural hosts.1,2 As human pathogen,
S. fonticola has been associated with diarrhea, septic arthritis,
and wound, respiratory, urinary tract, bloodstream, or skin and
soft tissue infections.1,2 Resistance to b-lactams in S. fonticola
has been mediated by chromosomal class A extended-spectrum
b-lactamases (ESBLs) belonging to the FONA family.3,4 To
date, six variants of the FONA gene (blaFONA-1 to blaFONA-6)
have been reported (GenBank accession numbers:
AJ251239.1–AJ251244.1). We hereby report FONA-7, a novel
FONA-type ESBL identified in a S. fonticola strain isolated
from the migratory shorebird Hudsonian Whimbrel (Numenius
phaeopus hudsonicus), in South America.

Materials and Methods

Identification of the isolate and antimicrobial
susceptibility testing

During an epidemiological and genomic surveillance
study conducted to monitor the occurrence of ESBL-

producing Enterobacterales in South American wild birds
(n = 58) (Supplementary Table S1), we isolated a Gram-
negative and lactose-positive bacteria that grows on Mac-
Conkey agar supplemented with ceftriaxone (2 mg/mL),
from a fecal sample of a wild bird (Hudsonian Whimbrel),
during its non-breeding range on the Pacific Coast of Chile
(35� 30¢ S, 72� 31¢ W). Initially, bacterial identification and
susceptibility profile were determined by Vitek 2 system
(bioMérieux, Inc., Hazelwood, MO), with further species
confirmation by matrix-assisted laser desorption ionization
time-of-flight mass spectrometry system (Bruker Daltonik)
and susceptibility profile determined by disk diffusion, and
E test methods.5,6 ESBL production was confirmed by
double disk synergy test, whereas additional production of
AmpC b-lactamase was detected by disk potentiation
method using 3-amino phenyl boronic acid (APB) with ce-
foxitin and cefoxitin-APB disks.7

Whole genome sequencing analysis, alignment
of FONA-type protein sequences,
and in silico modeling

The total genomic DNA of S. fonticola PE1 was extracted
and used to construct a paired-end library, which was
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sequenced using the MiSeq platform (Illumina) with 2 · 300 bp
sequence length. De novo genome assembly was carried out
using SPAdes v3.13.1,8 and automatic annotation was per-
formed using Prokka v1.13.3 (www.github.com/tseemann/
prokka). Antibiotic resistance genes and plasmid replicons
were identified using ResFinder v3.2 and PlasmidFinder v2.1,
respectively.9,10 The alignment of all known FONA-type
predicted protein sequences (i.e., FONA-1 [CAB61635.1],
FONA-2 [CAB61637.1], FONA-3 [CAB61639.1], FONA-
4 [CAB61641.1], FONA-5 [CAB61643.1], and FONA-6
[CAB61645.1]) was performed using Clustal Omega v1.2.4
(https://www.ebi.ac.uk/Tools/msa/clustalo), whereas in silico
modeling of the FONA ESBL in combination with cefotaxime
and ceftazidime was performed using Swiss-Model,11 Ya-
sara,12 and PyMol.13

Results

Identification of the isolate and antibiotic
susceptibility profile

Bacterial cultures yielded growth of a S. fonticola des-
ignated PE1 strain, which displayed resistance to ampicillin,
amoxicillin, ticarcillin, piperacillin, amoxicillin-clavulanic
acid, ampicillin-sulbactam, ticarcillin-clavulanic acid, az-
treonam, cefoxitin, cephalexin, cephalothin, cephazolin,
cefaclor, cefuroxime, cefixime, cefoperazone, cefotaxime,
ceftazidime, ceftriaxone, ceftiofur, cefepime, and cefpo-
doxime (Table 1). In addition, S. fonticola PE1 exhibited an
intermediate susceptibility to piperacillin/tazobactam, re-
maining susceptible to ertapenem, imipenem, meropenem,
doripenem, gentamicin (minimal inhibitory concentration
[MIC] = 0.25 mg/mL), amikacin (MIC = 1.5 mg/mL), strep-
tomycin (MIC = 6mg/mL), nalidixic acid (MIC £2mg/mL),
ciprofloxacin (MIC £0.25 mg/mL), enrofloxacin (MIC =
0.19 mg/mL), norfloxacin (MIC £0.5 mg/mL), chloramphen-
icol (MIC = 2mg/mL), tetracycline (MIC = 2 mg/mL), and
trimethoprim/sulfamethoxazole (MIC £2/38 mg/mL).

Genomic background of ESBL-producing S. fonticola
PE1 strain and identification of the novel
FONA-type ESBL

Whole genome sequencing analysis of S. fonticola PE1
revealed the presence of a novel FONA-type b-lactamase,
named FONA-7, as assigned by National Center for Bio-
technology Information (GenBank accession number:
MN634199), with a 96.28% amino acidic identity to FONA-
6 (GenBank accession number: NG_049097.1), and no
plasmids were detected. In addition, S. fonticola PE1 carried
a chromosomal AmpC, which shared 99% identity with
intrinsic class C b-lactamases identified in S. fonticola
(GenBank accession number WP_065685009.1). The
alignment of all FONA-type predicted protein sequences
revealed three amino acid substitutions in FONA-7, in
comparison with FONA-6, with one occurring in the signal
peptide sequence (Thr22/Ser) and two in the mature
protein (Ser39/Asn and Thr227/Ile) (Fig. 1). Both
substitutions occurring in the mature chain are in the
solvent-accessible surface of the protein (Fig. 2), for which
they are supposed to not contribute to modifications in the
b-lactamase activity. In silico modeling of FONA-7 in
combination with cefotaxime and ceftazidime showed that

this b-lactamase is able to efficiently accommodate and
hydrolyze oxyimino-cephalosporins (Fig. 2), in accordance
with the observed phenotypic behavior.

Discussion

The antimicrobial resistance (AMR), supported by the
vertical and/or horizontal transfer of antibiotic resistance
genes, is a serious public health challenge globally.9 Al-
though, AMR has been widely associated with pathogens in
clinical settings, it is becoming increasingly recognized that
nonclinical environments and nonhuman host may also be
reservoirs of AMR genes.14 In this regard, several studies
have confirmed that migratory birds can carry bacterial
species harboring clinically significant resistance genes
acting, therefore, as reservoir and potential vectors in the
global dissemination of antibacterial resistance.14–17

In this study, we report a novel ESBL variant of the FONA
family, designated FONA-7, in a S. fonticola isolated from
Hudsonian Whimbrel, a large migratory shorebird that breed
in North America and migrates annually to South America,18

confirming that migratory birds can be potential vectors for
the transboundary spread of ESBL-producing bacteria.

Table 1. Susceptibility Profile and Minimal

Inhibitory Concentrations of b-Lactam

Antibiotics for Serratia fonticola Strain PE1
Carrying the Novel Extended-Spectrum

b-Lactamase FONA-7 Variant

b-Lactam antibiotics
Interpretative category

(MIC, lg/mL)a

Ampicillin R (>256)d

Amoxicillin R (>32)c

Ticarcillin Rb

Piperacillin Rb

Amoxicillin/clavulanic acid R (‡32/16)c

Ampicillin/sulbactam Rb

Ticarcillin/clavulanic acid Rb

Piperacillin/tazobactam I (32/4)c

Aztreonam R (256)d

Cefoxitin R (64)d

Cephalexin R (>32)c

Cephalothin R (256)d

Cephazolin R (>32)c

Cefaclor R (>32)c

Cefuroxime R (64)c

Cefixime R (256)d

Cefoperazone R (>64)c

Cefotaxime R (256)d

Ceftazidime R (32)d

Ceftriaxone R (256)c

Ceftiofur R (>32)c

Cefpodoxime Rb

Cefepime R (256)d

Doripenem Sb

Ertapenem S (£0.5)c

Imipenem S (0.75)d

Meropenem S (0.064)d

aInterpretative categories according to CLSI documents.5,6

bSusceptibility profile determined by disk diffusion method.
cMICs determined by Vitek 2 system.
dMICs determined by E test method.
CLSI, Clinical and Laboratory Standards Institute; MICs, min-

imal inhibitory concentrations.
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Currently, next-generation sequencing technologies along
with sophisticated bioinformatics platforms have improved
the diagnostic of bacterial infections and bacterial resistance
surveillance.19–21 Specifically, the in silico prediction of
resistome from bacterial genomes has allowed to track the
origin of clinically relevant resistance genes, monitoring
their further spread among bacterial population. In this re-
gard, user-friendly and high-quality openly available
bioinformatic tools that use database that captures AMR
genes from whole-genome data sets are currently available

for bacterial genome analyses. Therefore, it is crucial that
novel resistance genes, including blaESBL variants, are
identified and published, to keep AMR gene repositories as
updated as possible.19–21

Although, lack of enzyme kinetics data can be considered
as limitation of this study, the FONA-7 ESBL activity could
be evidenced by the resistance phenotype to penicillins and
broad-spectrum cephalosporins (Table 1). However, addi-
tional studies evaluating the kinetics of FONA-7 are nec-
essary to better understand the biochemical characteristics

FIG. 1. Multiple sequence alignment of FONA-type ESBLs, including FONA-1 (GenBank accession number:
CAB61635.1), FONA-2 (GenBank accession number: CAB61637.1), FONA-3 (GenBank accession number: CAB61639.1),
FONA-4 (GenBank accession number: CAB61641.1), FONA-5 (GenBank accession number: CAB61643.1), FONA-6
(GenBank accession number: CAB61645.1), and FONA-7 (this study, GenBank accession number: MN634199). Conserved
motifs of class A b-lactamase are indicated by dashed squares. Amino acid substitutions (Thr22/Ser; Ser39/Asn; and
Thr227/Ile) in FONA-7 are indicated by solid squares. ESBLs, extended-spectrum b-lactamases.
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of this novel FONA-type ESBL variant. In contrast, al-
though this finding denotes a theoretical risk for the origin of
a novel plasmid-encoded enzyme in migratory birds and in
its trans-American flyway, more research must be done to
determine whether an exchange of chromosomal FONA
ESBL gene occurs between S. fonticola and other entero-
bacterial species in the gut of human and other animal hosts.
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