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Highlights 

- Prosopis alba exudate gum (G) was used as excipient in fish oil alginate beads.  

 

- Polyelectrolyte interactions were study through sol-gel phase diagrams.  

 

- Alginate-G suspensions are suitable for fish oil emulsification and beads generation. 

 

- G introduction improves the encapsulation efficiency and yield after vacuum drying. 

 

- G modulates the matrix structure, improving oil retention and oil thermo stability. 
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Abstract  

In this work, a bottom-up approach based on the study of polyelectrolyte interactions 

was performed in order to evaluate the effect of Prosopis alba exudate gum as novel 

excipient for fish oil encapsulation in composed calcium-alginate-chitosan beads. Emulsion 

and beads properties such as oil distribution, encapsulation efficiency, yield, 

microstructure and thermo-oxidative protection were evaluated. Alginate and gum exert a 

synergistic effect on emulsion stability properties, which conducted to better oil distribution 

in the beads and higher encapsulation efficiencies (98%) and yield (89%). The positive 

effect of including the gum as wall material was observed in terms of a higher oil retention 

capacity of the alginate beads, improved oxidative thermal stability and better 

microstructural features. Present results are promising and allowed considering P. alba 

gum as a novel non-conventional polyelectrolyte for improving Ca-alginate beads 

microstructure and stability with the added benefit of taking advantage of an available 

resource currently untapped. 

Keywords:  

- Prosopis alba exudate gum 

- Ionotropic gelation 

- Fish oil encapsulation 

- Hydrocolloids interaction 

- Sodium alginate  

- Calcium chloride   
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Chemical compounds studied in this article: 

Sodium alginate (PubChem CID: 5102882); Chitosan (PubChem CID: 71853); Calcium 

chloride (PubChem CID: 5284359); hydrochloric acid (PubChem CID: 313); n-hexane 

(PubChem CID: 8058); ethanol (PubChem CID: 702); ethyl ether (PubChem CID: 3283).  



  6 

1. Introduction 

Alginate (A) is a natural polysaccharide derived from brown seaweeds (Phaeophyceae), 

and its basic structure consists of linear unbranched polymers containing α-(1→4)-linked 

D-mannuronic acid and β-(1→4)-linked L-guluronic acid residues arranged as linear 

homopolymeric and heteropolymeric blocks (Pawar & Edgar, 2012). Recognized gelation 

properties of A in presence of divalent cations has promoted its use for the encapsulation 

of several pharmaceuticals and nutrients (Lee & Mooney, 2012; Pongjanyakul & 

Puttipipatkhachorn, 2007). The entrapment of bioactives substances, is based on cross-

linking of alginate uronic acids with cations as Ca2+. The alginate matrix consisting of an 

open lattice structure forms porous beads (Bhattarai, Dhandapani, & Shrestha, 2011). 

Hence, the low retention capacity and high oxygen permeability could limit the use for 

protection and deliver of easily oxidizable compounds.  

The encapsulation of many different oils for nutrition, therapeutics, and flavoring or 

aromas in alginate matrices has been reported (Abang, Chan, & Poncelet, 2012; Sun-

Waterhouse, Zhou, Miskelly, Wibisono, & Wadhwa, 2011; Wang, Waterhouse, & Sun-

Waterhouse, 2013). Particularly, for lipid encapsulation, alginate gel particles have been 

considered to be superior compared to those obtained by spray drying  (Abang et al., 

2012) since gelation can occur at mild conditions. However, these particles need a precise 

structuring of the encapsulating matrix to provide sufficient stability and protection to the 

core material. Physicochemical and delivery A-Ca2+ beads properties could be modified by 

incorporation of other substances to form composite gel systems (Córdoba, Deladino, & 

Martino, 2013; Wang et al., 2013; Wichchukit, Oztop, McCarthy, & McCarthy, 2013) and 

also by adsorption of the formed beads with a double or multiple coating (Bhattarai et al., 

2011; Peniche, Howland, Carrillo, Zaldı́var, & Argüelles-Monal, 2004). The mixture of 

alginate with other polymers have widely spread the functionality and usefulness of 
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alginate capsules in several applications (Pongjanyakul & Puttipipatkhachorn, 2007). 

Some water-soluble polymers were used to reinforce A-Ca2+ beads by allowing the 

formation of alginate hydrocolloids complexes. Surface-active hydrocolloids specially 

contribute with core material protection providing an integral part of the protective 

environment through its barrier properties (Drusch & Mannino, 2009). In almost all 

industrial techniques employed for microencapsulation of lipid substances, the first step is 

the preparation of an emulsion comprising the oil of interest and the encapsulation 

materials in aqueous form (Chan, 2011; Drusch & Mannino, 2009). Emulsifying constituent 

of the carrier matrix built a defined structure at the oil-water interface giving a solid multi-

phase particle by gelation and subsequent water removal in the drying step (Drusch & 

Mannino, 2009). Thus, emulsions properties determines several properties of the 

encapsulates, mainly related to the retention and protection (Klaypradit & Huang, 2008). 

Therefore, one of the criteria for selecting encapsulation materials is based on its 

emulsifying activity (Chan, 2011).  

Prosopis alba exudate gum (G) is the naturally occurring exudate obtained from 

branches and trunk of P. alba trees, widely spread in arid and semiarid regions of South 

America, especially at the north-east region of Argentine. It is a surface-active and water-

soluble hydrocolloid with a considerable high protein fraction (13.81 ± 0,33 % db.), which 

shows emulsion properties similar and even superior of those of arabic gum (Vasile, 

Martinez, Ruiz-Henestrosa, Judis, & Mazzobre, 2016). However, this natural hydrocolloid 

resource is currently untapped. In a recent publication on functional properties of P. alba, 

we pointed out its usefulness as food additive or excipient in novel applications as 

encapsulating agent of polyunsaturated fatty acids rich oils (Vasile, Romero, Judis, & 

Mazzobre, 2016). This work showed that fatty acids quality and lipid health indices were 

widely preserved in beads containing the gum.  From these studies we hypothesize that 

the introduction of G in A-Ca2+ beads may positively influence the structure and hence 
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improve the protection properties of the capsules containing highly oxidizable oils. 

Therefore, a bottom-up approach based on hydrocolloids interactions with a precise 

definition of the goals at each stage of the encapsulation process must be performed. In 

the present work, composite beads of G and A, covered with chitosan and containing a 

fish oil were prepared by ionic gelation method. The effect of P. alba exudate gum on 

alginates suspensions was evaluated on fish oil emulsion properties and related with some 

beads properties such as oil distribution, encapsulation efficiency, yield, microstructure 

and thermo-oxidative protection.       
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2. Materials and methods 

2.1. Materials 

Prosopis alba exudate gum (G) (Ara: 0.67, Gal: 0.19, Rha: 0.01, GlcUA: 0.12; [η]: 

1.77·10-2 L·g-1) was obtained by purification from exudates, manually collected from native 

and protected trees located in the central zone of the province of Chaco, in the northeast 

Argentina. The trees popularly known as “Algarrobo blanco”, were botanically identified by 

the IBONE (Botanical Institute of the Northeast, Corrientes, Argentina). The samples 

included natural exudations (on the main trunk and branches) and also exudations 

produced by mechanical damages (due to agricultural practices and other types of 

wounds). The samples had a bitter taste, slightly sweet odor and variable colors (from 

clear amber to dark reddish brown). The collected exudates were prepared as previously 

described in Vasile et al. (2016). 20 g of collected gum nodules were dispersed in 100 ml 

of water, at 75 ºC under constant stirring for 1 h. The suspension was then clarified by 

filtration (Whatman No. 4, Uppsala Sweden) and the resultant solution was frozen at - 

40ºC and freeze-dried (Rificor, Model L-I-E300-CRT, Buenos Aires, Argentina). 

Commercial sodium alginate (A) was provided by Cargill (Buenos Aires, Argentina) 

(Algogel 6020, medium molecular weight 135 kDa, guluronic/mannuronic ratio 56/44). 

Chitosan (Ch) (medium molecular weight, 190–310 kDa with deacetylation degree of 75–

85%) used in this study was purchased from Sigma–Aldrich (St Louis, MO, USA). Refined 

fish oil (FO) was cordially provided by GIHON (Mar del Plata, Argentina) and it was used 

as supplied, without previous purification. All other reactants (calcium chloride, 

hydrochloric acid, n-hexane, ethanol, petroleum ether and ethyl ether) were commercially 

available and used as received. Double distilled water was used in all experiments.  

2.2. Methods 

http://en.wikipedia.org/wiki/Argentina
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2.2.1. Phase diagrams for study of polyelectrolytes interactions 

Phase diagrams were made to study the polyelectrolyte interactions and its effect on 

physical state of aqueous suspension prior to emulsification, and during gel formation by 

ionic gelation. Firstly, a binary phase diagram was made for A+G blends, varying A (0 – 

3% w/v) and G (0 – 4% w/v) concentrations in aqueous suspensions at room temperature, 

according to a simple network approach (Correa, 2003; Mestdagh & Axelos, 1999). For 

that, 0, 0.1, 0.2, 0.3 and 0.4 g of G were introduced in 10 ml of aqueous dispersions 

containing 0, 0.1, 0.2 or 0.3 g of A in all blends combinations. Hydrocolloids dispersions 

were left standing overnight at 25 °C to complete the polymer hydration. After that, 

macroscopic physical sate of suspensions was visually characterized as SOL (flow when 

tube is inverted) or GEL (not flow when tube is inverted) states. Following the same 

approach, a ternary phase diagram was made introducing calcium (gelling agent) as third 

component. Three milliliters of double distilled water with 0, 0.015, 0.03, 0.045, 0.06, 

0.075, and 0.09 g of CaCl2 (0 - 3 % w/v) were introduced in 2 ml of A+G aqueous 

dispersions prepared with 0.02 g of A (1% w/v) and 0, 0.01, 0.02, 0.03, 0.04, 0.05 and 0.06 

g of G (0 – 3 % w/v). Macroscopic physical sate of blends was immediately characterized 

after calcium introduction as SOL (flow) and GEL (not flow), the presence of syneresis 

(Syn), liquid outflow from gel, was also evaluated in the GEL systems. In both diagrams, 

the physical state of blends at each composition was registered in a bidimensional plot. 

The regions indicating the different phases were limited by lines separating the 

experimental points.   

2.2.2. Effect of gum in the forming emulsion properties 

2.2.2.1. Preparation of polyelectrolyte suspensions and fish oil emulsions 
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Aqueous suspensions of A (1% w/v), G (2% w/v) and A+G (1 % w/v of A and 2% w/v of 

G) in a final volume of 3 ml, were prepared. Individual or combined polyelectrolytes were 

dispersed in double distilled water and left standing overnight with gentle stirring to 

complete the biopolymers hydration at room temperature. Commercial fish oil was 

dispersed in aqueous hydrocolloid suspensions to obtain emulsions of 0.1 oil volume 

fraction. The pre-emulsion was performed for 2 min at medium speed with Ultra-turrax 

(T18 IKA, Staufen, Germany) and final emulsion was carried out at 20000 rpm for 3 min. 

2.2.2.2. Droplet size distribution  

Droplet size distributions of emulsions were determined by static light scattering (SLS) 

using a Mastersizer 2000 device equipped with a Hydro 2000MU as dispersion unit 

(Malvern Instruments, Worcestershire, United Kingdom). The pump speed was settled at 

1800 rpm. The refractive index (RI) of the disperse phase (fish oil, RI = 1.479) and its 

absorption parameter (0.001) were used.  

Droplet size was reported as D3,2 diameter (volume–surface mean diameter or Sauter 

diameter, Eq. (1)) and D4,3 diameter (equivalent volume-mean diameter or De Broucker 

diameter, Eq. (2)).  

D3,2 = Σ ni di
3 / Σ ni di

2          (1) 

D4,3 = Σ ni di
4 / Σ ni di3          (2) 

where ni is the number of particles of diameter di (Galazka, Dickinson, & Ledward, 1996; 

Leroux, Langendorff, Schick, Vaishnav, & Mazoyer, 2003). 

D4,3 provides a measure of the mean diameter of most of the droplets and  is related to 

changes in droplet size involving destabilization processes so it is more sensitive to oil 

droplet aggregation (Galazka et al., 1996; Relkin & Sourdet, 2005) . 



  12 

The droplet size values are reported as the average and standard deviation of 

duplicates, with ten readings made per duplicate. Readings were performed at 0, 0.5, 1, 2 

and 24 h at room temperature, in order to evaluate the emulsion stability.  

2.2.2.3. ζ-potential measurements 

ζ–potential measurements were performed in a dynamic laser light scattering (DLS) 

instrument (Zetasizer Nano–ZS, Malvern Instruments, Worcestershire, United Kingdom). 

The ζ–potential was evaluated from the electrophoretic mobility of the particles. The 

conversion of the measured electrophoretic mobility data into ζ–potential was done using 

Henry’s equation Eq. (3) (Hunter, 2001): 

Ue = 2εζƒ(Ka) / 3η          (3) 

where Ue is the electrophoretic mobility, ε the dielectric constant, η the sample viscosity 

and ƒ(Ka) the Henry’s function.  

Emulsions were previously diluted 1:100 with water and put into disposable capillary 

cells (DTS1060, Malvern Instruments, Worcestershire, United Kingdom). The reported 

values are the average and standard deviation of duplicates, with five readings made per 

duplicate.  

2.2.3. Generation and characterization of polyelectrolyte bead systems 

2.2.3.1. Generation of encapsulates by ionic gelation 

Ten grams of fish oil emulsions stabilized with A or A+G, were prepared as described 

above. Hydrogel beads were generated by emulsion dropping into a gelling bath. A 

peristaltic pump (Boading Longer Precision Pump Co, Model BT50-1J, Habei, China) fitted 

at 9 ± 0.1 rpm was used to drop the A or A+G emulsions into a 20 g/l CaCl2 (Cicarelli, p.a.) 

aqueous solution. Cross-linking of alginate uronic acids with calcium cations  is known to 
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occur  through the  “egg-box” model (Grant, Morris, Rees, Smith, & Thom, 1973). The tip 

of the needle (0.25 mm of inner diameter) was fixed at 6 cm above the surface of the 

crosslinking solution. The gelling bath was gently stirred with an orbital shaker to prevent 

the agglomeration of beads. After generation, the beads were hardened for 10 min in the 

CaCl2 solution (Peniche et al., 2004) and then transferred into a 2% w/v chitosan solution 

(prepared in 0.1 M HCl) for others 10 min. Finally, beads were washed with CaCl2 solution. 

The effect of vacuum and freeze drying methods were examined. Vacuum dried beads 

were obtained in an oven operating at a chamber pressure of 700 mbar (Fistreem 

International, Ltd., Loughborough, England) with dried silica gel as desiccant agent at 30 

ºC during 24 h. Freeze dried beads were initially frozen at -40 °C and then freeze-dried 

(Rificor, Model L-I-E300-CRT, Buenos Aires, Argentina). 

2.2.3.2. Accelerated oil extraction in beads systems 

The accelerated solvent oil extraction was performed by successively removing the oil 

with n-hexane on recently prepared and vacuum or freeze-dried beads (500 mg). 

Extraction was performed on the same sample with aliquots of n-hexane increasing 

progressively the stirring time: 1, 3, 7, 13 and 22 min. Supernatant was separated by 

filtration and extracted oil was measured by weighing the oil after solvent evaporation until 

reaching constant weight. Extracted oil amounts were represented as accumulative mass 

of extracted oil regard to total oil for the entire extraction period and expressed as g 

surface oil/total oil in beads.  

2.2.3.3. Thermo oxidative stability determination in DSC  

Calorimetric analyses were carried out in oxidative conditions in order to analyze the 

onset of thermal oxidation. A differential scanning calorimetry (DSC) system (Mettler TA 

4000, Columbus, Ohio, USA) with TC11 TA processor and GraphWare (TA72 thermal 
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analysis software) were used for thermal analysis. The instrument was calibrated for 

temperature, heat flow and enthalpy of melting using triply distilled water (m.p. 0.0 ºC, ΔH 

= 6.013 kJ mol−1), indium (m.p. 156.6 ºC, ΔH = 3.28 kJ mol−1), lead (m.p. 327.5 ºC, ΔH = 

4.799 kJ mol−1) and zinc (m.p. 419.6 ºC, ΔH = 7.32 kJ mol−1). Analysis involved 40 μL 

aluminium pans (Mettler) containing 5–10 mg samples, hermetically sealed. An empty pan 

was used as reference. Each sample was heated at a rate of 10 ºC min−1 from 40 to 240 

ºC (dynamic method). Onset temperature of oxidation was recorded as the temperature at 

which a change in slope of curve of heat flow versus temperature. 

2.2.3.4. Distribution of oil in the beads 

Oil distribution was evaluated in terms of surface (SO), internal (IO) and total oil (TO) 

fractions. SO was measured as the extracted oil after stirring in n-hexane without 

disruption of bead structure for during 60 s, assuming that this time was adequate in 

extracting the free oil from bead surface. Approximately 1 g of beads was shaken in a flask 

with 5 ml of n-hexane during 60 s. The supernatant was transferred to a previously 

weighted tube and the SO was determined by differences in weight after solvent 

evaporation under nitrogen atmosphere at room temperature. IO was determined by the 

acid hydrolysis method described in AOAC Official Method 14.019 (1984) with minor 

modifications in order to reduce the employed solvent volumes. Briefly, the beads without 

oil in the surface (obtained as described above), were mixed with 1 ml of ethanol, 5 ml of 

HCl (37%) and heated at 80ºC for 40 min with constant stirring. Then 10 ml of ethanol 

were added, and the sample was cooled at room temperature. After that, 12.5 ml of 

petroleum ether and 12.5 ml of ethyl ether were added and shaken vigorously for 60 s. 

Upper ethereal phase was separated and filtered. This procedure was repeated three 

times using 5 ml of the last solvent mixture. Oil in ethereal phase was quantified by solvent 

evaporation at 50 ºC and subsequent cooling. Finally, TO was calculated considering the 
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SO and IO determined for each system. All measurements were made in duplicate and 

expressed as g oil/ 100 g of beads. IO and TO measurements were combined to evaluate 

encapsulation efficiency according to Eq. (4): 

EE = (IO / TO) *100%           (4) 

Additionally, IO was related with the initial mass of oil (MO) weighed to emulsion 

formulation in order to calculate encapsulation yield according to Eq. (5): 

EY= (IO / MO)*100%            (5) 

Yield determination required a quantitative treatment of emulsions composition per 

individual encapsulation batch (10 g of emulsion). Oil mass used in each emulsion 

formulation was quantitatively related with the mass of obtained dehydrated beads and its 

average IO content.   

2.2.3.5. Size distribution by image analysis 

The percentage of size distribution of the beads was carried out by analyzing digital 

images (Deladino, Anbinder, Navarro, & Martino, 2008). Whit this purpose a digital camera 

(Canon PowerShot A70 3.2 Mpix, Canon Inc., Malaysia; with zoom fixed in 3.0X) installed 

on a binocular microscope (magnification 7x, Unitron MS, Unitron Inc., New York, USA) 

was employed. The pictures were analyzed with the free software ImageJ 

(http://rsb.info.nih.gov/ij/). Diameter was analyzed for at least 50 beads (dried systems). 

Measurements were grouped in continuous intervals (mm) and were depicted in a 

percentage frequency histogram.  

2.2.3.6. Scanning electron microscopy  

http://rsb.info.nih.gov/ij/
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External morphology and internal structure of beads were observed with a scanning 

electron microscope (CARL ZEISS NTS, model SUPRA 40) equipped with field emission 

gun (FEG-SEM), detector InLes and a third generation column GEMINI®. To internal 

structure inspection, capsules were carefully cut in half with a scalpel. Free oil from intact 

and halves beads, was removed by shaking samples for 5 min with n-hexane prior to 

metalize samples.  Images were collected at 100x and 2000x.  

2.2.4. Statistical analysis  

At least two replicate determinations were performed for each trial. A statistical 

analysis, when necessary, was carried out using ANOVA test and differences among 

compared samples were considered significant at P>0.05 (interval of confidence of 95%). 

All statistical analysis and data fitting were performed through GraphPad Version 4 

(GraphPad, Software Inc., San Diego, CA, USA).       
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3. Results and discussion 

3.1. Study of P. alba gum-alginate interactions by Sol-Gel phase diagrams  

The physical state of aqueous dispersions containing encapsulating materials, 

determines their applicability as actives dispersant phase in ionic gelation processes. The 

formation of a gel, hinder the later stages of emulsification of the active compound and 

transport required for ionic gelation encapsulation, thus combined polyelectrolytes 

formulations would be limit to concentrations where suspension remains fluid (not gel). In 

this sense, the physical state of combined suspensions containing sodium alginate and a 

novel exudate gum (Prosopis alba) were firstly studied. In order to identify the 

concentrations at which suspensions of A and G are suitable for emulsifying the oil (which 

will be then encapsulated by ionic gelation), binary phase diagrams were constructed as 

shown in Figure 1A. 
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Figure 1. Binary phases diagram for alginate - gum (A), and ternary phases diagram for 
alginate (1 % w/v) - gum - CaCl2 blends (B) at 25 °C. Theoretical phase line separates 
experimental points and define SOL (fluid), GEL (not fluid) and Syn (syneresis, liquid 
outflow from gel) at each composition. 

 

G+A mixtures did not show macroscopic phase separations at any of the 

concentrations studied, indicating good miscibility between polymers. Two distinct physical 

states (SOL, GEL) were observed and limited by a theoretical phase line (Figure 1A). 

Below the line, the systems were fluids (SOL phase), with homogeneous and translucent 
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aspect. At concentrations above the theoretical line, viscosity increased and a gel was 

formed. Increasing G fraction promoted gel formation and reduced the minimal 

concentration of A at which A+G suspensions remained fluid. Gelation of A+G blends was 

related with the introduction of Ca2+ naturally present in G (4,61 ± 0,02 mg / g gum db.), 

which exerts a known viscosity increase of A suspensions even at low ion concentrations 

(BeMiller & Huber, 2007). Additionally, specific interactions between polyelectrolytes could 

contribute to gel structuring. According to Pongjanyakul et al. (2007) saccharide chains are 

able to form intermolecular associations by electrostatic interactions. In this sense, 

hydroxyl and carboxyl groups present in G (Vasile, Martinez, et al., 2016) could form 

intermolecular hydrogen bonds with A, increasing the viscosity of the composite 

dispersion. Additionally, positively charged amino groups from amino acids moieties in G, 

could interact with negatively charged carboxylic groups of A via electrostatic interactions 

promoting a similar effect. Individual interactions could have a synergistic influence on the 

consistency of composite dispersions. The analysis of the phase diagram (Figure 1A) 

allowed to conclude that the mixture G+A has a narrow range of concentrations (A 0.5 to 

1% and G 0.5 to 3%) for which the mixture of hydrocolloids has an adequate fluidity to 

prepare emulsions containing the active of interest (fish oil) and for its further transport (via 

injection or dripping) in the capsules generation process.   

Besides knowing the combinations of G and A suitable for generating the emulsion, in 

the encapsulation step is essential to establish the relative concentrations of A, G and 

CaCl2 at which the system gels.  

Although low concentrations of A support a greater proportion of G without occurring 

gelation (Figure 1A), it is known that concentrations of A lower than 1% w/v lead to the 

formation of weak and unstable gels during gelation in the presence of Ca2+ (Rehm, 2009). 

Furthermore, 1% w/v of A is the maximum concentration that allows evaluating different G 

proportions without spontaneous gelation (Figure 1A). Thus, an alginate concentration of 
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1% w/v was fixed to explore the influence of G and CaCl2 proportions in the A-Ca2+ gel 

formation. With this purpose, a ternary phase diagram (Figure 1B) was built to determine 

the concentrations at which the formation of the gel occurs instantaneously, condition 

required for the generation of capsules by dripping.  

The diagram shows the physical states of A+G blends immediately after the addition of 

calcium as third component. SOL and GEL states and the presence of syneresis were 

determined at different G and CaCl2 concentration.  

CaCl2 concentrations equal or superior to 0.5 % w/v promoted the change of A fluid 

dispersions to gelled structures regardless of G concentration. However, at G 

concentrations lower than 2.5 % w/v the gels presented syneresis indicating that gelation 

was not completed, or that strong polymer-ion-polymer interactions promoted a reduction 

of the water holding capacity of the polymeric matrix (Rehm, 2009). Syneresis involves a 

partial liquid separation from a gelled matrix. When the gel is generated from an emulsion 

as in the present work, syneresis may result in the loss of the emulsified oil with the 

consequent undesired reduction of entrapment efficiency.  

It was observed that higher concentration of G, lower concentrations of Ca2+ were 

necessary to obtain a gel without syneresis. G could act providing Ca2+ ions naturally 

present in its composition, and promoting thus the gelation. G also could act increasing the 

water holding capacity by its inherent hygroscopicity or well, by hindering the A-Ca2+ 

interactions. At CaCl2 concentrations higher than 3 % w/v, syneresis was observed at any 

of the gum concentrations studied.  

Any experimental point within the GEL region leads to spontaneous gel formation 

without syneresis. This conditions are highly desirable during beads formation by dripping 

method (Correa, 2003) since promote higher entrapment of core material. From binary and 

ternary phase diagrams analysis, the composition of hydrocolloids dispersant phase and 

gelling bath concentration could be properly defined. Particularly, an aqueous suspension 



  21 

composed by 1% of A and 2% of G remains fluid for emulsion and dropping process and 

gels spontaneously at CaCl2 concentration of 2%, giving a gel structure with adequate 

water holding capacity.       

3.2. Emulsifying and stabilizing properties of the gum on alginate suspension  

Most industrial methods of encapsulation and microencapsulation of high nutritional 

value oils, imply as a first stage the dispersion of lipid phase in the encapsulating agent 

aqueous solution (Chan, 2011). During the emulsification process, polymers are organized 

at oil/water interphase, defining a multiphase solid microstructure when particles are 

dehydrated (Drusch & Mannino, 2009). Therefore, emulsion features and stability have a 

major effect on beads properties (Klaypradit & Huang, 2008), thus, the effect of G on the 

stability of fish oil-alginate emulsions was studied. Figure 2 shows the volume droplet size 

distribution of emulsions containing 1 % w/v of alginate (A) (Figure 2 A) or 1 % w/v of 

alginate and 2% of P. alba exudate gum (A+G) (Figure 2 B) immediately after preparation 

and over storage during 24 h at 25 °C.  

 

Figure 2. Volume droplet size distributions curves of fish oil emulsions containing 1 % 
of alginate (A) and 1% of alginate and 2% of Prosopis alba exudate gum (B), obtained 
after preparation (□) and after storage at 25 °C for 0.5 h (),1 h (), 2 h () and 24 h (). 
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The droplet size distributions of A emulsions after preparation, showed a bimodal 

distribution with a primary wide peak from 0.1 to 30 μm centered around 7 μm and a 

secondary peak centered around 0.3 µm. No changes of the distributions were observed 

over time, except for the last time evaluated (24 h) at which a shoulder from 60 to 100 μm 

was noticed, indicating the presence of higher droplets size. The droplet size distribution of 

A+G emulsion immediately after preparation (Figure 2 B) showed a similar emulsifying 

capacity than A (Figure 2 A), exhibiting a primary wide peak (0.1 - 20 μm) centered around 

6 μm and a secondary peak centered around 0.3 μm. No appreciable changes were 

registered in droplet size distributions of A+G emulsions during storage at 25 °C (Figure 2 

B).  The mean diameter of most of the droplets, evaluated in terms of D3,2 for both 

emulsions (Table 1) did not show significant differences even after 24 h.   
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The increase in the droplet size is an indicator of lower polymer emulsification power 

(Wilde, 2000), therefore G might be useful to improve the ability of A to stabilize a given 

surface area. As shown in a previous work (Vasile, Martinez, et al., 2016), G decreases 

the surface tension and forms  viscoelastic films at o/w interface, being the good 

emulsifying properties of G mainly related to its high protein content  (13.81 ± 0,33 % db.).  

The change in the droplet size of the emulsion was also studied by De Broucker 

diameter (D4,3), which has been widely used for evaluating destabilization processes 

(Galazka et al., 1996; Relkin & Sourdet, 2005). The D4,3 diameters obtained from size 

distributions, were plotted in Figure 3 for oil emulsions (10%) stabilized with A or A+G. 

Additionally, the evolution of D4,3 diameters of an emulsion containing the oil and 2 % of G 

was evaluated for comparative purposes.  

 

Figure 3. D4,3 diameter calculated from the droplet size distribution of emulsions 
containing 1 % of alginate (A), 2 % of Prosopis alba exudate gum (G) and 1 % of alginate 
and 2 % of Prosopis alba exudate gum (A+G) over time.  
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The evolution of D4,3 showed significant differences between the systems. Compared 

with the emulsion stabilized only with G, emulsions containing alginate (A and A+G) 

promoted the formation of smaller drops during the emulsification process (Figure 3). 

Being alginate an hydrophilic polysaccharide, it is expected to have a low surface activity 

(Chan, 2011). Therefore, the reduction in the droplet size in alginate emulsions (Figure 3) 

could be principally related to an increase viscosity of the continuous phase surrounding 

the oil droplets that restrict their movement, aggregation and flocculation (Dickinson, 2009, 

Chan, 2011). D4,3 diameter for A+G emulsions (Figure 3) practically remained unchanged 

after 24 h of storage at 25 °C. In contrast, D4,3 values for A and G emulsions tended to 

increase during storage, being the values higher than the obtained for A+G emulsions 

even immediately after preparation. D4,3 diameter evaluated after 24 h are also shown in 

Table 1 along with D3,2 values.  The incorporation of G favors the formation of emulsions 

with smaller droplets size, which remain stable after 24 h at room temperature, confirming 

the emulsifying and stabilizing properties of G in the mixture. This time assures the stability 

of the emulsions during the ionic gelation process. According to the preparation method 

(Section 2.2.3), the time needed to complete the encapsulation process for a batch of 10 g 

of the emulsion is less than 30 min.   

ζ-potential was also determined for the studied emulsions in order to better understand 

their stability in terms of polymers interactions. The ζ-potential values for all the emulsions 

immediately after preparation were below – 30 mV (Table 1), which is usually consider a 

limit value for achieving significant droplet stabilization by electrostatic repulsion (Guzey & 

McClements, 2007). The absolute ζ-potential value for G emulsion was lower than 

emulsion stabilized with A. While, the absolute ζ-potential for the combined (A+G) 

emulsions was lower than that of A emulsions and it could be interpreted in terms of a 

partial charges neutralization between positive patches exposed on the protein fraction of 

G with negatively charged groups present in A. Due to the high protein fraction, G is 
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expected to have a higher surface activity than A (Dickinson, 2003; Román-Guerrero et al., 

2009). According to Dickinson et al. (2011), in composite colloidal systems, emulsions are 

firstly stabilized by the more surface-active component. In this sense, G probably adsorbed 

first to the o/w interface providing a net negative charge distribution. Additionally, if 

associative interactions between positively charged amino acids moieties of G and 

negatively charged A groups occur, it could lead to a partial adsorption of A on G-coated 

droplets increasing negative charge distribution compared with G emulsions.  

 Complementary, no phase separation was observed in A+G emulsions stored at 25 °C, 

even after 24 h. In contrast, A emulsion exhibited a gel-like microstructure with a 

separated layer of aqueous serum (opalescent) at the bottom. This phenomena known as 

depletion by interdroplet pair potential, appears in emulsions where droplets are 

surrounded by a high concentration of colloidal non-adsorbed molecules which remain in 

the continuous phase (Fioramonti, Martinez, Pilosof, Rubiolo, & Santiago, 2015). In 

presence of G, the partial adsorption of A on G-coated droplets, probably reduce the 

concentration of the polyelectrolytes in the aqueous phase, preventing the interconnected 

flocks formation. These observations further support the positive effect of G on the 

stabilization of A emulsion, before encapsulation by ionic gelation.  

Table 1. Emulsifying properties of fish oil emulsions stabilized with 1% alginate (A) and 1% 

alginate + 2% Prosopis alba exudate gum (A+G). Emulsion stabilized with 2% gum (G) 

was also evaluated for comparative purposes. t24: after 24 h of storage at 25 °C. 

 
 

G A A + G 

D3.2*, µm  7.52  ± 0.0b 2.36 ± 0.3a 2.51 ± 0.2a 

D3.2, µm (t24) 7.2 ± 0.4b 2.52 ± 0.1a 2.54 ± 0.1a 

D4..3*, µm  14.5 ± 0.0c 5.99 ± 0.44b 5.12 ± 0.1a 

D4..3, µm (t24) 14.98 ± 0.1c 7.05 ± 0.9b 5.30 ± 0.2a 

ζ-potential*, mV  -44.1 ± 0.0a -90.6 ± 0.0c  -71.2 ± 0.0b  
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* After preparation (zero time).  

Mean ± SD values followed by lowercase letters within the same row are significantly 
different according to ANOVA at P≤0.05.  

 

3.3. Effect of composition and drying method on oil retention and stability 

Porosity of Ca-alginate beads was highlighted as one of the main issues to overcome, 

especially in holding the active inside structure and preventing the contact of highly 

oxidizable compounds with oxygen air. Different hydrocolloids matrices and multilayer 

structures have been proposed in order to modulate the pore size and network complexity 

for improving the performance of the carrier systems (Bhattarai et al., 2011; Yang, Han, 

Zheng, Dong, & Liu, 2015). The drying method also affects the structural properties of the 

beads (Chan, 2011) and hence their retention and protection capacity. In present work, the 

influence of G as component of the wall material, and chitosan (Ch) as outer shell, were 

studied, on the physical and structural characteristics of the alginate beads by two drying 

methods (vacuum and freeze-drying). Previous studies based on physicochemical 

interactions among polyelectrolytes by FT-IR, reported that G did not affect the interactions 

between the protonated amino groups of Ch and the dissociated carboxylate groups of A, 

allowing the effective adsorption of chitosan onto A+G beads (AG-Ch) (Vasile, Romero, et 

al., 2016).  

To evaluate the porosity and possible active/wall material interactions, the oil retention 

capacity of the beads to successive n-hexane extractions was evaluated as previously 

described by other authors (Correa, 2003). Figure 4 shows the oil solvent extraction 

profiles from freeze-dried (Figure 4A) and vacuum-dried (Figure 4B) beads. 
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Figure 4. Profiles of oil solvent (n-hexane) extraction from freeze-dried and vacuum-
dried alginate beads. Ca-alginate (A), Ca-alginate-chitosan (A-Ch), Ca-alginate-gum (AG), 
and Ca-alginate-gum-chitosan (AG-Ch) beads. 
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Both the beads composition and the drying method affected the oil retention capacity of 

polyelectrolytes beads. In all cases, the extractable oil (expressed as g of oil/100 g of 

capsules), was found to follow a similar trend with a sharp increasing at the beginning of 

extraction before leveling off. The oil diffusion from inside the beads to the surface, could 

be related to different structural characteristics according to reported by other authors 

(Chan, 2011; Puguan, Yu, & Kim, 2014).  

 Regardless of composition, vacuum-dried beads retained better the oil (0.02 to 0.17 g 

extracted oil / 100 g beads) than the freeze-dried ones (0.06 to 0.3 g extracted oil / 100 g 



  29 

capsules), as is shown in Figure 4 B and A, respectively. Similar results were related by 

Chan et al. (2011) with the porous internal structure resulting from water crystals 

sublimation during freeze-drying. This macroporous structure favors the oxygen diffusion 

and hence reduce the retention and stability of the oil. Rapid water surface evaporation 

and solutes displacement during vacuum-drying, lead to a more compact shell hindering 

the solvent penetration and oil extraction (Smrdel, Bogataj, & Mrhar, 2008).  

Chitosan coating was proposed as an approach to increase the density and crosslinking 

of polymers at surface of alginate beads in order to limit the active diffusion (Garti & 

McClements, 2012; Peniche et al., 2004). However, in present work the beads coated with 

chitosan retained less oil against solvent extraction compared to no coated systems, 

independently of the drying method. The presence of G improved the retention of the oil 

inside the alginate beads even in the absence of chitosan. However, no negative effect of 

chitosan was observed and a chitosan coating could be beneficial considering its 

antimicrobial, biodegradability and mucoadhesive properties (Arancibia et al., 2015; 

Çetinus, Şahin, & Saraydin, 2009; Ma, Zhang, & Zhong, 2016). The extractable oil at 

equilibrium (g oil/ 100 g of beads) for vacuum and freeze dried chitosan coated beads was 

estimated by fitting the experimental data (Figure 4) to a two-phase decay model, the 

obtained values are summarized in Table 2. The positive effect of G on the oil retention 

capacity could be related with gum composition and molecular polymer interactions in the 

solid matrix. The presence of low molecular weight sugars in G could act filling the void 

spaces in the polymeric network favoring the formation of a more compact matrix. 

According to Drusch (2009), low molecular weight carbohydrates also reduce the oxygen 

permeability increasing the core material stability. Pongjanyakul et al. (2007) state that the 

addition of gums to the alginate matrix increase the tortuosity of encapsulating material 

limiting the diffusion of the active. Thus, G could also establish intermolecular hydrogen 

bonds with other polyelectrolytes in the bead matrix increasing the tortuosity and hindering 
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the oil extraction. Besides, the best emulsifying properties of A+G composite blends 

probably contribute to the higher retention, providing a physical barrier at the o/w interface 

that hinders the oil diffusion.  

In order to evaluate the stability of the encapsulated oil in accelerated thermal 

conditions, DSC oxidative assays were performed on vacuum and freeze-dried chitosan-

coated beads. The temperature at which a change in slope was observed  in the curve of 

heat flow versus temperature, was related with the final oxidation stages (Shahidi & 

Zhong, 2005). Table 2 shows the onset temperature of oxidation for the studied systems. 

Independently of the drying method, oxidation of the encapsulated oil occurred at higher 

temperatures (166 - 187°C) in comparison with the free oil (157 ± 1 °C). Structural features 

of encapsulates could partly explain the different oxidative stabilities (Drusch & Mannino, 

2009).  

The oxidation temperatures determined for vacuum-dried beads were higher than those 

measured for the freeze-dried systems (Table 2), indicating that the freeze-dried structure 

negatively affected the core protection. This result agreed with the structural features 

observed in the accelerated solvent extraction assay (Figure 4). 

Considering the composition, freeze-dried beads did not show significant differences on 

the oxidation onset temperature. However, in vacuum-dried systems containing G as 

component of the wall material, oxidation occurred at a higher temperature (187 ± 1 °C).  

G could act improving the structural features of encapsulates as well as providing 

compounds with antioxidant activity (Vasile, Romero, et al., 2016). Polyphenols, tannins 

and reducing sugars naturally present in G could contribute to the oil stabilization. 

Similarly, Pérez-Alonso et al. (2008) found that mesquite gum addition to whey-

maltodextrin matrixes increased the thermal oxidation temperature of chili oleoresin 

microparticles obtained by spray drying.  
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In freeze-dried AG-Ch beads, the structural features of encapsulates governed the 

susceptibility to lipid oxidation and the benefits of the gum were not evident. From these 

results, vacuum drying method was chosen as adequate in order to improve the fish oil 

protection  

 

3.4. Structural and morphological characterization of the dried beads 

containing oil 

The effect of G as component of the alginate capsule was assessed in terms of oil 

distribution, encapsulation efficiency and yield of the encapsulation process, and also by 

evaluating the external morphology, internal microstructure and size distribution. Table 2 

shows the oil distribution determined for the vacuum-dried A-Ch and AG-Ch beads.  

Despite the higher solid/oil ratio of the AG-Ch emulsion respect to A-Ch, the total oil 

content (TO) was not significantly different in the dried beads. AG-Ch presented a higher 

internal oil fraction (IO), and a lower surface oil fraction (SO) compared to A-Ch. 

Accordingly, AG-Ch beads were perceived less oily and sticky than A-Ch during handling.  

Oil beads distribution has different stability and technological implications. It's known 

that a higher surface oil fraction increases the susceptibility to oxidation of the capsules 

(Velasco, Holgado, Dobarganes, & Márquez-Ruiz, 2009) and also makes them difficult to 

handle, fractionate and transport. On the other hand, a good oil load capacity is generally 

sought when a low volume of encapsulates is required for a specific application (Chan, 

2011). In this sense, the incorporation of P. alba gum allowed to obtain beads with lower 

SO and higher IO percentage than A-Ch. The effect of G was clearly reflected in a higher 

encapsulation efficiency (EE) (Table 2). The highest EE in dehydrated bead systems 

containing G could be explained considering its contribution on structural features.   
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Changes in the emulsion properties in the presence of the gum (Table 1) could 

probably affect the oil distribution in beads. It was observed that a stable emulsion with 

minimum droplet size, reduced the non-encapsulated oil at the surface of particles (Chan, 

2011). Additionally, other authors observed that a stabilized emulsion prevents the 

diffusion of oil drops to the surface during the gel crust formation, increasing the 

encapsulation efficiency (Aghbashlo, Mobli, Madadlou, & Rafiee, 2012) and reducing the 

active losses during beads generation. Hence, the barrier properties at oil/water interface 

could improve the oil retention capacity in the hydrogel matrix. Additionally, after beads 

generation, vacuum drying increase the oil surface fraction. This was previously described 

by Chan et al. (2011), who attributed the oil outflow at beads surface to the gel shrinkage 

during drying. These facts allow to consider that G could act reducing the gel contraction 

thereby increasing the oil retention in the internal structure of the dehydrated beads.   

The encapsulation yield also showed the benefits of incorporating the gum as wall 

material (Table 2). The encapsulation yield (EY), expressed as the percentage of total oil 

relative to the oil weighted in the emulsion, indirectly quantifies the oil losses through the 

overall encapsulation process. Chan (2011) state that oil losses could be mainly explained 

considering a deficient entrapment during gelation process. In this regard, G probably 

promote the formation of a tight Ca-alginate-gum hydrogel barrier improving the gelling 

density by supply of endogenous Ca2+ ions, or well due to specific A+G interactions, as 

was previously described in ternary phase diagram (Figure 1B). (Pongjanyakul & 

Puttipipatkhachorn, 2007) also found a better entrapment capacity of gel alginate beads 

when xanthan gum was added as excipient.  

The size distribution of dried A-Ch and AG-Ch beads was determined by digital image 

analysis. Figure 5 shows the frequency distribution of diameters for A-Ch (Figure 5A) and 

AG-Ch (Figure 5B) beads.  
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Figure 5. Frequency size distribution (diameter, mm) of alginate-chitosan (A) and 
alginate-gum-chitosan (B) capsules obtained by digital image analysis.  
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In absence of the gum (Figure 5A), A-Ch capsules showed a monomodal and 

symmetric size distribution centered at 1.16 mm, while for AG-Ch capsules (Figure 5B) an 

asymmetric monomodal distribution, centered at 1.47 mm was observed. The introduction 

of the gum increased significantly the mean diameter of beads (Table 2). Similarly, 

Pongjanyakul et al. (2007), observed higher bead mean diameters when xanthan gum was 

used as excipient in alginate beads. Wang et al. (2013) also found a size increasing for 

Ca-alginate beads containing canola oil and pectin as excipient.  
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The higher size of AG-Ch could partially explain the lower SO fraction considering that 

higher size particles present a lower surface area for oil loss. Additionally, less exposed 

surface area could leads to a lower oxidation rate (Augustin, Sanguansri, Decker, Elias, & 

McClements, 2010), as well as to a delay favorably the encapsulated lipids digestibility in 

the gastrointestinal tract (Li, Hu, Du, Xiao, & McClements, 2011). However, large capsules 

are more easily perceived in the food which may be desirable for certain products, but 

undesirable for others (Gaonkar, Vasisht, Khare, & Sobel, 2014; Oxley, 2012). 

 

Table 2. Structural and stability properties of freeze-dried and vacuum-dried 

polyelectrolytes beads containing fish oil. Alginate-chitosan beads (A-Ch). Alginate- 

Prosopis alba exudate gum-chitosan beads (AG-Ch). TO: Total oil; IO: internal oil; SO: 

Surface Oil; EE: encapsulation efficiency; EY: encapsulation yield.    

 

 Vacuum dried beads Freeze dried beads 

 
 

A-Ch AG-Ch A-Ch AG-Ch 

Extractable oil (g oil / 100 g beads) 0.17 ± 0.0 0.05 ± 0.0 0.3 ± 0.1 0.09 ± 0.0 

Onset oxidation temperature, °C 174 ± 1b 187 ± 1c 168 ± 2a 166 ± 2a 

TO, % db. 78.29 ± 0.0a 77.97 ± 1.7a ND ND 

IO, % db. 70.43 ± 0.4a 76.90 ± 1.7b ND ND 

SO, % db. 7.87 ± 0.5b 1.07 ± 0.0a ND ND 

EE, %  89.95 ± 0.6a 98.63 ± 0.0b ND ND 

EY, %  70.72 ± 0.2a 89. 12 ± 0.1b ND ND 

Mean diameter, mm 1.14 ± 0.0a 1.49 ± 0.1b ND ND 

 

Mean ± SD values followed by lowercase letters within the same column, or capital letters 
within the same row are significantly different according to two way ANOVA test at P≤0.05. 

 

The effect of the composition was also studied on the structural characteristics of the 

encapsulated using scanning electron microscopy (SEM). Figure 5 shows the external 
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morphology (Figure 6A) and the internal structure (Figure 6B) of vacuum dried A-Ch and 

AG-Ch beads.  

 

Figure 6. Micrographs of external morphology (A) and internal structure (B) of vacuum 
dehydrated alginate-chitosan (A-Ch) or alginate-gum-chitosan (AG-Ch) beads.  
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Figure 6 shows that vacuum dried beads presented a rather spherical shape 

independently of the composition. The beads containing the gum were larger and had a 

smoother surface than A-Ch, evidencing a continuous and denser structure. The more 

compact surface of AG-Ch was related to the presence of low molecular weight sugars 

naturally present in the gum, which could act filling voids in the polymer network. The 

smooth and continuous surface, without cracks or holes, seems to favors the retention of 

the active compound within the carrier matrix. These observations are in agreement with 

the better oil retention capacity determined for AG-Ch (Figure 4), and their higher oxidative 

stability (Table 2). The vacuum-dried A-Ch beads had an irregular surface, with hollows 

and more roughness, as well as traces of oil in the surface. 

The cross-sectional images showed that all both systems have an internal structure of 

"multicore" type, resulting from the gelation process of the emulsion. In presence of G, 

cavities were smaller and uniformly distributed. These characteristics could be related with 
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the lower droplet size distribution and higher emulsion stability of A+G emulsions prior to 

gelation process.  

4. Conclusions 

In present work, the encapsulation of fish oil in Ca-alginate beads using a novel 

exudate gum Prosopis alba as excipient was studied. Sol-gel phase diagrams were made 

to study the polyelectrolyte interactions and its effect on physical state of the aqueous 

suspension. Phase diagrams proved to be a useful and easy tool to select adequate 

physical behavior of alginate-gum blends for oil emulsification and for later gelification. 

They allowed to define the most suitable polyelectrolyte concentration (G and alginate) 

and of the crosslinker agent (CaCl2) for preparing capsules by external ionic gelation, as 

well as the effect of G in the combined matrix. The system containing 1% w/v alginate and 

2% w/v of G leads to suspensions with good flow characteristics, suitable for later 

emulsion and dripping stages. Furthermore, it was determined that solutions of CaCl2 2% 

w/v were sufficient to induce instantaneous gelation, with high water holding capacity, and 

hence efficient entrapment of the active. Combined alginate-gum suspensions were 

suitable both for oil emulsification and beads generation. The studied gum improved the 

emulsion properties (lower droplet size distribution and higher stability) and hence the oil 

encapsulation efficiency and yield after vacuum drying. In dehydrated beads, G modulated 

the matrix structure, improving oil retention and stability in accelerated thermos-oxidative 

assays. Present results are promising and allowed considering P. alba gum as a novel 

non-conventional polyelectrolyte for improving Ca-alginate beads microstructure and 

stability with the added benefit of taking advantage of an available resource currently 

untapped. 
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