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Abstract

The protozoan 7rypanosoma cruziis the causative agent of Chagas disease, endemic in Latin
America but present worldwide. Research efforts have focused on the examination of immune
mechanisms that mediate host-protection as well as immunopathology during this parasitic
infection. The study of CD8* T cell immunity emerges as a key aspect given the critical
importance of parasite-specific CD8" T cells for host resistance throughout the infection. In the
last years, new research has shed light about novel pathways that modulate the induction,
maintenance and regulation of CD8* T cell responses to 7. cruzi. This new knowledge is setting
the ground for future vaccines and/or immunotherapies. Herein, we critically review and analyze
the latest results published in the field.
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CD8+ T cell immunity against Chagas disease

Infection with the protozoan 7. cruzi causes Chagas disease whose progression, from
symptomless to severe, is linked to parasite heterogeneity and a variable host immune
response (Box 1). In particular, pathogen-specific effector CD8* T cells are critical for
resistance to protozoa as well as to infections with most intracellular microbes [1].
Accordingly, initial studies about the immune response triggered by 7. cruzi demonstrated
that depletion of CD8* T cells [2] or deficiency in the B2-microglobulin [3] favors parasite
replication and increases host susceptibility during the acute phase of the experimental
infection. Also, early evidences indicated that expansion and effector function of CD8* T
cells are required along the entire infection to control parasite load and prevent excessive
inflammation in hearts of chronically infected mice [4]. These grounding reports established
the concept that CD8" T cell immunity is critical for survival during acute 7. cruz/infection
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and kicked-off several research lines aimed to understand the dynamics of that response. In
the following sections, we review the latest results about CD8* T cell immunity to 7. cruzi
together with fundamental knowledge in the field to integrate the available information into
a comprehensive picture.

General features of CD8* T cell responses during experimental T. cruzi

infection

As described for model CD8* T cell responses (Box 2), a robust parasite-specific CD8* T
cell immunity emerges upon natural 7. cruziinfection but it shows a delayed kinetics when
compared to other microbial infections [5, 6]. Of note, this response is extremely focused on
a few immunodominant peptides derived from surface parasite proteins such as trans-
sialidase (TS) and amastigote surface protein 2 (ASP2) that exhibit considerable intra and
inter-strain variability in sequence and expression pattern. Indeed, the immunodominance
(see Glossary) pattern is particular to each parasite strain [7, 8]. Immunodominance has been
suggested as detrimental to the host by restricting the breadth, and therefore the
effectiveness, of the anti-parasitic CD8* T cell response. However, experimental
manipulations to eliminate CD8" T cells specific for immunodominant epitopes highlighted
the plasticity of the 7. cruzi-specific CD8* T cell repertoire and demonstrated that
immunodominance neither contribute to, nor detract from, the ability to control 7. cruzi
infection [9, 10].

Once effector immunity clears the circulating parasites and reduces parasite loads in tissues,
T. cruzi specific CD8* T cells acquire memory traits, exhibiting proliferative responses after
stimulation with both parasite antigens and homeostatic cytokines [11, 12]. Remarkably,
specific CD8* T cells isolated during the chronic phase of experimental 7. cruziinfection
exhibit effector competence and critically contribute to the persistent control of parasite
outgrowth [13]. Altogether, the data obtained using experimental infection models in
immunocompetent hosts (summarized in Supplementary Table S1) demonstrated that CD8*
T cell immunity against 7. cruziis robust and critical for parasite control during the acute
phase. Furthermore, it generates immunological memory and remains functional to restrain
parasite replication even in the context of chronic 7. cruzipersistence.

The efficiency of the natural CD8" T cell response may be interpreted as discouraging for
strategies aimed to enhance or manipulate CD8" T cell immunity as a rational approach to
further improve resistance to 7. cruzi. However, global analysis of results obtained using
mice that bear defects in immune pathways that results in altered CD8* T cell immunity,
together with data obtained with samples of Chagas disease patients, support alternative
interpretations discussed along this review.

CD8* T cell immunity in human Chagas Disease

Although restricted by the inherent limitations of studies in humans, the investigation of the
CD8* T cell immunity in patients with Chagas disease underscored some similarities with
the response described in experimental infection settings (Table 1). In this regard, the
relevance of CD8* T cell immunity in human 7. cruziinfection is well illustrated by a recent
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transcriptomics study [14]. It describes that patients with whole blood transcriptional
signatures enriched in genes related to NK/CD8" T cell cytotoxicity exhibit reduced
parasitism as well as less severe chagasic chronic cardiomyopathy. Furthermore, though
immunodominance of particular epitopes was not as obvious as in mice, CD8* T cells from
7. cruziinfected individuals also recognize TS derived peptides [7, 15] and few other
parasite epitopes [16-18]. On the other hand, different from responses in mice that remain
functional in chronicity, CD8* T cell responses in patients with chronic Chagas disease show
several evidences of dysfunction that were associated with the clinical severity of the disease
(Table 1). Early studies reported that an important proportion of memory CD8* T cells from
7. cruzi infected patients exhibit a phenotype of terminal differentiation, likely associated
with chronic activation [19]. These cells are characterized by downregulation of CD28 and
CD27, increased susceptibility to apoptosis and reduced effector function upon stimulation
with parasite antigens. Furthermore, the proportion of this senescent effector CD8* T cell
subset is increased while CD8" T cells with features of stem cell memory are diminished in
patients with more severe chronic disease [20]. The differential distribution of “bulk” CD8*
T cell subsets in patients with different grades of cardiomyopathy was further confirmed at
clonal level. Thus, CD8" T cells able to recognize four parasite epitopes restricted to the
HLA-A*02:01 molecule display naive traits in non-symptomatic patients but a terminal
effector and senescent phenotype in patients with cardiac symptoms [21]. Concomitant with
terminal differentiation, CD8" T cells from patients with severe disease have a higher
frequency of cells co-expressing inhibitory receptors such as PD-1, CTLA-4, 2B4, CD160,
and TIM-3, and a lower frequency of polyfunctional parasite-specific CD8* T cells
compared with patients without symptoms or with mild disease [22]. These features
resemble those of dysfunctional or exhausted T cells that arise in the context of chronic
viral infections [23] (Box 2). Indeed, chronic parasite persistence arises as a possible cause
of CD8™ T cell dysfunction given that antiparasitic treatment in asymptomatic patients
improves the quality of antigen-specific CD8" T cell responses associated with a decrease in
inhibitory receptor co-expression [24]. In addition to sustained antigenic stimulation,
chronic exposure to inflammatory mediators such as nitric oxide may also contribute to the
dysfunctional state of CD8* T cells from infected patients. The mechanism underlying this
effect seems to be the nitration of surface T cell proteins that leads to T cell
unresponsiveness and apoptosis [25]. In a similar direction, perturbed signaling downstream
the IL-7 receptor, which is critical for T cell survival, has been suggested as one cell-
intrinsic mechanism of CD8* (and CD4™) T cell exhaustion during chronic Chagas disease
[26].

The reasons of the difference between experimental and human 7. cruziinfection concerning
the differentiation status and functionality of CD8* T cells remain unclear. One possible
explanation is that the longer life span of humans may allow longer chronic infectious
processes, promoting cell exhaustion. Alternatively, given the heterogeneity of host
responses in humans compared to laboratory animals, it is possible that particular immune
effector pathways and/or different levels of parasite loads may promote CD8* T cell
dysfunction in certain patients but not others. In this regard, it is critical to continue our
efforts to completely understand the cellular and molecular mechanisms underlying the
induction and maintenance of protective CD8* T cell immunity against 7. cruzi. Taking
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appropriate note of their inherent limitations, studies exploiting models of experimental
infections in genetically modified mice could certainly be instrumental in this direction.

Pathways that participate in the induction of parasite specific CD8* T cells

Initial activation and priming are the less studied phases of the CD8* T cell response to 7.
cruzi. Our current picture is based only on few studies that focus on particular aspects of
priming and induction during experimental infections (Figure 1, Key Figure). Therefore, a
systematic evaluation of these initial and critical steps is still missing.

T. cruzirecognition by the immune system relies on parasite molecules able to ligate
receptors expressed by innate immune cells such as dendritic cells and macrophages,
particularly toll-like receptors (TLR). Identified 7. cruz/i TLR ligads include mucin-like
glycoproteins that bind TLR2 and 6, glycoinositolphospholipids that are recognized by
TLR4, and parasite DNA (which contains abundant oligodeoxynucleotide unmethylated
CpG motifs) and total RNA that potently activate TLR9 and 7, respectively [27].
Remarkably, the initial steps of 7. cruziinfection seem to be relatively silent and therefore,
the primary parasite inoculum does not promote the induction of parasite-specific CD8* T
cells [6, 28]. Rather, effector CD8" T cells emerge with slow kinetics only after a round of
parasite multiplication that likely results in the accumulation of 7. cruziantigens and ligands
with adjuvant properties that, in turn, promote the maturation of antigen presenting cells.
Accordingly, injection of irradiated (non-proliferating) parasites is not able to induce
protective CD8* T cell immunity while higher parasite inoculum or infection with a fast
replicating parasite strain accelerate 7. cruz/ parasitemia and expansion of parasite-specific
CDS8* T cells [6, 28]. In the same line, the kinetics of the CD8* T cell response to a
moderate initial 7. cruziinfection dose can be speeded by the injection of different TLR
ligands that would act as adjuvants [6]. Strikingly, however, specific CD8* T cell immunity
triggered by natural 7. cruziinfection is preserved in mice deficient for TLR2, TLR4, TLR9
or the TLR adaptor molecule MyD88 despite the increased susceptibility of these mouse
strains [29]. Thus, it is likely that TLR-dependent pathways are dispensable for adaptive
CDS8* T cell immunity to 7. cruzior their contribution can be compensated by other innate
recognition systems such as Nod-like receptors [30] or bradykinin B2 receptors [31] able to
drive innate immune cell activation.

Besides requiring the activation of antigen presenting cells, provision of MHC class |-
restricted epitopes for T cell priming critically depends on the cytosolic degradation of
mature proteins by a specialized type of proteasome called immunoproteasome [32]. In fact,
CD8™ T cell responses to many viral infections show diminished magnitude or quality
(immunodominance pattern) in the absence of immunoproteasome expression [32].
Similarly, 7. cruziinfected dendritic cells derived from bone marrow of mice lacking the
expression of the three immunoproteasome subunits exhibit reduced antigen presentation of
MHC class I-restricted parasite epitopes and are less efficient to activate IFN-y production
by CD8* T cells purified from infected mice [33]. Furthermore, immunoproteasome
deficient-mice present a drastically diminished response of CD8" T cells specific for
immunodominant and subdominant epitopes after 7. cruziinfection together with a
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conserved CD4™ T cell response. Accordingly, these infected mice showed higher tissue
parasitism and increased susceptibility to this parasitic infection.

CD4* T cells are essential for the development of primary and, specially, memory CD8* T
cell responses in many settings including infection and cancer [34]. However, the role of
CD4* T cell help in the development of 7. cruzispecific CD8" T cell responses has been
scarcely investigated. An initial report described that mice lacking CD4* T cells due to
MHC class Il deficiency generate functional (IFN-y producing and cytotoxic) parasite-
specific CD8* T cells after 7. cruz/infection [35]. However, these infected CD4* T cell-
deficient mice exhibit a significant decrease in the frequency of CD8" T cells recognizing
dominant but not subdominant parasite epitopes [35]. In contrast, a second study reported
that MHC clas Il and CD4 deficient mice developed marginal levels of specific cytotoxic
activity /n vivo after infection with a high dose of a different 7. cruz/ strain [28]. Although
apparently contradictory, these findings could be reconciled by the idea that CD4* T cell
helps to modulate strain-specific immunodominance patterns during primary CD8* T cell
response against 7. cruzi, licensing dendritic cells to prime maximal response mainly to
dominant epitopes, as previously reported for viral infections [36, 37].

Once primed, 7. cruzi-specific CD8" T cells will continue with the next steps of a
conventional T cell response (Box 2), which includes expansion concomitantly with effector
cell differentiation, followed by contraction and memory generation (Figure 1). Several
signals provided by soluble mediators and cell surface molecules will influence the
development of these steps in the CD8* T cell fate, as discussed below.

Mediators that sustain the maintenance of CD8* T cell immunity to T. cruzi

The signals that regulate the expansion and survival of effector CD8* T cells and promote
the generation of memory CD8* T cells have not been completely elucidated. Nevertheless,
some cytokines and immune cell populations have been identified as involved in the
maintenance of sustained CD8* T cell response during 7. cruziinfection (Figure 1).

Cytokines: IL-10, IL-17, and others

Recently, we demonstrated that mice deficient in IL-17RA show an abortive CD8* T cell
response during 7. cruzi infection [38]. This phenotype is not a consequence of a reduced
induction or expansion of parasite-specific CD8* T cells but rather evidenced a premature
contraction. Remarkably, IL-17 signaling is required once the parasite-specific CD8* T cell
response is established to promote survival of effector cells. Accordingly, IL-17A, but not
IL-17F, IL-17C or IL-17E, is able to stimulate /7 vitro activated CD8* T in cells in a direct
fashion, downregulating the pro-apoptotic protein BAD and promoting cell survival.
Furthermore, effector CD8* T cells elicited by 7. cruz/infection in absence of IL-17RA
exhibit a phenotypic, functional and transcriptomic profile compatible with cell exhaustion.
In agreement with their deficient CD8* T cell response, infected 1L-17RA knockout mice
show poor control of the parasite in target tissues such as spleen, liver and heart that can be
partially reverted by inhibiting the PD-1/PD-L1 inhibitory pathway [38]. Altogether, our
results underscore that during 7. cruzi infection, cell populations that produce I1L-17, which
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include Th17, Tcl17, NK cells and B cells [39, 40]. may sustain and potentiate parasite-
specific CD8* T cell responses.

Additionally, IL-10 has been recently shown to modulate CD8" T cell responses during 7.
cruziinfection [41]. Initial evidences in this regard came from the observation that infected
C57BL/6J mice exhibit an exceptional high I1L-10 expression that was associated with
increased frequency of cytokine-producing CD8* T cells in infected hearts [42]. Likewise,
recent data show that 1L-10 deficient mice exhibit an impaired expansion of CD8" T cells
following acute 7. cruziinfection, confirming the participation of IL-10 in the sustenance of
CDS8* T cell immunity in this inflammatory context [41]. CD8* T cells from infected 1L-10
deficient mice show diminished proliferation, cytotoxic potential and IFN-y production in
comparison to their WT counterparts. Furthermore, IL-10 absence selectively affects
survival and increases the expression of the inhibitory receptor PD-1 on CD8* T cells
without altering these parameters on CD4* T cells. The effects of IL-10 on CD8" T cells
from 7. cruziinfected mice are not achieved through direct signaling as recombinant IL-10
failed to up-regulate CD8* T cell function /n vitro.

Besides IL-17 and IL-10, few other cytokines have been investigated in their role to sustain
CD8™ T cell responses in the context of 7. cruziinfection. In this regard, human CD8* T cell
lines derived from inflammatory heart infiltrates show enhanced survival and expansion in
the presence of IL-7 and IL-15 [43]. Indeed, increased local production of both cytokines is
associated with the predominant presence of CD8" T cells in heart biopsies of patients with
Chagas disease. In addition, IL-6, which is induced during experimental [44] and human
[45] T. cruziinfection, promote the survival of human CD8* T cells from chagasic patients
[25]. As discussed above, peripheral leukocytes from chagasic patients present increased
tyrosine nitration of CD8" T cells that leads to increased apoptotic rate, loss of the TCR(-
chain, and reduced effector function. IL-6 stimulation of peripheral blood mononuclear cells
obtained from healthy donors and infected /n vitrowith T. cruziblunts parasite-induced
nitration and increases survival of CD8*T cells. In contrast, and despite the fact that type |
interferons are evident early after 7. cruz/infection, infected mice lacking the receptor for
type I interferon showed conserved frequencies of immunodominant TSKB20- and
subdominant TSKB18-specific CD8" T cells [46].

Cells: B lymphocytes and Th17 cells

There is scarce knowledge about the cells and signals able to sustain CD8* T cell response
in 7. cruziinfection once established. However, B cells were one of the first cell populations
reported to participate in the generation of effector/memory CD4* and CD8* T cells during
7. cruziinfection [47]. Infected muMT mice, wich lack mature B cells due to absence of
surface-IgM expression, exhibit low CD8" T cell numbers. Unfortunately, the absence of a
kinetics evaluation in this study does not allow to definitively conclude whether the reduced
magnitude of the responses a consequence of deficient maintenance or induction of effector
T cells. More recently, we and others described that B cells are dispensable for the priming
but not for the maintenance of CD8* T cell responses against 7. cruzi[48, 49], although the
underlying mechanisms were found to be different. In this way, JhD mice, which have a
deletion in the immunoglobulin heavy chain locus that results in lack of functional B cells,
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show a reduction in parasite-specific CD8" T cell numbers and effector function after
mucosal vaccination followed by challenge with a virulent 7. cruz/ strain. This phenotype
can be reversed by injection with 7. cruziimmune serum obtained from WT mice,
underscoring a role for antibodies in the B cell mediated modulation of CD8* T cell
immunity [49]. In a different direction, we determined that B cell depletion by anti-CD20
injection during 7. cruziinfection affects the magnitude and quality of the specific CD8* T
cell response. This effect is associated with a reduction in the frequency of IL-17A
producing B and non-B cell cell populations. Also, parasite-specific CD8* T cells from B
cell depleted infected mice exhibit increased apoptosis and poor effector function, a
phenotype similar to that observed in infected IL-17RA deficient mice. Furthermore, B cell
depletion partially arrested CD8* T cell expansion, leading to a premature contraction of the
response. Of note, treatment with rlL-17A partially restored CD8* T cell immunity and
parasite control in anti-CD20-treated 7. cruziinfected mice [48]. Our results highlight
important cytokine-dependent (possibly antibody-independent) mechanisms of
immunomodulation exerted by B cells, reinforcing the notion that IL-17 is a key cytokine for
the sustenance of CD8" T cell immunity during 7. cruz/infection.

Besides B cells, TCR-transgenic CD4* T cells specific for an immunodominant peptide of 7.
cruziand polarized /n vitrointo Th17 cells were shown to potentiate CD8* T cell immunity
when co-transferred with polyclonal CD8* T cells into infected RAG KO mice. Indeed,
these Th17 cells augment CD8* T cell proliferation and cytokine production and confer a
stronger protection against 7. cruzi-related mortality compared to Th1 cells [50].
Remarkably, these parasite-specific Th17 cells acts through a mechanism that is independent
of IL17 but IL-21-dependent [50]. The differences between these findings and our results
with IL-17RA deficient mice [38] may arise from the notion that /n vitro generated Th17
cells evaluated by Cai ef a/. [50] may have different phenotype and functional capacity than
those generated /n vivo during the natural infection. Despite this, Th17 cells are a poorly
represented T helper subset during 7. cruzi infection and thus other IL-17 producing cell
populations may play a more significant role to sustain CD8* T cell immunity [39, 40]. In
the end, it is likely that robust parasite-specific CD8* T cell responses rely on a crosstalk
among several cell subsets able to secrete different mediators including IL-17 and 1L-21, as
well as other cytokines.

Regulation of CD8* T cell responses

Immunoregulatory pathways are fundamental for host resistance to 7. cruzi as they
orchestrate balanced effector immune responses able to achieve parasite control without
extensive tissue damage [51]. The characteristics of different suppressor cell populations and
anti-inflammatory cytokine responses during 7. cruzi infection have been recently reviewed
[52, 53]. In particular, the role of Foxp3* regulatory T (Treg) cells have been extensively
studied under different 7. cruziinfection models, where contradictory results have been
reported. These discrepancies were attributed to the variety of parasite and mouse strains
used as well as the infection dose [53], but they also might be consequence of limitations in
Treg cell approaching strategies, the diversity of parameters studied, the tissues analyzed and
the focus on different stages of the infection. In this way, most studies targeted Treg cells by
the use of anti-CD25 depleting antibodies and few of them investigated its impact on CD8*
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T cell immunity towards 7. cruzi. Initial studies concluded a limited role for Treg cells
during 7. cruziinfection as a slight effect is observed in the frequency of antigen-specific
CD8* T cells in blood of Treg cell-depleted mice at the acute phase of infection, without
affecting parasitemia levels and survival curves [54]. Additionally, the functionality of CD8*
T cells remains unaltered in the acute and/or chronic infection of Treg cell-depleted mice,
and even after long periods of anti-CD25 treatment. Other groups reported no effects on
CD8™ T cell responses following Treg cell depletion, however in these cases the analysis of
the cytotoxic response was very limited [55-57].

The use of strategies that specifically target Foxp3* Treg cells have recently shed light in
understanding the impact of this population over CD8* T cell immunity after 7. cruzi
infection. In this way, specific-Treg cell depletion immediately after 7. cruz/infection of
DEREG (DEpletion of REGulatory T cells) mice improves the numbers of splenic parasite-
specific CD8* T cells, as well as their cytokine production capacity, suggesting that Treg
cells are able to regulate the induction of CD8* T cell responses [58]. In line with these
observations, we demonstrated that Treg cells activated in the context of 7. cruziinfection
are able to suppress total and parasite-specific CD8* T cell immunity [59]. Given that we
determined a significant reduction in the frequencies of Treg cells during the acute phase of
7. cruziinfection, we decided to use a strategy that opposed that of the previous work,
potentiating the Treg cell response through the injection of /n vitro differentiated Treg cells.
This Treg cell adoptive transfer results in an impaired CD8" T cell response accompanied by
increased parasite levels in the spleen and liver of acutely infected animals. More
importantly, our results indicate that the natural contraction of the activated Treg cell
response observed during the acute phase of 7. cruziinfection may be critical to allow the
emergence of protective anti-parasite CD8* T cell immunity. Indeed, we showed that Treg
cells and parasite-specific CD8* T cells inversely correlate in the spleen of mice during the
acute infection, in concordance to what has been suggested in humans with chronic Chagas
disease [60, 61].

The mechanisms used by Treg cells to achieve CD8* T cell suppression during 7. cruzi
infection remain to be fully elucidated. Considering the phenotypic profile acquired by Treg
cells after the infection, it is plausible that both direct and indirect regulation of CD8" T cell
immunity may be involved [59]. Accordingly, TGF-B and CTLA-4 blocking suggested that
these molecules may be partially involved in Treg cell suppression of CD8* T cell priming,
affecting CD8" T cell proliferation and effector cytokine production, respectively [58].
Furthermore, at least two studies report that immunomodulatory molecules that support Treg
cells concomitantly turn down the magnitude of the CD8* T cell response after 7. cruzi
infection. Pharmacological inhibition of the enzyme Haeme Oxygenase-1 during acute
infection results in decreased spleen Treg cell numbers and reduced cardiac Foxp3
expression in parallel with a raise in the CD8* T cell heart infiltrate [62]. In a similar
direction, mice deficient in Galectin-1, a beta-galactoside-binding protein that participates in
several immunoregulatory circuits [63], exhibit increased frequencies of CD8* T cells and
decreased parasite burden in skeletal muscle during the acute phase of 7. cruziinfection,
accompanied by a reduced frequency of Treg cells in the spleen and lymph nodes [64]. It
remains to be elucidated whether Haeme Oxygenase-1 and Galectin-1 exert a direct effect on
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the CD8™ T cell population and/or an indirect mechanism through suppression by regulatory
cells.

Myeloid-derived suppressor cells (MDSCs) have also been implied in CD8* T cell control
during 7. cruziinfection. MDSCs that produce peroxynitrites increase in the spleen and liver
of acutely infected mice and associate with augmented numbers of CD8" T cells that
undergo surface tyrosine nitration. The interplay between these cell subsets was confirmed
when MDSCs depletion with 5-fluorouracil decreased the frequency of tyrosine nitrated
CD8* T cells [65]. MDSC depletion also recovers the proliferative response of splenocytes
and raises CD107a*™ CD8™ T cell frequencies in 7. cruzi-infected mice [65]. Altogether,
these evidences suggest a suppressive function for MDSCs over CD8" T cell response,
although the direct impact of this suppression in parasite control could not be established
given the reduced survival of 5-FU treated infected mice.lt is likely that in spite of the
enhanced cellular response, 5-FU mediated MDSC depletion unleashed inflammation and
compromised tissue integrity, which in turn favored parasite circulation and reduced host
survival. Whether MDSC suppressive role is exerted by granulocytic and/or monocytic
subpopulations, and if other mediators apart from peroxynitrites are involved in MDSCs
mediated CD8 T cell suppression is yet to be determined.

In addition to regulatory cells, cytokines released by different cell types in response to 7.
cruzi can also suppress cytotoxic responses. By the use of mice carrying a dominant negative
form of the TGF-B type Il receptor, Martin ef a/ described that TGF- 8 can directly target
total and parasite-specific CD8* T cells to impair their expansion and therefore prevent their
exacerbated accumulation, especially in the chronic phase of the infection [66]. In addition,
Ebi3, likely as a part of IL-27 but not IL-35, was reported as a key modulator of CD8* (and
CD4%) T cell IFN-y responses in the heart and spleen at the acute phase of 7. cruziinfected
mice [67]. IL-27 is produced in hearts by myeloid MHC class 11" CD11b* cells and induces
the expansion of CD3* CD4* IL-10* Foxp3- Trl cells. Trl-derived IL-10 would play a role
in controlling IFN-y-producing T cell responses in the context of this parasitic infection [67,
68]. Interestingly, the pro-inflammatory cytokine IL-18 could also act as a modulator of the
CD8™ T cell effector cytokine response, as deficiency in this molecule increased frequency
of memory CD8* T cells that produce IFN-v in the spleen of mice chronically infected with
7. cruzi Colombian strain [69]. As these mice also showed decreased proportion of splenic
CD4* CD25" T cells and Foxp3 expression during the acute phase, it is likely that 1L-18
play an indirect role through Treg cells.

Altogether, the evidences discussed above underscore that multiple regulatory pathways act
in concert to modulate CD8" T cell immunity to 7. cruzi (Figure 2). Currently, several
groups are focused on targeting these immunoregulatory pathways as a mean to improve
protective CD8* T cell responses against 7. cruz/without a deleterious exacerbation of tissue
damage.

Strategies to enhance parasite-specific CD8* T cell immunity

Given the features of CD8* T cell responses discussed in the precedent sections, many
research groups have focused on the development of different strategies aimed to
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prophylactically induce CD8* T cell immunity against 7. cruzi and/or potentiate it,
particularly during the acute infection. Although the maximal goal during this infection
stage is achieving parasite elimination and cure, a more realistic objective would be to
reduce parasite levels to a minimum in order to prevent transmission and reduce the
frequency of symptomatic individuals. Below we discuss different approaches aimed at
boosting parasite-specific CD8* T cell immunity before or during the acute phase.

Whether potentiating CD8* T cell responses during the chronic phase may be beneficial for
the host is still matter of debate. However, recent reports have linked increased CD8* T cell
terminal differentiation and dysfunction in chronically infected individuals with a more
severe clinical disease [22] and even enhanced congenital transmission [70]. These reports
raise the possibility that reprogramming and/or reinvigorating CD8" T cells through
checkpoint blockade (i.e. anti-PD-1, anti-CTLA-4) or other immunomodulatory approaches
may be useful by reducing parasite loads in tissues and ameliorating clinical disease.
Extensive research in this direction is needed to evaluate the potentiality of these strategies.

Several prophylactic and therapeutic vaccine prototypes for Chagas disease have been
developed exploiting a variety of delivery systems (plasmids, adenoviruses and recombinant
proteins/peptides) and adjuvants. Of note, only a fraction of these vaccines explicitly
evaluated the effects on the potentiation of parasite-specific CD8* T cell responses (Table 2).
Among them, the conventional design approach is to use as immunogen those parasite
antigens that dominate the response against natural infection such as TS and ASP2 [71-76].
In a similar direction, recent alternatives consist in the usage of fragments from one or more
parasite proteins and even individual epitopes [77-79]. However, given the remaining
questions about the potential detrimental role of immunodominant CD8* T cell responses
for protection against 7. cruzi, other research groups searched for alternative candidates.
This strategy consisted in the selection of antigens based on /n silico analysis that followed
the premises of identifying proteins that are phylogenetically conserved in diverse 7. cruzi
strains and expressed in the infective and intracellular mammalian stages of 7. cruzi [80, 81].
All these different approaches showed prophylactic effect inducing, in a variable extent,
different effector immune mechanisms that result in the reduction of parasite loads and
tissue damage, in parallel with increased host survival. Furthermore, a few of these vaccines
were also shown to have therapeutic potential.

Besides evaluating the vaccine efficiency, two of the reports summarized in Table 2 provided
interesting information about the characteristics of the elicited CD8* T cell response that
may be associated with their effectiveness. In this way, protection by heterologous prime-
boost vaccination was linked to their ability to induce parasite-specific CD8* T cells that
exhibit phenotypic and functional attributes of superior quality in comparison to those
induced by natural infection [71-73]. Vaccine-elicited CD8* T cells show low expression of
the death receptor CD95 and a phenotype compatible with an effector T cell fate. These
cells, in turn, give rise to long-lived effector memory T cells that do not extensively
proliferate but migrate and differentiate into effector cells upon infection challenge. These
authors propose that even though the naturally-triggered immunity to 7. cruziis strong,
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vaccination could be exploited to induce CD8* T cells of improved quality and fitness to
cope with the infection. Moreover, a combination of genetic and cell-based immunization
approaches allowed to obtain important data related to epitope immunodominance [76].
These authors showed that a DNA vaccine encoding an enzymatically active TS and an
immunodominant CD8* T cell epitope is able to enhance subdominant pathogen-specific
CD8™ T cell responses as consequence of a co-stimulatory effect mediated by active TS.
Remarkably, vaccines inducing both immunodominant and subdominant epitope responses
are significantly less protective than those inducing only immunodominant-specific
responses. Altogether, these results suggest that increasing breadth of T cell epitope
responses, at least during vaccination, is not necessarily advantageous for resistance against
T. cruzi.

The knowledge gained in experimental models could guide efforts to move forward towards
a vaccine candidate in humans. This translational step presents a new layer of difficulty as
the selected parasite epitopes need not only to be immunogenic and conserved among
different parasite strains, but also to bind the extremely polymorphic human HLA
molecules. So far, attempts in this direction include immunoinformatic approaches aimed to
identify potential parasite epitopes that could bind HLA classl supertypes (group of HLA
alleles with largely overlapping peptide binding specificities) such as A2, that are able to
induce CD8" T cell immunity with a high population coverage [82]. Moreover, HLA class |1
epitopes for CD4* T cell induction as well as lineal and conformational epitopes for B cell
activation, are also being explored for the design of multiepitope subunit vaccines capable of
triggering different arms of the anti-parasitic immune response [83].

Immunomodulatory drugs

In the last years, it has become increasingly clear that the combination of antiparasitic agents
with strategies aimed to modulate particular immunological pathways triggered by 7. cruzi
infection may be useful to reduce the associated pathology. Also, there is growing interest in
evaluating possible immunomodulatory potential of conventional chemotherapeutics as well
as novel drugs that showed promising trypanocidal effect. Accumulating evidences indicate
that treatment with conventional drugs for chemotherapy of Chagas disease markedly impact
on the quality of the host immune response. Benznidazole treatment initially increases and
lately reduces the frequency of IFN-y producing T cells [84], improves CD8* T cell
response [24, 85] and restores the phenotype of CD8* (and CD4") T cells, as evidenced by a
decrease in the frequency of activated and effector cells [86]. Although it remains to be
established whether these are direct effects or rather indirect consequences of parasite load
reduction, the immunological changes induced by conventional drugs have been postulated
to improve treatment efficacy or at least, to serve as biomarkers of treatment efficacy.

In regard to novel drug candidates, it was reported that the Tryptophan-derived catabolite 3-
hydroxykynurenine (3-HK) shows a direct antiparasitic effect [87] and also induces Treg
cells and suppresses Th1 and Th2 responses, reducing the incidence and severity of chronic
cardiomyopathy in an experimental infection model [88]. The mechanism underlying 3-HK
immunomodulatory role seems to be linked to its ability to ligate the Aryl hydrocarbon
Receptor (AhR), a ligand-activated transcription factor that plays important roles in the
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modulation of immune responses. Of note, AhR was recently reported to have a
dichotomous role in the generation of memory CD8* T cells during 7. cruziinfection [89].
Strong and/or sustained AhR activation induced by different ligands has negative effects in
the development of parasite-specific memory CD8* T cell subsets. In contrast, very weak (or
lack of) AhR activation observed upon 7. cruz/infection in AhRd mice, which express the
hyporesponsive variant d of the A/ allele, enhances CD8* T cell immunity and parasite
control. It remains to be specifically evaluated whether drugs able to inhibit AhR pathways
may be useful to improve CD8* T cell responses during 7. cruziinfection or vaccination.

In addition, promising chemotherapeutic candidates that resulted from the Drugs for
Neglected Diseases Initiative (DNDi) such as K777, a vinyl sulfone cysteine protease
inhibitor of cruzain, are being evaluated by their immunomodulatory properties. In particular
for CD8* T cells, in vitro K777 treatment of peripheral blood mononuclear cells from
patients with Chagas disease increases the frequency of cells producing IFN-y, TNF and
IL-10, suggesting it may induce beneficial changes in the immunological profile of infected
individuals [90].

Finally, unspecific therapies used to mitigate cardiovascular symptoms may also modulate
immunological pathways showing an impact on disease progression [91-93]. Particularly,
pentoxifylline (PTX), a methylxanthine phosphodiesterase inhibitor used as cardioprotective
and as treatment for peripheral vascular diseases, show important effects on CD8" T cells
activated during 7. cruziinfection. PTX administration reduces the frequency of spleen
CD8* T cells expressing activation and migration markers and more remarkably, decreases
the cardiac infiltration of perforin* CD8* T cells preserving the presence of IFN-y
producers. Consequently, PTX hampers the progression of heart injury and reverse
functional cardiac abnormalities without compromising tissue parasite control [94].

Of note, conventional chemotherapeutic drugs result in the modulation of several immune
parameters including subpopulation distribution and function of CD8" T cells that have been
attributed to the success of the treatment to reduce parasite burden [24, 95]. Therefore, future
work is required to establish whether the immunomodulatory effects of novel candidates are
directly exerted on particular immune pathways or an indirect consequence of the
trypanocidal activity.

Concluding remarks

Described more than a century ago, Chagas disease remains a major health problem in
endemic areas and is becoming a global concern due to migratory movements. There is
consensus in that variable disease progression results from complex host-microbe
interactions. After decades of research, it is well-accepted that the magnitude and quality of
the host CD8* T cell immunity is a key element for resistance to 7. cruzi. Particular features
of parasite-specific CD8* T cell responses include slow induction, immunodominance, high
functional competence or cell dysfunction according to the particular infection setting,
among others. However, continued efforts are required to improve our understanding of the
biological pathways underlying the development and maintenance of a balanced CD8" T cell
immunity to 7. cruzi (see Outstanding Questions). Furthermore, given that features of the
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CD8* T cell immunity to 7. cruzihave been delineated mainly based on data from
experimental infection, future work should also be oriented to overcome the scarcity of
detailed studies in the context of human Chagas disease. Altogether, data obtained from
experimental and human infections will be critical to guide future work aimed to develop
prophylactic and/or therapeutic strategies to achieve maximal parasite control (and ideally
elimination), together with minimal tissue damage during the acute phase, in order to
prevent clinical disease in chronicity.
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GLOSSARY

DEREG (DEpletion of REGulatory T cells) mice

These mice express a simian diphtheria toxin receptor-enhanced green fluorescent protein
(DTR-eGFP) fusion protein under control of the endogenous forkhead box P3 promoter/
enhancer regions. DTR-eGFP expression is observed in fully functional
Foxp3*CD4*regulatory T cell populations allowing fluorescent detection or diphtheria
toxin-induced ablation of Foxp3* Treg cells.

Exhausted T cells

Distinct CD8" T cell lineage that arises during chronic infections and cancers. Exhausted T
cells are characterized by progressive loss of effector functions, high and sustained
inhibitory receptor expression, metabolic dysregulation, poor memory recall and
homeostatic self-renewal, as well as distinct transcriptional and epigenetic programs.

Foxp3* regulatory T (Treg) cells

a population of T cells that inhibits the activation of other immune cells and is necessary to
maintain peripheral tolerance to self-antigens. Treg cells are CD4* and express the a. chain
of the IL-2 receptor (CD25), CTLA-4 as well as other inhibitory receptors.

Immunodominance
The dominance of an antigen (over all others) in its ability to induce an immune response.

Immunogen
is a specific type of antigen (typically above 20kDa) that is able to elicit an immune
response.

Immunoproteasome
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highly efficient proteolytic machinery abundantly expressed in immune cells, that after
exposition to inflammatory stimuli (i.e. interferons) replace the three subunits of
conventional proteasomes. It plays an essential role in the immune system, degrading
intracellular proteins to allow peptide presentation in an MHC class | context.

Myeloid-derived suppressor cells (MDSCs)

a heterogeneous group of immature myeloid precursors that suppress immune responses.
This cell population expresses Ly6C or Ly6G and CD11b in mice, and CD33, CD11b, and
CD15 in humans.

Priming
It is the first contact of a naive T or B cell with its specific antigen that leads to cell
activation and differentiation into effector T or B cells.

Senescent effector CD8" T cells

Particular population of effector CD8* T cells described in humans during aging, chronic

infection and cancer characterized by cell cycle arrest, critical telomere shortening, loss of
co-stimulatory molecules CD27 and CD28 expression, increased expression of CD57 and

KLRG1, and increased expression of proteins involved in DNA damage responses.

Stem cell memory

a rare subset of memory lymphocytes endowed with the stem cell-like ability to self-renew
and the multipotent capacity to reconstitute the entire spectrum of memory and effector T
cell subsets.

Tyrosine nitration

is a form of post-traslational protein modification induced by peroxynitrites that may affect
molecules of the TCR: CD8 complex, leading to apoptosis, unresponsiveness and
dysfunction.
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Box1.
Chagas disease - epidemiology, transmission and pathology

Chagas disease (American Trypanosomiasis) is a life-threatening illness caused by the
protozoan parasite 7rypanosoma cruzi[96]. Last estimates calculated an infected
population of about 6 million in Latin America, with more than 70 million people living
at risk of infection and 40000 new cases diagnosed per year [97]. Modern migration has
led to Chagas disease spreading beyond endemic areas, becoming a global public health
concern [98].

In areas where Chagas disease is common, the main way of transmission is vector-borne,
through blood-sucking insects of the triatomine family. Other routes of 7. cruzi
transmission include blood transfusion, transplantation, consumption of contaminated
food or vertical transmission (from mother to fetus). When vectorially acquired, Chagas
disease has two major phases: acute and chronic. Severe acute disease occurs in less than
5% of patients and around 30-40% of the chronically infected people can develop
cardiac, digestive, neurological or mixed alterations. Chronic chagasic cardiomyopathy
(CCCQ) is the most serious manifestation of the chronic form of Chagas disease and
constitutes the most common type of infectious myocarditis in the world [99]. In addition
to CCC, skeletal muscle alterations such as myositis, vasculitis, atrophy and necrosis of
myofibrils may be responsible for the physical dysfunction of patients with severe
chronic Chagas disease [100]. Although much less studied, adipose tissue is also an
important target tissue of 7. cruziand its infection is associated with a profound impact
on systemic metabolism, increasing the risk of metabolic syndrome [101].

It is generally accepted that parasite persistence and chronic inflammation play an
important role in host tissue damage [102]. In the setting of a chronic infection, a balance
exists between immune activation that controls parasite replication, and immune
suppression, which prevents immunopathology. Despite many decades of research on the
subject, the infection remains incurable, and the factors that steer chronic Chagas disease
from an asymptomatic state to clinical onset are still unclear.
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Box 2.

Development of CD8* T cell responses during acute versus chronic
infections

Adaptive immune responses consist of distinct phases: antigen recognition and activation
of lymphocytes (the induction phase) followed by elimination of the pathogen (the
effector phase). Afterwards, the immune response contracts as antigen-stimulated
lymphocytes die by apoptosis, restoring homeostasis. Few antigen-specific cells survive
and become long-lived cells responsible of the immunological memory. The duration of
each phase may vary in immune responses triggered by different challenges.

During acute infection or following vaccination, antigen-specific naive CD8* T cells
undergo robust proliferation and clonal expansion to differentiate into an effector
population that includes KLRG1M CD127!° short-lived effector cells and KLRG1!°
CD127M memory precursor cells. Effector T cell differentiation is accompanied by
transcriptional, epigenetic, and metabolic reprogramming, with the acquisition of
hallmark effector features such as the ability to produce cytokines and cytotoxic
molecules. Following antigen clearance and resolution of inflammation, the CD8* T cell
response suffers a contraction in which the majority of activated effector T cells die. A
small subset, however, persists and differentiates into memory T (Tmem) cells. Tmem
cells downregulate their effector program and acquire a stem cell-like ability to survive
in an antigen-independent fashion as long-lived cells that undergo slow homeostatic self-
renewal driven by IL-7 and I1L-15 [103]. CD8* Tmem cells retain the ability to re-expand
upon secondary antigen encounter, resulting in an anamnestic response that controls the
infection more rapidly than during the primary response [104]. In the chronic infection,
antigen-specific naive CD8* T cells differentiate into an effector T cell population similar
to that observed following acutely resolved antigen encounter. However, antigen
persistence and the consequently sustained inflammatory microenvironment drive cell
exhaustion, a phenomenon in which pathogen-specific T cells gradually loose effector
function [23]. Exhausted T cells arise from the KLRG110 CD127 subset, and therefore
share certain features with memory T cells [105]. To date, exhausted T cells have been
described in the context of chronic infections (and other chronic pathologies) in mice and
humans [106-110].
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Outstanding Questions

Would the acceleration in the development of pathogen-specific CD8+ T cells
be the best approach to achieve complete elimination of 7. cruzi?

Is it possible to target immune pathways in order to potentiate 7. cruzi
specific CD8+ T cell immunity, and thereby enhance the control of parasite
replication, without unleashing uncontrolled inflammation?

Is the repertoire breadth of human CD8+ T cell responses to 7. cruzi
associated with the severity of clinical disease?

The dysfunction of CD8+ T cells observed in Chagas disease patients, is a
cause or rather a consequence of high parasite burden and severity of the
clinical disease?

Could treatments oriented to restore proliferative potential and/or effector
function of dysfunctional CD8+ T cells be useful to ameliorate chronic
clinical pathology in patients with Chagas disease?

Is it possible to design a unique vaccine able to confer protection for all the
diverse parasite strains described?

Could the combination of selected trypanocidal drugs and immunomodulatory
agents achieve superior anti-parasitic effect by limiting parasite replication
and, concomitantly, potentiating CD8+ T cell immunity?
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Highlights

CD8* T cells are critical for host resistance during 7. cruzi infection given
their effectiveness to control parasite outgrowth throughout all infection
stages.

T. cruzi-specific CD8* T cell immunity shows a significant magnitude but
develops with a delayed kinetics, displays a relatively reduced breadth and
may acquire dysfunctional features.

Proliferation, survival and cell exhaustion of 7. cruzi-specific CD8+ T cells
are conditioned by particular cytokines and soluble mediators secreted by
different effector and regulatory immune cell populations.

Dysfunctional CD8* T cells in patients with Chagas disease are associated
with higher parasite loads and more severe clinical disease.

Several strategies including vaccines and trypanocidal drugs with
immunomodulatory properties have shown diverse success to enhance CD8+
T cell immunity, reduce parasite burden and limit clinical severity.

Trends Parasitol. Author manuscript; available in PMC 2020 November 01.




1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnue Joyiny

Rodriguez et al. Page 25

4
/--_h——-__‘_‘“
@a&_@/

ttettt o

B cell TH 17 cbs*

(via TLR, NLR CD4'/CD8* T cell

and/or B2R?) (IL-10+) i;r:sél?
Other immune populations?
Legends:
MHC class | + MHC class | + MHC class Il + 1 ! CD27/CD28 f T* Inhibitory receptors
immunodominant peptide " subdominant peptide peplide Y i

Degranulation i i Teu

(8) T. cruzi INFECTION (b) PRIMING (C) EXPANSION (d) CONTRACTION (e) CHRONICITY
(initially silent)
Condition of functional
competence: less severe
CD8" Te IFN-y clinical disease

cDs* TEM and

At least one IFNy +
round of parasite Parasite Ags — TNF  +
replication Homeostatic Degranulation +

IL-17, IL-10, IL-7/1L-15, IL-6 ’ Condition of dysfunction:
IL-21(?) more severe clinical
| N disease
® o I
CD8* Tgy and

< :
».\GOA (IL-17+) . (IL-17+) Tew and Tey EMRA
Activated DC (A=) 21

IFNy +i-
TNF  +L-
Degranulation +/-

Figure 1, Key Figure. Priming and maintenance of T. cruzi CD8" T cell response.
a) 7. cruziinfects different cell types within the host but at least one round of parasite

replication is necessary to allow the accumulation of sufficient amounts of parasite antigens
(Ags) and ligands able to activate antigen presenting cells with T cell priming ability.
Dendritic cells (DC) recognize 7. cruzithrough ligation of toll-like receptors (TLR) that are
nevertheless not essential for CD8* T cell priming. Alternatively, Nod-like receptors (NLR)
or bradykinin 2 receptors (B2R) may be involved in this process. b) Activated DCs prime
naive CD8" T cells (Ty) that recognizes immunodominant as well as subdominant parasite
epitopes. CD4* T cell help seems to be mainly required in the induction of CD8* T cells
specific for immunodominant peptides. c) Upon priming, there is a robust expansion of
parasite-specific effector CD8* T cells (Tg) that show polyfunctional effector response and
are critical for the control of parasite replication. T CD8* T cell survival and effector
function is sustained by particular cytokines and soluble mediators produced by different
cell subsets. d) After the limitation of parasite burden, the CD8" T cell response contracts
and gives rise to effector memory (Tgp) and central memory (Top) CD8* T cells that
persist during the chronic phase. e) Although memory CD8* T cells remains functional to
limit parasite outgrowth, at least two scenarios have been reported in the chronic phase in
relation to CD8* T cell phenotype and functional competence.
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Figure 2. Pathways of CD8" T cell suppression during T. cruz infection.
7. cruziinfection induces the secretion of soluble anti- and pro-inflammatory mediators by a

wide range of immune cell populations as well as the upregulation of inhibitory receptors,
such as CTLA-4, by Treg cells. In turn, each mediator may target one or several functional
mechanisms of the CD8* T cell response, either acting directly on CD8* T cells or indirectly
through other cell subtypes. Concurrently, each aspect of the CD8* T cell effector response
might be controlled by more than one inhibitory mechanism. Suppression pathways are
represented by different colors that show correspondence with the color of the arrow next to
the CD8™ T cell process that they suppress (i.e proliferation, effector cytokine production or
cytotoxicity). Solid lines indicate a demonstrated mechanism, while dashed lines illustrate
possible interactions; arrow heads stand for activation/production while blunt ends denote
inhibition/suppression. Treg cell, CD4" Foxp3* regulatory T cell; Trl cell, CD4* Foxp3-
IL-10* regulatory T cell; DC, dendritic cell; MDSC, myeloid derived suppressor cell; NO,
Nitric Oxide; CTLA-4, Cytotoxic T-Lymphocyte Antigen 4; TGF-b, transforming growth
factor beta; IL, interleukin; TCR, T cell receptor.
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