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Global models for moving contact lines
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We consider thin film flows driven by surface tension and gravity. Within the framework of the lubrication
approximation, we study the contact line motion using global models where either precursor film or slip are
allowed. We show that completely wetting films can be simulated under both conditions without requiring
direct tracking of the contact line interface. We perform a comparative study of standard and positivity
preserving numerical methods for these problems in one space dimension, with the ultimate goal of choosing
the best method applicable to two-dimensional problems. We find a considerable computational advantage of
the precursor film model over the slipping models.
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I. INTRODUCTION

The coating of a solid surface by a thin liquid film and,
particular the dynamics of the contact line, is a problem
interest from both practical and theoretical points of vie
@1–3#. This problem is usually approached within the fram
work of lubrication approximation, where the velocity fie
is depth-averaged over the thickness of the film. This
proach reduces Navier-Stokes equations to a more trac
single fourth order PDE which governs the time evolution
the film thicknessh(x,y,t). In the context of fluid spreading
on a horizontal substrate this equation, suitably scaled
given by ~e.g.,@4,5#!

]h

]t
1“•@D~h!““

2h#2G“•@D~h!3
“h#50. ~1!

The fourth order term results from the capillary effects, wh
the lower order terms model the gravitational forces.G is a
constant defined by the scaling~see Sec. VI!. Additional
terms arising from thermal effects, centrifugal forces, e
might be included. If one assumes usual no-slip bound
conditions at the substrate, the nonlinear diffusion is giv
by D(h)5hn, with n53. Equations of the type of Eq.~1!
are also important in other fields for different values ofn.
Some examples are the evolution of a thin neck in a He
Shaw cell @6#, the diffusion of dopants in semiconducto
@7,8#, Cahn-Hillard models with degenerate mobility@9#,
population dynamics@10#, and problems in plasticity@11#.

A major hindrance in the development of the theory
the problem of fluid spreading is the incomplete knowled
of the physics at the contact line, where liquid, gas, and s
phase meet. A moving contact line coupled with a no-s
boundary condition leads to a multivalued fluid velocity
the contact line. As a consequence, the viscous dissipa
rate as well as the stresses diverge ash→0. This constitutes
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the contact line paradox@1,2#; this phenomenon manifest
itself in the lubrication equation, Eq.~1!, in that advancing
front solutions do not exist forn>3 @12#.

In the general context of partially wetting fluids, the co
tact line problem is typically addressed by either relaxi
no-slip boundary condition, or by accounting for the effec
of the long range intermolecular van der Waals forces~dis-
joining pressure!. The former approach leads to introducing
new term in the diffusivityD(h), while the latter adds an
other nonlinear second order term, both effectively modi
ing the fluid behavior in the vicinity of the contact line. I
the case of completely wetting fluids, experimental eviden
@13,14# motivates the inclusion of a microscopic precurs
film in front of the apparent contact line, thus removing t
singularity. This approach is consistent with a van der Wa
model in the case of a favorable disjoining pressure~see,
e.g.,@2,15#!.

In this work we concentrate on the case of complet
wetting fluids. We propose to formulate a ‘‘global’’ mode
which considers the contact line as part of a system
includes both the wet and dry parts of the surface. The g
is to have a method that captures changes in topology suc
film rupture and merger without explicitly tracking the inte
face. In this sense, the models are in the same spirit as re
Cahn-Hilliard models introduced to capture topological tra
sitions in fluids@16,17#. This direction of research require
direct solution of Eq.~1!. The main subject of this paper is t
explore computational methods to achieve this goal.

In developing these methods, we first concentrate on
simpler equation which includes only capillary effects,
that G50 in Eq. ~1!, and consider the simple power la
modelD(h)5hn

]h

]t
52“•@hn

““

2h#. ~2!

This fourth-order diffusion equation is degenerate, since
diffusivity vanishes ash→0. It is of interest to consider this
equation for different values of the exponentn (nÞ3), for
the following reasons. First, relaxing no slip-boundary co
dition at the contact line leads to a modified diffusivity in E
~1!, given now by Ds(h)5h31Lsh

s, where l(h)
5Ls /(3h22s) is the slipping length, andLs is a positive
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constant. So, the behavior of the diffusivity for smallh is
modified from D;h3 to D;hs. Typically, s51 ~singular
slip!, ands52 ~constant slip! have been used@18–23#. The
second motivation for analyzing Eq.~2! with nÞ3 is that for
n51,2 source type self-similar solutions exist, allowing f
direct comparison of the computational and theoretical
sults.

The equations of the type of Eq.~2! do not satisfy the
maximum principle~see, e.g.,@24#!; as a result positive ini-
tial data might lead to a solution which changes sign. Ho
ever, one remarkable consequence of the nonlinear struc
of Eq. ~2! is that it does permit non-negative solutions fro
the non-negative initial data. Still, even for the problem
where positivity of the solution is guaranteed analytically
a continuous model, computations might still lead to prem
ture or false singularities (h<0). A nonpositive numerica
solution, even if it occurs at a single mesh point, introdu
artificial instability and inaccuracy into the system. Stand
finite-difference schemes do not necessarily preserve pos
ity of the solution, in particular if the computations are n
well resolved. Recently, several schemes have been de
oped to address this issue@25–27#. In this work, we use the
positivity preserving method presented in@25#, which is
based on the key idea of Lyapunov dissipation. We emp
cally test this method by comparing the results to self-sim
solutions ~where applicable!, and to the computational re
sults obtained using standard finite-difference discretizat

In Sec. II we explain the mathematical tools to be imp
mented in the numerical code, whose main features are
sented in Sec. III. This finite difference code solves the o
dimensional~planar and radial symmetry! version of Eq.~2!.
In Sec. IV we use the self-similar solution of the spreading
a constant volume ‘‘drop’’ as a benchmark for the code, a
perform a parametric study of convergence forn51 and 2,
using either standard or special discretizations of the di
sivity D(h). In the case of physical relevance,n53, we
employ both the precursor film and the slipping models, a
analyze the spreading of a small drop, where the effect
gravity can be ignored. After performing convergence stu
we address the problem of the radial drop spreading for l
times and look for the asymptotic behavior of the soluti
~Sec. V!. The addition of gravitational forces is considered
Sec. VI, where we study the effects of gravity on the rad
drop spreading. Section VII is devoted to the summary a
conclusions of the work.

II. GLOBAL MODELS AND POSITIVITY
OF THE SOLUTION

A growing body of mathematical research~see the review
article @24# and references therein! addresses the question
related to the lack of the maximum principle of the solutio
of Eq. ~2!. In particular, the theory of ‘‘weak’’ nonnegativ
solutions provides a rigorous context for solutions of Eq.~2!
with moving contact lines@28#.

The dynamics of solutions of the lubrication equation, E
~2!, can be understood in the context of several kno
Lyapunov functions. The Lyapunov functionE(h)
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51/2* u“hudx, associated with the surface tension energy
the lubrication limit, satisfies

dE/dt52E D~h!u“2hu2 dx. ~3!

Another Lyapunov function, often referred to as an ‘‘e
tropy,’’ is *G(h)dx, satisfying

dE G~h!dx

dt
52E u“2hu2 dx, ~4!

whereG9(h)51/D(h). The name entropy is motivated b
the Hele-Shaw geometry,D(h)5h, for which G(h)
5h logh. Such entropies and energies have been use
study the physics of viscous topology transitions in He
Shaw flows@29,30#, as well as many mathematical properti
of weak solutions of the PDE, Eq.~2! ~see@24# and refer-
ences therein!.

Note thatG(h);h22n for D(h)5hn, and the entropy is a
negative power ofh for sufficiently largen. Using this fact,
one can show that in the planar case~one space dimension!
positive initial conditions always yield a positive solutio
@31,32# for sufficiently largen. A practical importance of this
fact is that one can construct nonnegative zero contact a
solutions of the PDE for relatively small values ofn by using
a modified version of the diffusivityD(h), lifting of the
initial condition, and passing to the limit. This fact has be
proved for the planar case@33,34#. This procedure, known a
regularization, involves replacing nonnegative~e.g., drop-
shaped! initial film shapesh(x,0) with an artificially lifted
shapeh(x,0)1b (b is small and does not represent a phy
cal precursor!, and replacing the diffusivityD by the modi-
fied diffusivity

D̃~h!5
D~h!h4

«D~h!1h4
, ~5!

where«5«(b) is also small. Note thatD̃(h)→D(h) as «

→0, and alsoD̃(h)→h4/« ash→0 ~for n,4), which guar-
antees positivity of the regularized solution. In the case
planar symmetry, in order to guarantee a zero contact a
solution in the limit b→0, b>«1/2 for 2,n,3 and b
>«2/5 for 0,n,2. Here, we take

b5«0.3, ~6!

wheneverregularizationis used.
This paper compares the behavior of new and stand

numerical methods for simulating classical problems invo
ing moving contact lines. All of the methods we consider a
finite difference schemes; however, the schemes have a
allel setting as finite element methods@25,26#. Our compu-
tational domain 0<x<L is divided intoN cells of sizeDxi
(0< i<N). We focus on problems in planar or radially sym
metric geometry, reducing the computation to one spa
dimension. In this way, we can accurately test the perf
mance of the different models and schemes under mesh
8-2
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GLOBAL MODELS FOR MOVING CONTACT LINES PHYSICAL REVIEW E63 011208
finement. We use centered finite differences to approxim
the spatial derivatives in Eq.~2!. For the planar case, th
remaining part of the spatial discretization is the particu
choice of numerical diffusivityDi 11/2 midway between the
grid pointsxi andxi 11. The most obvious choice is

Di 11/25
1

2
@D~hi !1D~hi 11!#, ~7!

used in@32,35–37# which we call the standard scheme (SS).
In fact, this naive interpolation may result in a numeric
solution that becomes negative at some finite time even w
the PDE is sufficiently degenerate to guarantee positi
@25#.

Recently @24,25,38#, a positivity preserving schem
(PPS) has been proposed to avoid possible negative va
of h for n>2. This scheme results in a discrete form of t
entropy dissipation, Eq.~4!, thereby producing a positive so
lution of the PDE, Eq.~2!. For the planar case, the discre
diffusivity is

Di 11/25H hi 112hi

gi 112gi
, hi 11Þhi ,

D~hi !, hi 115hi ,

~8!

whereg(h) is given by

g~h!5E dh

D~h!
. ~9!

This scheme produces a numerical solution that rem
positive if the initial data is positive providedn>2. For
moving contact line solutions whenn,2 ~as in the case o
singular slipping; see Sec. V A 2!, one can combine the
regularizationmethod above with the entropy dissipating n
merical scheme to produce a modified scheme that inco
ratesregularization, lifting, and a discretization of the regu
larized diffusivity of the form given by Eq.~8!. For more
details and mathematical proofs about the regulariza
@32,34# and this scheme see Refs.@25# and @38#.

III. OUTLINE OF THE NUMERICAL METHOD

We have developed a numerical code to solve Eq.~2! for
planar and radial symmetry. Assuming such a geometry,
~2! becomes

]h

]t
1x2a

]

]x S xaD~h!
]c

]xD50, ~10!

where the curvaturec is given by

c5x2a
]

]x S xa
]h

]xD , ~11!

and a50,1 stands for planar or radial symmetry, resp
tively. The second term of Eq.~10! is discretized by using a
centered finite difference scheme, so that we get
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dt
1 f i50, ~12!

where f i depends on the five neighboring grid points as

f i5 (
m522

2

amhi 1m , ~13!

and the prefactorsam are linear functions of the diffusivities
Di 61/2. Di 61/2 contains the nonlinearity of the equation an
is given by an appropriate interpolation ofD(h). Though the
code was developed for nonuniform gridsDxi , for simplic-
ity, here we make computations only for a constant me
sizeDx. To enforce the boundary condition, we require tw
ghost cells on the left (i 521,22) and right (i 5N11,
N12).

The scheme conserves a discrete form of the volume

(
i 50

N

~2pxi !
ahi

nDxi5(
i 50

N

~2pxi !
ahi

n11Dxi , ~14!

where the superscriptn stands for the timetn5tn211Dtn,
andDtn is thenth ~variable! time step. Volume conservatio
at the boundary results from a no-flux condition there,f
5D(h)]c/]x50. In addition, we also assume]h/]x50
there. In the discretization,f is centered between grid
points, thusf50 in the middle of each first fictitious cell.

The coupled system of ODE’s, Eq.~12! is discretized in
time using the standard method

hi
n112hi

n

Dtn
1u f i

n111~12u! f i
n50 ~0< i<N!, ~15!

where 0<u<1. Here,u50 gives the forward Euler schem
@explicit, O(Dtn)#, u51 the backward Euler scheme@im-
plicit, O(Dtv)# andu51/2 the Crank-Nicholson scheme@im-
plicit, O(Dtn)2#. Equation~15! specifies a system ofnonlin-
ear algebraic equations forhi

n11 , which is solved using
Newton-Kantorovich method. The solution at timetn11 is
calculated by requiring that the local error is less than
given tolerance~we use 10210 throughout this work!.

The time evolution from a given initial conditionhi(0)
(0< i<N) is performed withu51/2 and variable time steps
the size of which is limited by two requirements:~a! that the
solution is strictly positive everywhere in the domain, a
~b! that an accuracy condition is satisfied. The requirem
~a! is enforced when the Newton iteration has converged
the converged solution is negative anywhere in the dom
the time step is reduced, and the calculation is repeated.
condition ~b! is enforced by estimating the local relative e
ror ei of the solutionhi

n11 . A Taylor expansion aroundhi
n

leads to

ei5
~Dtn!2

hi
n

d2hi
n

dt2
, ~16!

so that
8-3
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ei'
2Dtn

Dtn21

Dtn21hi
n111Dtnhi

n212~Dtn211Dtn!hi
n

~Dtn211Dtn!hi
n

.

~17!

If E5max(ei) (0< i<N) is less than a given upper boun
Em ~typically, Em5102221023), the solution hi

n11 ob-
tained with the time stepDtn is accepted; otherwise,Dtn is
reduced and a new calculation ofhi

n11 is performed. This is
done as many times as necessary in order to getE,Em. If
the application of the conditions~a! and ~b! leads to ex-
tremely smallDtn, the simulation stops and is deemed u
successful. As we illustrate below~see Sec. IV B!, this can
happen on coarse grids with certain choices of discretiza
of the diffusivity.

IV. TEST PROBLEM: ‘‘DROP’’ SPREADING

Before considering the full physical problem of a sprea
ing drop, we perform some numerical tests on a simp
problem with known exact solutions. In both the planar a
radial geometries, Eq.~10! with D(h)5hn has a self-similar
source-type solution forn,3 @39–41#. We use this fact as a
benchmark to test performance of the numerical method
scribed above. We also note that the careful analysis of
~unphysical! casesn51,2 will prove very useful in under-
standing better the performance of the slipping models in
duced later in Sec. V.

A. Self-similar solution

For any constant volumeV, there exists a unique exac
solution of Eq. ~10! with compact support, zero conta
angle, and the following self-similar structure:

h~x,t !5AtbH~h!, ~18!

whereh5x/xf is the similarity variable,

xf~ t !5qtd ~19!

is the front position,A is a constant determined by the vo
umeV, andq5An/4. The exponentsd51/„41(a11)n… and
b5(4d21)/n are fixed by dimensional analysis using vo
ume conservation. This similarity solution is called ‘‘sourc
type’’ because it starts as ad-function with volumeV, analo-
gous to the Gaussian heat kernel for the heat equa
Plugging this ansatz into Eq.~10! shows thatH satisfies the
similarity ODE

bhH2dh2H81h2a~haHnC8!850, ~20!

whereC5h2a(haH8)8, and the primes indicate derivativ
with respect toh. VolumeV andq are related by

V5E
0

xf
~2px!ah~x,t !dx5q1/ndI , ~21!

where I 5*0
1(2ph)aH(h)dh is a shape factor. Equatio

~20! may be integrated once, leading to

C85dhH12n, ~22!
01120
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sinceC8(0)50 by symmetry. This third order equation ha
boundary conditions:

H8~0!50, H~1!5H8~1!50. ~23!

As mentioned in the Introduction, Eq.~22! can only be
solved forn,3. The casen53, relevant to physical drops
is discussed in Sec. V.

B. Comparison of numerical and self-similar results

Here we solve numerically the PDE, Eq.~10!, as ex-
plained in Sec. III and compare the results with the similar
solutions. We study in detail the computational performan
of different interpolation schemes for the diffusivity (SS and
PPS). Regularizationis added forn,2 ~see Sec. II!. For
simplicity, we take the planar drop spreading (a50) con-
figuration as a test problem forn51 and 2.

In our computational simulations of Eq.~10!, we use the
initial condition as given by the self-similar shapeH(h).
Thus, including the ‘‘lifting’’ b, we have

h~x,0!5H H~x!/H01b, 0<x<1,

b, x.1,
~24!

whereH05H(0). We compare the numerical values of th
solution at the center,h0(t), and the radiusxf(t) ~apparent
contact line! with the theoretically predicted values

xf~ t !5h0~ t !215~11q1/dt !d. ~25!

In order to compare the different schemes explain
above, we calculate the evolution up to a given timet̃ using
a boundedDtn (<Dtmax) for a given sequence of uniform
grids. In all the calculations,Dtmax has been chosen sma
enough so that the dominant source of error is due to
spatial discretization.

1. The case nÄ1

For n51, the ODE, Eq.~22! admits the analytical solu
tion

H5H0~12h2!2, ~26!

with d51/5, H051/120, I 58H0/15 for a50, andd51/6,
H051/192, I 5pH0/3 for a51.

Figure 1 gives the numerical results for longer times,
well as a comparison with the self-similar solution. The d
ference betweenh(x,t)/h0(t) and H(h) is very small~less
than 0.005 for the time range shown in Fig. 1!, thus confirm-
ing the ability of our computational method to very close
reproduce the expected self-similar evolution.

We now show that the standard schemeSS has limited
utility since the numerical solutions may become negative
insufficiently fine grids. Figure 2 shows the profiles att̃
50.02 (Dtmax51026) of a sequence of calculations with se
eral Dx’s. We useSS to interpolate the diffusivityDi 11/2
@see Eq.~7!# and b51022. Note that the profile has no
changed its shape~self-similarity!, and it is still well fitted by
Eq. ~26! with appropriate values ofh0 andxf . The values of
8-4
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h0 versusDx are plotted in Fig. 3~up triangles!. It can be
seen that forb51022, the solution does not tend to the exa
value h0( t̃ )5h̃0>0.78289~black dot in Fig. 3!. Computa-
tions for smallerb, such as 1023, produce negative values o
h in the front region for the same range ofDx’s and, there-
fore, are not valid solutions. One way to try to avoid su
negative values is to decreaseDtn, but this procedure lead
to Dtn→0. Another possibility is to reduceDx even more,
but this is computationally too expensive, and so other
tions must be explored, such asregularization@see Eq.~5!#.
It is seen in Fig. 3 that the addition ofregularization for b

FIG. 1. Self-similarity of the numerical time evolution forn
51 anda50 (Dx50.01, b51024), underPPS with regulariza-
tion. ~a! Thickness profileh(x,t) ~the arrow shows the direction o
time increase!; ~b! xf(t), h0(t) compared with the analytical solu
tions given by Eq.~25!, whereq is obtained from Eq.~21! with V
58/15.

FIG. 2. Planar drop profile forn51 and b51022 at t50.02
(Dt<1026), usingSS and differentDx’s.
01120
t

-

51022 ~down triangles! modifies the behavior for smallDx,
bringing the results closer to the exact value. However,
have found that forb51023, the regularization is not
enough to avoid negativity of the solution.

PPS removes this problem. Figure 3 shows the resu
using PPS plus regularization for b5102221025. Within
this scheme, the solutions converge to the exact solutio
Dx→0 for sufficiently smallb’s. Figure 4 shows the result
as b→0 for several Dx’s. The solution is practically
b-independent providedb,1024. We note that without
regularization, these calculations cannot be performed sin
negative values ofh do appear using onlyPPS ~positivity is
not guaranteed forn<2).

It turns out that the solution forn51 can be safely com-
puted only by usingPPS plus regularization, and thatSS
does not work properly in this range of~reasonably small!

FIG. 3. Thicknessh0 of the planar drop forn51 (t50.02) as a
function of Dx with several values ofb, under different schemes
For b51023, SS leads to negative results for the film thickne
~not shown!.

FIG. 4. Thicknessh0 of the planar drop forn51 (t50.02) as a
function of b, usingPPS plus regularization.
8-5
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Dx. Similar result was reported in Ref.@38#, where the case
n51/2 was explored~see also@26,27# for alternative meth-
ods!.

2. The case nÄ2

The casen52 is distinguished by the fact that it is no
possible to obtain an analytical solution. Consequently,
numerically solve the ODE~22! using a shooting method
Due to the singularity ofC8 when applying the boundar
conditionH(1)50 @see Eqs.~22! and~23!#, we perform the
calculations for decreasingly small values ofH(1), and ex-
plore the limit H(1)→0. The computations show conve
gence of the solution in this limit, yielding the self-simila
profile H(h), as well as the coefficient for Eq.~25!, in which
the exponentd51/6. We note that varyinga ~consequently,
the geometry of the flow!, does not modify the shape o
H(h) @see Eq.~22!#, but it affects the value ofH0 ~conse-
quently,q). Similarly to the casen51, the numerical solu-
tion of the PDE, Eq.~10!, successfully reproduces the se
similar solution~we skip details for brevity!. In what follows
we concentrate on comparing the performances ofSS and
PPS.

Figure 5 shows that for a givenb the results of both
schemes approach each other asDx→0. SS fails to give a
positive solution in the caseb51023 with Dx50.1 (Dtn

→0). Note that due to the nonzerob, the numerical results
do not agree exactly with the solution of Eq.~22! @h0( t̃ )
5h̃0>0.78482# as Dx→0, even though the difference de
creases for smallerb’s.

In Fig. 6 we showh0 as a function ofb for severalDx’s
usingPPS (SS gives very similar results!. We immediately
observe that the convergence is lacking in the range ofDx’s
for which the casen51 converged, consistent with the re
sults reported in Ref.@38#. One needs to take much small
Dx’s in order to reach convergence; from Fig. 6 we obse
that for Dx smaller than a certain upper thresho
(>331023), the convergenceis reached asb→0. This re-

FIG. 5. Thicknessh0 of the planar drop forn52 (t50.1) as a
function of Dx with several values ofb, underPPS andSS.
01120
e

e

quirement onDx is a severe restriction on the simulations f
n52 either withSS or PPS, and will be helpful in under-
standing poor computational performance of one of the
models introduced in the next section for the~physical! case
n53.

V. PHYSICAL PROBLEM: SPREADING OF A DROPLET

The problems presented in the previous section allow
for detailed testing of the performance of our computatio
methods. Next, we use these methods to simulate a sprea
droplet (n53); we analyze the early time evolution for th
planar drop (a50) and the long time evolution for the rad
ally symmetric drop (a51).

In the bulk of the drop, the leading order dynamics
governed by Eq.~2! with n53, corresponding to the no-slip
boundary condition on the solid surface. There has b
much discussion in the literature on the connection betw
theory, experiment, and the role of Eq.~2! in the bulk
@22,42–45#. The existence of similarity solutions to Eq.~2!
was first considered in@45#, where it was discovered that fo
n53 no solutions exist satisfying the boundary conditi
H(1)50. This result was later proved rigorously in@39#. In
@42# it was suggested that similarity solutions satisfying t
boundary condition

H8~0!50, H~1!5b, H8~1!50, ~27!

with small but nonzerob are relevant for the dynamics o
spreading drops, and also shown that such solutions are
early stable to perturbations in the bulk. Other authors h
argued that the contact line controls the rate of spread
~especially in partial wetting! @22,44# so that a constitutive
law is required at the contact line and a quasistatic solu
of the PDE results in the bulk. In fact, these two points
view are consistent for the bulk dynamics of the spread
drop problem. To show this, we first present a simp
asymptotic argument showing that for very small values ob,
the similarity solutions satisfying Eq.~27! are closely ap-

FIG. 6. Thicknessh0 of the planar drop forn52 (t50.1) as a
function of b, usingPPS.
8-6
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proximated by the spherical cap solution. This is confirm
by numerical simulations of the full PDE. The main diffe
ence between the spherical cap~quasistatic! solutions and the
similarity solution occurs in the vicinity of the contact line
This is a result of different contact line dynamics whi
could lead to different spreading laws.

We now consider the behavior of solutions to Eq.~10!
with Eq. ~27! in the smallb limit. The reader can check tha
as b→0, the solution hasH0→`. Thus there is a natura
rescaling of the similarity ODE in this limit. LetH̃5H/H0
so that the similarity ODE, Eq.~22!, transforms into the
problem

1

H0
3

h

10
5H̃2S H̃91

H̃8

h
D 8

, ~28!

whena51. For large values ofH0 the solution can be ex
panded in powers ofH0

3 as H̃5 1
2 (12h2)1O(H0

23). The
leading order shape is the spherical cap, a steady state
tion of the original PDE.

Next, we compare numerical simulations of the full PD
with the similarity solution theory. In Sec. V A we analyz
the problem for early times. The computations are perform
with severalDx’s, and stopped att̃ 52 (Dtmax51024). Long
time evolution is presented in Sec. V B. For simplicity, in a
simulations we begin with the initial condition given by Eq
~24! and~26!. Note that this is not a similarity profile for th
droplet equation; we wish to observe the natural dynam
from a generic initial drop shape.

FIG. 7. Sketch of the fluid profile near the contact line, and
the parabolic velocityvx(z) in the bulk for ~a! the precursor film
model and~b! the slipping models. Note that in~b! vx(z) is not zero
at the substrate~slipping!, and also that the artificial ‘‘lifting’’b
must tend to zero.
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A. Early time planar evolution

In order to circumvent the contact line paradox, we e
ploy two different approaches:~a! the precursor film model,
and ~b! the slipping models. We will see that the comput
tional performance strongly depends on the choice of
model.

1. Precursor film model

This model assumes the presence of a true precursor
ahead of the moving contact line, as it has been detecte
the experiments@2,46#. In this case, the fluid film of thick-
nessb defined before as a numerical artifact has now a ph
cal meaning@see Fig. 7~a!#.

The drop profiles~closely resembling a spherical cap! are
similar to the casen51. Figure 8 shows the convergenc
properties withPPS andSS. Smallerb’s yield greater val-
ues of h0; this is because the viscous dissipation rate
creases for decreasingb. Both schemes approach the sam
value h̃0(b) for a givenb, and they demandDx<b for con-
vergence, consistent with the computations using a
model @23#. Additional computations using ever smallerDx
show that typically an order of magnitude smallerDx is
needed for convergence whenSS is used, compared toPPS.
It is also interesting to note that, even for largeDx, we do
not encounter the problem of loss of positivity; both schem
can be safely used to compute a positive solution forn53.

We note that, sinceb accounts for a real precursor film
the requirementDx<b may be very severe if one intends
describe a very thick drop, but it is not so demanding for th
ones. For instance, for a precursor film of thicknesshp
510 Å, we should haveb51026 for a thick drop of height
1 mm. Instead, for much smaller drops~or thin films! of
height 1 mm and the same precursor film,b51023 would
be appropriate.

2. Slipping models

Instead of a precursor model we now consider relax
the no-slip boundary condition as@18,20–22#

f

FIG. 8. Thicknessh0 of the planar drop forn53 (t52) as a
function of Dx with several values of the film thicknessb ~precur-
sor film model!, underPPS andSS.
8-7
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vx5l~h!
]vx

]z
~z50!, ~29!

wherevx is the velocity component parallel to the substra
z is the normal direction to the plane,l(h)5Ls/3h22s is the
slipping length, ands (,3), Ls are positive constants. W
consider s52 ~constant slipping lengthl) and s51 (l
;1/h, singular slipping!. This boundary condition leads to
modified diffusivity D(h) in Eq. ~2!, namely,

Ds~h!5h31Lsh
s. ~30!

FIG. 9. Thicknessh0 of the planar drop forn53 (t52) as a
function of Dx with several values of the artificial parameterb
~singular slipping model,s51), using PPS plus regularization,
andL151022.

FIG. 10. Thicknessh0 of the planar drop forn53 (t52) as a
function of Dx with several values of the artificial parameterb
~constant slipping length model,s52), and L251022. PPS is
used.
01120
,

Note thatDs(h)→h3 for h@Ls
1/(32s) , i.e., far from the con-

tact line. Also,Ds(h)→ Lsh
s ash→0, so that moving front

solutions are allowed whenevers,3.
Now, we compare the behavior of the numerical soluti

usings51 ands52. In view of the previous test problem
~Secs. IV B 1 and IV B 2!, both cases are computed usin
PPS. This involves usingDs(h) instead ofD(h) in Eqs.~5!
and ~9!, resulting in the following expression forg(h) (s
51 requiresregularization!:

g~h!5H @ ln~11L2 /h!2L2 /h#/L2
2 , s52,

2 ln~11L1 /h2!/2L12«/3h3, s51.
~31!

Recall that this method also incorporates a lifting by a sm
amountb, that is interpreted as a numerical artifact, not
physical precursor.

Figure 9 shows the central thickness,h0, versusDx for
s51 with L151022. For smallb, this thickness become
b-independent, in agreement with@18#. The figure also
shows thatDx required for convergence does not depend
b, provided thatb&L1 ~see also Fig. 11!. We note that com-
putations with smallerL1, and fully converged inb andDx
show thath0 increases asL1 decreases. This is because the
is more viscous dissipation for smallerL1, as is the case for
smallerb in the precursor film model.

Figure 10 shows the cases52 with L251022. We im-
mediately observe that the results forh0 show strong
b-dependence in this range ofDx’s, even for very smallb’s;
this is in contrast to s51 case. Moreover, the
Dx-convergence gets worse asb becomes smaller (dh0 /dDx
increases asb→0). A comparison between the behavior
both slipping models as a function ofb is shown in Fig. 11
for Dx50.05 andL15L251022. For thisDx the solution
converges fors51, but it does not converge fors52, simi-
larly to n51 ~Fig. 4! andn52 ~Fig. 6!.

FIG. 11. Thicknessh0 of the planar drop forn53 (t52) as a
function of the artificial thicknessb, for the slipping models with
s51 ands52 (L15L251022). PPS is used andregularization
is added fors51.
8-8



th
th

n

ith

la
.
ar

rs
se
.

vo

la

f
u

tiv

w
t
e

d
ul
ow
lf
ra
d
s
re

nu
w

d

nt
he

nt

ng

his

in
ior
t
t is
-
o of
de-
e

ure
er

e
del.

iv-

re

. In

d-

in
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The difference in the computational performance of
s51 ands52 cases can be understood as follows. Under
slipping models, the diffusivity is given by Eq.~30!, and it is
required that the termLsh

s is the dominant one ash→0.
Since we have artificial thicknessb at the front, it immedi-
ately follows that we must requireb3!Lsb

s. This condition
gives

b2!L1 , s51,
~32!

b!L2 , s52

and then, the requirement fors52 is much more severe tha
for s51. This is whys52 needs very small values ofb to
becomeb-independent.

To summarize, we conclude that a slipping model w
s52 ~constant slipping lengthl) is not viable from the nu-
merical point of view, since it requires very smallDx andb
for convergence; furthermore, smallerb requires smallerDx.
Instead, the cases51 seems quite appropriate, since re
tively high values of bothb and Dx yield accurate results
This distinction should be of interest since both models
used in the literature. Related results were reported in@23#,
where it was shown that computations on relatively coa
grids without slip could lead to very similar results to tho
obtained by well-resolved computations that assume slip

B. Long time radial evolution

Here we present numerical results for the long time e
lution of the radial (a51) drop spreading forn53. We
compute the solution with the precursor film and the singu
slipping model (s51). Also, since theDx-convergence
study was performed above, here we present results only
Dx50.01, as a typical case. We do not impose a maxim
~small! Dtmax, but we use a variable time stepDtn, whose
value is limited by the requirements of accuracy and posi
ity, as explained at the end of Sec. III.

The scaling laws obtained in Sec. IV A suggest that
should expect thatxf(t) obeys the power law with exponen
d51/10 @see Eq.~19!#. However, since we must introduc
some model~precursor film or slipping! to account for the
singularity at the front forn53, another condition is adde
to the problem. This breaks self-similarity, and so we sho
not expect an exact self similar solution. Our numerics n
become a diagnostic to explore deviation from se
similarity. We note that a study of the effects of seve
slipping models on the drop dynamics has been reporte
Ref. @22#. Since the description was done by using a qua
steady approach under partially wetting conditions, their
sults are only qualitatively similar to ours.

Figures 12~a! and 12~b! show xf(t) calculated with the
initial condition given by Eqs.~24! and ~26!, using the pre-
cursor and singular slipping models, respectively. The
merical results can be asymptotically fitted by a power la
except for the casesb51022 for the precursor model, an
L151024 for the singular slipping model~artificial b
51022L1; see Sec. V A 2!. We note that the same expone
d>0.11 is a best fit for power laws for both models. T
prefactorq ~close to unity! depends onb andL1 in the cor-
01120
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responding model. Also, the curvesh0(t) ~not reported here
for brevity! consistently tend to a power law with expone
b520.22.

Note that both the precursor film model and the slippi
models affect a region of size, say,l , close to the front, thus
introducing a new characteristic length in the problem. T
characteristic length is given byb for the precursor film and
by AL1 for singular slipping. For the time range shown
Fig. 12 we observe a departure from the self-similar behav
for l 'b5AL1>1022. Additional computations show tha
this departure is not due to grid effects, and also that i
shifted towards longer times asl is decreased. We conjec
ture that the departure occurs due to the increased rati
l /h0(t) as time progresses; thus, at some time, which
pends onl , introduction of the characteristic length in th
model affects the asymptotic~long time! self-similar solu-
tion. From our numerical results, we find that this depart
starts whenh0(t) is about an order of magnitude great
than l .

The number of time stepsN needed to reach a final tim
t̃ is a measure of the computational efficiency of each mo
We find that for the required accuracy (Em51022), the
number of Newton iterations is always small (324), inde-
pendently of the scheme for the interpolation of the diffus
ity or the contact line model. Figure 13 showsN versusb2

for the precursor film model, and versusL1 for the singular
slipping model. Clearly, the precursor model is much mo
efficient than the singular slipping model, since for smalll it
requires almost an order of magnitude less time steps
order to understand why a smaller average time step,^Dt&
5 t̃ /N, is required by the slipping model, we performed a
ditional simulations for different combinations ofL1 andb.
We found that, whilê Dt& does not strongly depend onL1,

FIG. 12. Front positionxf(t) for the radial drop spreading (n
53, a51) under the action of surface tension forces using~a!
precursor film model, and~b! singular slipping model (s51). The
line xf5t0.11 approximates the asymptotic behavior, as explained
the text.
8-9
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it does decrease for smallerb. So, it is because of the smal
ness ofb in the slipping model that a very small^Dt& is
required for a given accuracy.

In our simulations we observed that the accuracy con
tion ~see Sec. III! is the main limiting factor ofDtn. Note
that ^Dt& can even be of the order of unity~see Fig. 13!, due
to the fact that the solution is almost self-similar.

VI. GRAVITATIONAL FORCES

After formulating reliable computational methods for th
problems where capillarity is the only driving force, we no
consider the gravitational force. Within the framework
lubrication approximation, the gravity effects are modeled
the second order term included in Eq.~1!, wherex, h, and t
are scaled byxc , hc , and

tc5
3mxc

4

ghc
3

, ~33!

respectively, wherem is the viscosity andg the surface ten-
sion. Consequently, the Bond number is given byG
5(xc /a)2, wherea5Ag/rg is the capillary length,g the
gravity andr the density.

The gravitational term in Eq.~1! is discretized using stan
dard centered finite differences. We have verified that v
ous conservative discretizations of this terms have com
rable performance and efficiency. When using a slipp
model instead of the precursor film approach, the repla
menth3→h31Lhs must be done inD(h) in Eq. ~1!, and the
corresponding discretization is done in a similar way as
scribed for the precursor film model.

In the preceding section we addressed the problem
radially spreading drop without gravity, governed by cap
lary forces. However, it is known that for late times, th
gravitational effects become dominant. Consequently, th

FIG. 13. Number of time steps performed in the simulations
Fig. 12 to reacht5105 as a function of the respective parameter
the model (b2 for the precursor film model, andL1 for the singular
slipping model!.
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must be a transition between these two asymptotic regim
In this section we address this issue by solving directly
governing PDE~1!.

We start the calculations with a drop profile defined
Eqs. ~24! and ~26!. The scalesxc and hc are given by the
respective dimensional initial radius and thickness. Con
quently, the dimensional drop volume is given byVc

5(p/6)hcxc
2 , which is the only controllable parameter in

laboratory experiment. Thus, we determinehc ~consequently,
tc) from Eq. ~33!, for a given volume, ashc56Vc /(pxc

2),
and choosexc by varying G through the definitionG
5(xc /a)2.

Let us first recall the simpler problem of the drop sprea
ing without surface tension but with gravity, i.e., Eq.~1!
without the fourth order term andD(h)5h3. It is known
@47,48# that this second order degenerate PDE admits a s
similar solution, called Barenblatt solution. In our dime
sionless variables, it reads as

xf50.894 . . . S p

6 D 3/8

~Gt !1/850.7014 . . . ~Gt !1/8, ~34!

h~x,t !5F12S x

xf
D 2G1/3

. ~35!

If gravity is the only driving force, this solution gives th
asymptotic flow for any given initial condition. When su
face tension is also taken into account, the relation betw
the ~global! gravitational and capillary forces is given by th
Bond number, (xf /xc)

2. For xf@a one expects that Barenb
latt’s solution be asymptotically approached. However, ev
for largexf surface tension effects may still be relevant in t
neighborhood of the contact line. In this~asymptotic! gravity
dominated regime one does not expect modification of
exponentd51/8 due to the presence of localized conta
forces, becaused is a direct consequence of volume cons
vation ~a global condition!. Instead, changes in the prefact
of Eq. ~34! as well as in the thickness profile, Eq.~35! could
be expected. Experiments that show this type of effects h
been reported elsewhere@49#.

Figure 14 shows the numerical results~dashed lines! for
xf using the precursor film model withG51 in Eq. ~1!, and
usingPPS for the fourth order term. For smallb (<1024) it
is possible to obtain an asymptotic behavior with expon
d51/8, as in Barenblatt’s solution@50#. However, the pre-
factor of the asymptotic line for the numerical results is qu
close to unity~the linexf5t1/8 is shown for comparison!, so
it is larger than the one of Barenblatt’s solution. Note a
that the transition to the gravity dominated regime depe
strongly onb. The smallerb, the longer it takes to reach th
asymptotic power law behavior.

A comparison with experiments is also shown in Fig. 1
The open and filled symbols correspond to the~nondimen-
sional! experimental data reported in Refs.@43# and @51#,
respectively, for different volumesVc . Note that time is in
units of tc , Eq. ~33!, with xc5a (G51). Figure 14 shows
that a good agreement for small volume drops (Vc
,2 mm3) can be obtained forb51025, and that smaller

f
f
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b’s are required for largerVc @50#. Sinceb5hp /hc , hp be-
ing the dimensional thickness of the actual precursor fi
this suggests that in the experiments it must behp'800 Å
for a typical volume of 10 mm3. Also, it appears that the
experimental data for large volume drops tend to appro
the gravitational asymptotic line for very long times, in
similar fashion to that of the numerical curves. We note t
the dimensional drop volume,Vc , only specifies the scale fo
the numerical results, so that the dimensionless comp
tional results shown in Figs. 14 and 15 are volum
independent. Thus, the data from a given experiment~i.e, a
given Vc) fall on a certain range ofxf and t, in units of xc
and tc , respectively.

FIG. 14. Front positionxf(t) for the radial drop spreading (n
53, a51) under the action of both surface tension and grav
forces forG51, usingprecursor film model. The broken lines show
numerical results, the open and filled symbols are the experime
data from Refs.@43# and@51#, respectively, where the drop volume
are in mm3. The line with the prefactor 0.79 is the best fit to th
early times evolution dominated by surface tension.

FIG. 15. Front positionxf(t) for the radial drop spreading as i
Fig. 14, usingsingular slipping model(s51).
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Figure 15 shows the results for the singular slippi
model~dashed lines!. The power law behavior characterize
by d51/8 is observed only for very smallL1 (<1026) and,
consequently, for very small artificialb. Also, L1,1028 is
required for a good agreement with the experimental d
For smallerL1, a smaller average time step is required; e
^Dt& for L151026 is approximately 8 times smaller than fo
L151022. Thus, a numerical calculation with the singul
slipping model is much less efficient than with the precur
film model.

The increasing effects of gravity as the drop spreads
can also be put in evidence by looking at the change of sh
of the thickness profile. In Fig. 16 we plot profile
h(x,t)/h(0,t) vs. h5x/xf(t) using precursor film mode
with b51026 at different times of the evolution. The flatten
ing of the central part of the drop is evident. A significa
difference between the Barenblatt’s profile and the most
vanced profile is the slope at the front. The computed so
tion is characterized by profiles which are smoothened
capillary effects close to the contact line, compared to Bar
blatt’s profile which has infinite slope there. This differen
is related with the different prefactors in the numerical a
ymptotics and the Barenblatt’s solution. The symbols in F
16 correspond to the experimental data reported in Ref.@43#
for xf59.9 ~Fig. 3.f in that paper!. The comparison is very
favorable, even though the numerical profile att5109 has a
slightly largerxf (510.1) compared to the experimental on

Up to our knowledge, this is the first time that this tra
sition between the regimes dominated by surface tension
gravitational forces has been described by the direct solu
of the corresponding PDE~see Ref.@43# for an ODE ap-
proach!. Concerning computational issues, we note th
analogously to Sec. V B, the precursor film model is comp
tationally more efficient than the singular slipping mod

y

tal

FIG. 16. Profile evolution of a radially spreading drop with bo
surface tension and gravitational forces present. The arrow sh
the direction of time increase. In the simulations we used the p
cursor film model withb51026 on a grid sizeDx50.01 ~the pro-
files are almost insensitive to variation ofDx). The symbols are
experimental data from Ref.@43#.
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For instance, forb25L151026 (l '1023), the precursor
model allows for^Dt&10 times larger than the one require
by the slipping model. Again, this is due to the very sm
b’s that must be used in the slipping model.

VII. SUMMARY AND CONCLUSIONS

By means of a series of numerical simulations we ha
shown the importance of having a good numerical schem
calculate flows described by Eq.~2!, with the presence o
advancing fronts. Even without the singularity at the cont
line (n,3) and in planar symmetry, the study of the dr
spreading problem withn51 andn52 shows how sensitive
is the numerical solution to the interpolation of the nonline
diffusivity.

We obtain that the numerical solutions withn51 are con-
vergent only if the positivity preserving scheme (PPS) plus
regularizationare employed~Figs. 3 and 4!, and that a stan-
dard scheme (SS) for the interpolation of the diffusivity
fails. For n52, SS and PPS become coincident for sma
Dx ~Fig. 5!. However, both schemes show that the compu
tion must be done with very smallDx (<1023), in order to
obtain a converged solution asb→0 ~Fig. 6!. We conjecture
that it might be possible to find a relationb(Dx) such that
this limit exists, but that study is left for future work. Simila
results are obtained in radial symmetry forn52, though
they are not reported here for brevity. We believe that t
lack of convergence forn52 might be the cause of the low
performance of the calculations when using the slipp
model with constant slipping length (s52) in thin film flows
(n53) ~see Sec. V A 2!.

For n53, and using the precursor film model, bothSS
andPPS seem appropriate to perform the calculation of t
drop spreading. The only~but important! difference is that
PPS converges faster, although it is less accurate thanSS
for largeDx ~Fig. 8!. An essential point when using slippin
models under these schemes is that the results shoul
insensitive to the ‘‘lifting’’ parameterb. The simulations
show that the model with constant slipping length (s52)
requires extremely small values ofb to achieve this goal,
n

ff

-
r
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while the singular slipping model (s51) is much less de-
manding~Figs. 9 and 10!.

The results for the asymptotic description of the rad
drop spreading show that both the precursor film model
the singular slipping model are equally appropriate. Ho
ever, the former is computationally more efficient, since
allows for a much larger̂ Dt& for a similar characteristic
length l 'b2'L1.

These two models show a similar behavior when grav
is included in the radial drop spreading problem~Figs. 14
and 15!. Also in this case, the numerical solutions give t
correct asymptotic power law behavior with exponentd
51/8, if l is sufficiently small. For relatively large volume
(Vc.1 mm3), the simulations of Eq.~1! yield results in
good agreement with experimental data reported elsew
@43,51#, providedb<1024 in the precursor film model and
L1,1028 in the singular slipping model. The simulation
also show the transition from the surface tension domina
regime to the gravity dominated regime. Another feature
the gravity effects is the flattening of the profile~Fig. 16!,
and the finite slope at the front. The latter effect is related
the different values of the prefactor in the power law f
xf(t) of the asymptotic gravitational regime and of th
Barenblatt’s solution.

In summary, since the efficiency is essential for succe
ful modeling of two-dimensional problems, we conclude th
the use of the precursor film model is highly advisable. T
extension of our computational method to these problem
currently in progress.
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