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Abstract

Soil organisms, including earthworms, are a key component of terrestrial ecosystems. However, 

little is known about their diversity, their distribution, and the threats affecting them. We compiled 

a global dataset of sampled earthworm communities from 6928 sites in 57 countries as a basis for 

predicting patterns in earthworm diversity, abundance, and biomass. We found that local species 

richness and abundance typically peaked at higher latitudes, displaying patterns opposite to those 

observed in aboveground organisms. However, high species dissimilarity across tropical locations 

may cause diversity across the entirety of the tropics to be higher than elsewhere. Climate 

variables were found to be more important in shaping earthworm communities than soil properties 

or habitat cover. These findings suggest that climate change may have serious implications for 

earthworm communities and for the functions they provide.

Soils harbor high biodiversity and are responsible for a wide range of ecosystem functions 

and services upon which terrestrial life depends (1). Despite calls for large-scale 

biogeographic studies of soil organisms (2), global biodiversity patterns remain relatively 

unknown, with most efforts focused on soil microbes (3–5). Consequently, the drivers of soil 

biodiversity, particularly soil fauna, remain unknown at the global scale.

Furthermore, our ecological understanding of global biodiversity patterns [e.g., latitudinal 

diversity gradients (6)] is largely based on the distribution of aboveground taxa. Yet many 
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soil organisms have shown global diversity patterns that differ from above-ground organisms 

(3, 7–9), although the patterns often depend on the size of the soil organism (10).

Here, we analyzed global patterns in earthworm diversity, total abundance, and total biomass 

(hereafter “community metrics”). Earthworms are considered ecosystem engineers (11) in 

many habitats and also provide a variety of vital ecosystem functions and services (12). The 

provisioning of ecosystem functions by earthworms likely depends on the abundance, 

biomass, and ecological group of the earthworm species (13, 14). Consequently, 

understanding global patterns in community metrics for earthworms is critical for predicting 

how changes in their communities may alter ecosystem functioning.

Small-scale field studies have shown that soil properties such as pH and soil carbon 

influence earthworm diversity (11, 15, 16). For example, lower pH values constrain the 

diversity of earthworms by reducing calcium availability (17), and soil carbon provides 

resources that sustain earthworm diversity and population sizes (11). Alongside many 

interacting soil properties (15), a variety of other drivers can shape earthworm diversity, such 

as climate and habitat cover (11, 18, 19). However, to date, no framework has integrated a 

comprehensive set of environmental drivers of earthworm communities to identify the most 

important ones at a global scale.

Previous reviews suggested that earthworms may have high diversity across the tropics as a 

result of high endemism (10). However, this high regional diversity may not be captured by 

local-scale metrics. Alternatively, in the temperate region, local diversity may be higher (20) 

but may include fewer endemic species (10). We anticipate that earthworm community 

metrics (particularly diversity) will not follow global patterns seen aboveground, and 

instead, as seen across Europe (15), will increase with latitude. This finding would be 

consistent with previous studies at regional scales, which showed that the species richness of 

earthworms increases with latitude (19). Because of the relationship among earthworm 

communities, habitat cover, and soil properties on local scales, we expect soil properties 

(e.g., pH and soil organic carbon) to be key environmental drivers of earthworm 

communities.

Here, we present global maps predicting local diversity (number of species), abundance, and 

biomass. (We use “local” in the sense of site-level: a location of one or more samples that 

adequately captured the earthworm community.) We collated 180 datasets from the literature 

and unpublished field studies (164 and 16, respectively) to create a dataset spanning 57 

countries (all continents except Antarctica) and 6928 sites (Fig. 1A). We explored spatial 

patterns of earthworm communities and determined the environmental drivers that shape 

earthworm biodiversity. We then used the relationships between earthworm community 

metrics and environmental drivers (table S1) to predict local earthworm communities across 

the globe.

Three generalized linear mixed-effects models were constructed, one for each of the three 

community metrics: species richness (calculated within a site), abundance per m2, and 

biomass per m2. Each model contained 12 environmental variables as main effects (table 

S2), which were grouped into six themes; “soil,” “precipitation,” “temperature,” “water 
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retention,” “habitat cover,” and “elevation” [habitat cover and some soil variables were 

measured in the field; the remaining variables were extracted from global data layers based 

on the geographic coordinates of the sites (14)]. Within each theme, each model contained 

interactions between the variables. After model simplification, all models retained most of 

the original variables, but some interactions were removed (table S3).

Consistent with previous results (20), local earthworm diversity predictions based on global 

environmental data layers resulted in estimates of one to four species per site across most of 

the terrestrial surface (Fig. 1B) (mean, 2.42 species; SD, 2.19). Most of the boreal and 

subarctic regions were predicted to have low values of species richness, which is in line with 

aboveground biodiversity patterns (21, 22). However, low local diversity also occurred in 

subtropical and tropical areas, such as Brazil, India, and Indonesia, in contrast to commonly 

observed aboveground patterns, such as the latitudinal gradient in plant diversity (22). This 

pattern could be due to different relationships with climate variables. For example, although 

plant diversity increases with potential evapotranspiration (PET) (22), earthworm diversity 

tended to decrease with increasing PET (table S3). In addition, soil properties, which are 

typically not included in models of above-ground diversity, can play a role in determining 

earthworm communities (11, 15, 23). For instance, litter availability and soil nutrient content 

are important regulators of earthworm diversity, with oligotrophic forest soils having more 

epigeic species and eutrophic soils more endogeics (23). Furthermore, tropical regions with 

higher decomposition rates have fewer soil organic resources and lower local earthworm 

diversity (Fig. 1B and table S3), dominated by endogeic species, which have specific 

digestion systems that allow them to feed on low-quality soil organic matter (11, 14, 20).

High local species richness was found at mid-latitudes, such as the southern tip of South 

America, the southern regions of Australia and New Zealand, Europe (particularly north of 

the Black Sea), and the northeastern United States. Although this pattern contrasts with 

latitudinal diversity patterns found in many aboveground organisms (6, 24), it is consistent 

with patterns found in some belowground organisms [ectomycorrhizal fungi (3), bacteria 

(5)], but not all [arbuscular mycorrhizal fungi (25), oribatid mites (26)]. Such mismatches 

between above- and belowground biodiversity have been predicted (1, 7) but not shown 

across the globe for soil fauna at the local scale.

The patterns seen here could in part be a result of glaciation in the last ice age, as well as 

human activities. Temperate regions (mid- to high latitudes) that were previously glaciated 

were likely recolonized by earthworm species with high dispersal capabilities and large 

geographic ranges (19) and through human-mediated dispersal [“anthropochorous” 

earthworms (16)]. Thus, temperate communities could have high local diversity, as seen 

here, but those species would be widely distributed, resulting in lower regional diversity 

relative to local diversity. In the tropics, which did not experience glaciation, the opposite 

may be true. Specific locations may have individual species that are highly endemic, but 

these species are not widely distributed (table S4). This high local endemism would result in 

low local diversity (as found here) and high regional diversity [as suggested by (10)] relative 

to that low local diversity. When the numbers of unique species within latitudinal zones that 

had equal numbers of sites were calculated (i.e., a regional richness that accounted for 

sampling effort), there appeared to be a regional latitudinal diversity gradient (Fig. 2). Even 
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with a sampling bias (table S4), regional richness in the tropics was greater than in the 

temperate regions, despite low local diversity. These results should be interpreted with 

caution, given the latitude span of the tropical zones. However, the underlying data suggest 

that endemism of earthworms and β-diversity within the tropics (27) may be considerably 

higher than within the well-sampled temperate region (table S4). Therefore, it is likely that 

the tropics harbor more species overall.

The predicted total abundance of the local community of earthworms typically ranged 

between 5 and 150 individuals per m2 across the globe, in line with other estimates (28) 

(Fig. 1C; mean, 77.89 individuals per m2; SD, 98.94). There was a slight tendency for areas 

of higher total abundance to be in temperate areas, such as Europe (particularly the UK, 

France, and Italy), New Zealand, and part of the Pampas and surrounding region (South 

America), rather than the tropics. Lower total abundance occurred in many of the tropical 

and subtropical regions, such as Brazil, central Africa, and parts of India. Given the positive 

relationship between total abundance and ecosystem function (29), in regions with lower 

earthworm abundance, such functions may be reduced or carried out by other soil taxa (1).

The predicted total biomass of the local earthworm community (adults and juveniles) across 

the globe showed extreme values (>2 kg) in 0.3% of pixels, but biomass typically ranged 

(97% of pixels) between 1 g and 150 g per m2 [Fig. 1D; median, 6.69; mean, 2772.8; SD, 

1,312,782; see (14) for additional discussion of extreme values]. The areas of high total 

biomass were concentrated in the Eurasian Steppe and some regions of North America. The 

majority of the globe showed low total biomass. In northern North America, where there are 

no native earthworms (13), high density and, in some regions, higher biomass of earthworms 

likely reflect the earthworm invasion of these regions. The small invasive European 

earthworm species encounter an enormous unused resource pool, which leads to high 

population sizes (30). On the basis of previous suggestions (28), we expected that 

earthworms would decrease in body size toward the poles, showing low biomass relative to 

the total abundance in temperate or boreal regions. In contrast, in tropical regions (e.g., 

Brazil and Indonesia) that are dominated by giant earthworms that normally occur at low 

densities and low species richness (31), we expected high biomass but low abundance. 

However, these patterns were not found. This could be due to the relatively small number of 

sample points for the biomass model (n = 3296) compared to the diversity (n = 5416) and 

total abundance models (n = 6358), reducing the predictive ability of the model (fig. S1C), 

most notably in large regions of Asia and in areas of Africa, particularly the boundaries of 

the Sahara Desert and the southern regions (which coincides with sites where samples are 

lacking). Additionally, the difficulty in consistently capturing such large earthworms in 

every sample may increase data variability, reducing the ability of the model to predict.

Overall, the three community metric models performed well in cross-validation (figs. S3 and 

S4) with relatively high R2 values [Table 1; see (14) for further details and caveats]. But 

given the nature of such analyses, models and maps should only be used to explore broad 

patterns in earthworm communities and not at the fine scale, especially in relation to 

conservation practices (32).
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For all three community metric models, climatic variables were the most important drivers 

(the “precipitation” theme being the most important for both species richness and total 

biomass models, and “temperature” for the total abundance model; Fig. 3). The importance 

of climatic variables in shaping diversity and distribution patterns at large scales is consistent 

with many aboveground taxa [e.g., plants (22), reptiles, amphibians, and mammals (32)] and 

belowground taxa [bacteria and fungi (3, 5), nematodes (33)]. This suggests that climate-

related methods and data, which are typically used by macro-ecologists to estimate 

aboveground biodiversity, may also be suitable for estimating earthworm communities. 

However, the strong link between climatic variables and earthworm community metrics is 

cause for concern, as climate will continue to change due to anthropogenic activities over the 

coming decades (34). Our findings further highlight that changes in temperature and 

precipitation are likely to influence earthworm diversity (35) and distributions (15), with 

implications for the functions that they provide (12). Shifts in distributions may be 

particularly problematic in the case of invasive earthworms, such as in areas of North 

America, where they can considerably change the ecosystem (13). However, a change in 

climate will most likely affect abundance and biomass of the earthworm communities before 

it affects diversity, as shifts in the latter depend on dispersal capabilities, which are relatively 

low in earthworms.

We expected that soil properties would be the most important driver of earthworm 

communities, but this was not the case (Fig. 3), likely because of the scale of the study. First, 

the importance of drivers could change at different spatial scales. Climate is driving patterns 

at global scales, but within climatic regions (or at the local scale), other variables may 

become more important (36). Thus, one or more soil properties may be the most important 

drivers of earthworm communities within each of the primary studies, rather than across 

them all. Second, for soil properties, the mismatch in scale between community metrics and 

the soil properties taken from global layers [for sites where sampled soil properties were 

missing (14)] potentially reduced the apparent importance of the theme. Habitat cover 

influenced the earthworm community (fig. S5, A and B), especially the composition of the 

three ecological groups (epigeics, endogeics, and anecics) (fig. S6) (14). Across larger 

scales, climate influences both habitat cover and soil properties, all of which affect 

earthworm communities. Being able to account for this indirect effect with appropriate 

methods and data may alter the perceived importance of soil properties and habitat cover 

[e.g., with pathway analysis (37) and standardized data]. However, our habitat cover variable 

did not directly consider local management (such as land use or intensity).

Our findings suggest that climate change might have substantial effects on earthworm 

communities and the functioning of ecosystems; any climate change–induced alteration in 

earthworm communities is likely to have cascading effects on other species in these 

ecosystems (13, 28). Despite earthworm communities being controlled by environmental 

drivers similar to those that affect above-ground communities (22, 37), these relationships 

result in different patterns of diversity. We highlight the need to integrate below-ground 

organisms into biodiversity research, despite differences in the scale of sampling, if we are 

to fully understand large-scale patterns of biodiversity and their underlying drivers (7, 8, 38), 

especially if processes underlying macroecological patterns differ between above-ground 

and belowground diversity (38). The inclusion of soil taxa may alter the distribution of 
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biodiversity hotspots and conservation priorities. For example, protected areas (7) may not 

be protecting earthworms (7), despite their importance as ecosystem function providers (12) 

and soil ecosystem engineers for other organisms (11). By modeling both realms, 

aboveground/belowground comparisons are possible, potentially allowing a clearer view of 

the biodiversity distribution of whole ecosystems.
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Fig. 1. Global distribution of earthworm diversity.
(A) Black dots represent the center of a “study” used in at least one of the three models 

(species richness, total abundance, and total biomass). The size of the dot corresponds to the 

number of sites within the study. Opaqueness is for visualization purposes only. (B to D) 

The globally predicted values of (B) species richness (within site), (C) total abundance, and 

(D) total biomass. Yellow indicates high diversity; dark purple, low diversity. Gray areas are 

habitat cover categories that lacked samples.
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Fig. 2. The number of unique species within each latitudinal zone, when the number of sites 
within each zone is comparable.
The width of the bar shows the latitude range of the sites/zones.
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Fig. 3. The importance of the six variable themes from the three biodiversity models.
Rows show the results of each model (top, species richness; middle, abundance; bottom, 

biomass). Columns represent the variable themes that are present in the simplified 

biodiversity model. The most important variable group has the largest circle. Within each 

row, the circle size of the other variable themes is proportional to the relative change in 

importance. The circle size should only be compared within a row.
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Table 1
Model validation results.

Cells in boldface show the “best” value when comparing between the main models (a mixture of sampled soil 

properties and SoilGrids data) and models containing only SoilGrids data. Values shown are mean square error 

[MSE; calculated for all predicted data (“Total”) and for tertiles (“Low,” “Mid,” “High”)] following 10-fold 

cross-validation of the main models and models containing only SoilGrids data, as well as R2 of the main 

models and SoilGrids-only models.

Total Low Mid High

MSE: Main models

       Species richness 1.376 0.917 0.812 3.561

       Abundance 17977.42 1720.75 2521.25 48751.51

       Biomass 3220.29 264.56 441.25 8783.77

MSE: SoilGrids models

       Species richness 1.385 0.887 0.793 3.716

       Abundance 18775.81 1735.11 2516.13 51156.76

       Biomass 3068.00 199.91 461.88 8380.81

Marginal Conditional

R2: Main models

       Species richness 0.132 0.748

       Abundance 0.176 0.626

       Biomass 0.201 0.612

R2: SoilGrids models

       Species richness 0.142 0.745

       Abundance 0.234 0.643

       Biomass 0.242 0.650
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