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ABSTRACT 
The construction of the exponential function of a real exponent from the definition of the powers 
of a real number, and its properties, requires the notion of successions, a decimal approximation 
of a rational number, convergence, and limit of a function. In Argentina, this construction would 
exceed what could be taught at the secondary level, but it provides advanced students of teachers 
in mathematics, and teachers in practice, the possibility of discussing what happens in the case of 
irrational exponents of the type aπ, or discuss the validity of the properties of this type of power. 
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INTRODUCTION 
In the Argentine high school, the teachers do not teach the properties of powers together with potential 

functions, nor with exponential functions. On the contrary, professors define the potentiation in the set of 
natural numbers as 𝑥𝑥𝑎𝑎 = 𝑥𝑥. 𝑥𝑥. 𝑥𝑥… 𝑥𝑥 where 𝑥𝑥 multiplies himself sometimes, and then define the properties of 
natural exponent potentiation, which are easily demonstrable. But then, during the study of the other 
numerical sets, they do not take up again the definition of power of a real number, nor its properties. This 
generates a conceptual distance between the natural power definition of a natural number and the exponential 
function, defined for base and real exponent. 

On the other hand, although defining the exponential function of the real exponent from the basic operation 
of the powers seems to be the “most natural” form, its construction quickly presents conceptual difficulties 
that can not be studied in secondary school. Among other reasons, because the procedure requires the use of 
the properties of the real set, and specific methods of analysis such as the notions of succession, limit and 
continuity. 

However, discussing these types of concepts is useful for practicing teachers, or for the last few years of 
teacher training in mathematics. For most of the time the teaching of exponential functions axiomatically 
collaborates with the trivialization that is made of them. For example, because it is common to present the 
exponential function from its definition, accepting its existence and its properties, most of the time there is 
not even an intuitive idea of what happens in the case of irrational exponents of type 𝑎𝑎𝜋𝜋, nor are the validity 
of the properties of this type of power discussed. The proposal of Carbonero (2002) is more intuitive, especially 
for a secondary school teacher - although the construction of all the elements requires sixty pages-. Viewed 
from the perspective of completeness, it is the same construction mentioned above, but enriched with the use 
of Weierstrass theories and the elementary properties of convergence of sequences. Seen from the perspective 
of a high school teacher, it is the formalization of the intuitive construction that is usually taught to students. 

In this work we build the exponential function from the potentiation properties. From the theory of limits 
only the Law of the Sandwich is used, which allows it to be built independently of the differential calculus. 
Thus, we build the exponential function from the potentiation properties in a more or less rigorous way. We 
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begin with the study of the exponential function from the definition of the function of powers 𝑎𝑎𝑥𝑥 (with natural 
𝑥𝑥), and we extend it for any real exponent 𝑥𝑥. The idea of this demonstration is intuitive and is based on decimal 
approximations of real numbers, starting with the relatively simple tools of the theory of numerical 
successions. 

PROGRESSIVE EXTENSION OF 𝒂𝒂𝒙𝒙 FOR ANY EXPONENT 𝒙𝒙 REAL 
The construction requires first consider the exponent x as a natural number, then as an integer and later 

as a rational number. We will complete this construction by defining 𝑎𝑎𝑥𝑥 with irrational 𝑥𝑥, although this last 
step requires us to use the notions of succession, convergent sequence, limit, upper bound and decimal 
approximation of a number. In this work, we are only going to quote the definitions related to the natural 
powers, whole and rational, to devote ourselves then to the construction of the exponential function. We will 
not cite the properties and their demonstrations because they are accessible in any mathematical analysis 
manual. 

Natural Power 

We define the function that each 𝑥𝑥 assigns 𝑥𝑥𝑛𝑛 in the following way: 
𝑓𝑓:ℝ → ℝ 
𝑥𝑥 → 𝑥𝑥𝑛𝑛 

We also define 𝑥𝑥1 = 𝑥𝑥; from which it follows that 𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛𝑥𝑥1 = 𝑥𝑥𝑛𝑛𝑥𝑥; for all 𝑥𝑥 ∈ ℝ and ∀𝑛𝑛 ∈ ℕ. 

Integers Power 

For the case of power functions: 𝑥𝑥 → 𝑥𝑥𝑛𝑛 for 𝑥𝑥 real and n natural integer we define the function nth power 
as the function that each 𝑥𝑥 ∈ 𝑅𝑅 assigns 𝑥𝑥^𝑛𝑛. 

𝑓𝑓:ℝ → ℝ 
𝑥𝑥 → 𝑥𝑥𝑛𝑛 

In particular, for the negative integers (−𝑛𝑛) we define the following power function: 

𝑓𝑓(𝑥𝑥) = 𝑥𝑥−𝑛𝑛 = �
1
𝑥𝑥�

𝑛𝑛

=
1
𝑥𝑥𝑛𝑛  ∀ 𝑛𝑛 ∈ ℕ 

Thus, we have defined the power 𝑥𝑥𝑧𝑧 for 𝑥𝑥 ≠  0, and any 𝑧𝑧 ∈ 𝑍𝑍. On the other hand, as 0 ∈ 𝑍𝑍, we define 𝑥𝑥0 =
1, for 𝑛𝑛 = 0. This can be easily deduced by doing 𝑥𝑥0 = 𝑥𝑥𝑛𝑛−𝑛𝑛 = 𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛
= 1. There are also other demonstrations. For 

example, for the case in which the exponential and logarithmic functions are defined, the potential function 
for the case where n is real and 𝑛𝑛 =  0 is deduced from 𝑥𝑥0 = 𝑒𝑒0 ln(𝑥𝑥) = 𝑒𝑒0 = 1. 

Rational Power 

For the powers of real base and rational exponent we define for 𝑥𝑥 >  0 a positive real number, and 𝑟𝑟 = 𝑝𝑝
𝑞𝑞
 a 

rational number, with 𝑞𝑞 > 0 and 𝑝𝑝/𝑞𝑞 irreducible; the application that to each real number 𝑥𝑥 > 0 corresponds 
to 𝑥𝑥𝑟𝑟 is: 

𝑓𝑓:𝑅𝑅 → 𝑅𝑅 
𝑥𝑥 → 𝑥𝑥𝑟𝑟 

𝑥𝑥 → 𝑥𝑥
𝑝𝑝
𝑞𝑞�  

If q is odd then 𝑥𝑥𝑟𝑟 takes a single value (positive), if q is even then the root takes two real values of opposite 
signs. This implies taking for all 𝑥𝑥 the same positive determination 𝑥𝑥𝑟𝑟 ( > 0). Affirm that 𝑥𝑥𝑟𝑟 = 𝑦𝑦 takes a single 
non-negative real number 𝑦𝑦 > 0, implies assuming that 𝑥𝑥𝑟𝑟 = 𝑦𝑦 has a single non-negative real solution. In other 
words, if we take, for example, 𝑟𝑟 = 1

𝑛𝑛
 we expect 𝑦𝑦 = 𝑥𝑥

1
𝑛𝑛 to satisfy 𝑦𝑦𝑛𝑛 = 𝑥𝑥. This solution is by definition the nth 

root of a non-negative real number, whose proof of existence is made in two parts. In the first part it is proved 
that the function 𝑓𝑓 (𝑥𝑥)  =  𝑥𝑥𝑛𝑛 is strictly increasing in [0,∞). In the second part the completeness axiom is used 
to prove the existence of 𝑎𝑎, such that 𝑎𝑎 is the only real solution of 𝑥𝑥𝑛𝑛. 
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Exponential Function 

To define the symbol 𝑎𝑎𝑥𝑥 being a positive real and real 𝑥𝑥 we need to prove that there exists the limit of the 
sequence {𝑟𝑟𝑛𝑛}𝑛𝑛∈ℕ, such that 𝑟𝑟𝑛𝑛 is the nth decimal approximation of 𝑥𝑥. That is, we want to try that: 

𝑎𝑎𝑥𝑥 = 𝛾𝛾 = lim
𝑛𝑛→∞

𝑎𝑎𝑟𝑟𝑛𝑛 

Knowing that 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥 for 𝑎𝑎 > 1 and that 𝑥𝑥 𝜖𝜖 𝑄𝑄. 
The proof is going to be done in three parts. In the first part, we will define the sequence, their limit and 

their convergence. In the second part we define the notion of decimal approximation, and we proof the 
existence of two decimal approximations for 𝑥𝑥 ∈ 𝑄𝑄, by constructing two sequences {𝑟𝑟𝑛𝑛}𝑛𝑛∈ℕ and {𝑠𝑠𝑛𝑛}𝑛𝑛∈ℕ such that 
both converge to 𝑥𝑥. The first sequence {𝑟𝑟𝑛𝑛}𝑛𝑛∈ℕ that converges to 𝑥𝑥 is increasing, while the other sequence {𝑠𝑠𝑛𝑛}𝑛𝑛∈ℕ 
converges to 𝑥𝑥 the definition of the following form 𝑠𝑠𝑛𝑛 = 𝑟𝑟𝑛𝑛 + 1

10𝑛𝑛
. In the part three, we use this construction to 

prove that 𝑎𝑎𝑥𝑥 = 𝛾𝛾 = lim
𝑛𝑛→∞

𝑎𝑎𝑟𝑟𝑛𝑛 exists. 

Part 1: Definition of convergent sequence and existence of the limit of a sequence. 
When the elements {𝑎𝑎𝑛𝑛}𝑛𝑛∈ℕ approach a certain real number 𝑙𝑙, as n becomes large, the sequence {𝑎𝑎𝑛𝑛}𝑛𝑛∈ℕ is 

said to converge to 𝑙𝑙. To specify this better, take an interval (𝑙𝑙 − ℰ, 𝑙𝑙 + ℰ ), with ℰ > 0. If the {𝑎𝑎𝑛𝑛}𝑛𝑛∈ℕ is close to, 
you must have {𝑎𝑎𝑛𝑛}𝑛𝑛∈ℕ  ∈  (𝑙𝑙 − ℰ , 𝑙𝑙 + ℰ), for 𝑛𝑛 large enough. This justifies the following definition. 

Definition: It is said that the sequence {𝑎𝑎𝑛𝑛}𝑛𝑛∈ℕ converges to 𝑙𝑙 ∈ ℝ if for all ℰ > 0 there exists 𝑁𝑁 ∈ ℕ such 
that |𝑎𝑎𝑛𝑛 − 𝑙𝑙| < ℰ,∀𝑛𝑛 ≥ 𝑁𝑁. In such a case it is said that the sequence {𝑎𝑎𝑛𝑛}𝑛𝑛∈ℕ is convergent, and that its limit is 
𝑙𝑙. This is written as follows: 

lim
𝑛𝑛→∞

𝑎𝑎𝑛𝑛 = 𝑙𝑙 

If the limit 𝑙𝑙 does not exist, it is said that {𝑎𝑎𝑛𝑛}𝑛𝑛∈ℕ diverges. 
Next, slogans 1 and 2, and the law of the sandwich, also called the fitting theorem, are enunciated, because 

this theorem states that if two functions tend to the same limit in a point, any other function that can be 
bounded between the two previous ones will have the same limit in the point. All three are necessary to 
construct the exponential function through successions of decimal approximations, and they are accepted as 
true because their demonstration is easily accessible. 

Lemma 1: If {𝑎𝑎𝑛𝑛}𝑛𝑛∈ℕ converges, then its limit is unique. 
Lemma 2: Every convergent sequence is bounded. 
Law of the Sandwich: Given two sequences {𝑏𝑏𝑛𝑛}𝑛𝑛∈ℕ and {𝑐𝑐𝑛𝑛}𝑛𝑛∈ℕ, convergent to 𝑙𝑙. It is assumed that there 

exists 𝑛𝑛0 such that 𝑏𝑏𝑛𝑛 ≤ 𝑎𝑎𝑛𝑛  ≤ 𝑐𝑐𝑛𝑛,∀𝑛𝑛 ≥ 𝑛𝑛0; then {𝑎𝑎𝑛𝑛}𝑛𝑛∈ℕ also converges to 𝑙𝑙. 
Part 2: Definition of Decimal Approximation of a real number 𝑥𝑥; and statement of the theorem that proves 

the existence of decimal approximations for 𝑥𝑥 ∈ 𝑄𝑄. 
Decimal Approximation: In the following, 𝐷𝐷 will be called the set of digits, that is, the set of natural 

numbers between 0 and 9: 𝐷𝐷 = {0,1, . . . ,9}. 
A positive real number 𝑥𝑥 admits a decimal approximation of the form: 

𝑥𝑥 = 𝑎𝑎 +
𝑐𝑐1

101 +
𝑐𝑐2

102 + ⋯
𝑐𝑐𝑛𝑛

10𝑛𝑛 

𝑥𝑥 = 𝑎𝑎 + �
𝑐𝑐𝑘𝑘

10𝑘𝑘

𝑛𝑛

𝑘𝑘=1

 

Whit 𝑎𝑎 ∈ ℤ; 𝑐𝑐𝑘𝑘 ∈ 𝐷𝐷, y 𝑛𝑛 ∈ ℕ. Such an expression is usually written 𝑎𝑎, 𝑐𝑐1𝑐𝑐2 … 𝑐𝑐𝑛𝑛. 
Theorem: Given a real number 𝑥𝑥, there is a single sequence of natural 𝑐𝑐𝑛𝑛 ∈ {1, 2, … ,9} tal que: 

𝑐𝑐1
10 + ⋯+ 

𝑐𝑐𝑛𝑛
10𝑛𝑛 ≤ 𝑥𝑥 <

𝑐𝑐1
10 + ⋯+ 

𝑐𝑐𝑛𝑛 + 1
10𝑛𝑛

,∀𝑛𝑛 ∈ ℕ 

In addition, the sequence {𝑟𝑟𝑛𝑛}𝑛𝑛∈ℕ defined above is increasing and converges to 𝑥𝑥, while the sequence {𝑠𝑠𝑛𝑛}𝑛𝑛∈ℕ 
defined by 𝑠𝑠𝑛𝑛 = 𝑟𝑟𝑛𝑛 + 1

10𝑛𝑛
 is decreasing and converges to 𝑥𝑥. The test is available in basic courses of mathematical 

analysis. 
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In synthesis, if {𝑐𝑐𝑛𝑛}𝑛𝑛∈ℕ is the succession of the previous theorem, it is said that 𝑥𝑥 has decimal approximation 
0, 𝑐𝑐1𝑐𝑐2. .. and it is written 𝑥𝑥 =  0, 𝑐𝑐1𝑐𝑐2. .. 

In general, if 𝑥𝑥 > 0 and 𝑐𝑐0 ≔ [𝑥𝑥] is defined, we obtain 𝑥𝑥 − 𝑐𝑐0 ∈ [0, 1) if the decimal approximation of 𝑥𝑥 − 𝑐𝑐0 
is zero, 0, 𝑐𝑐1𝑐𝑐2 … we write 𝑥𝑥 = 𝑐𝑐0, 𝑐𝑐1𝑐𝑐2. .. 

Definition: A real sequence {𝑥𝑥𝑛𝑛}𝑛𝑛∈ℕ that satisfies the following property: 
(∀ 𝑛𝑛,𝑚𝑚 ∈ ℕ)(𝑛𝑛 < 𝑚𝑚 → 𝑥𝑥𝑛𝑛 ≤ 𝑥𝑥𝑚𝑚) 

It is called crescent. It is clear that the succession of decimal approximations of every positive real number 
𝑥𝑥 is increasing; but it is also bounded superiorly and converges to its lowest upper bound: 𝑥𝑥. This property of 
the successions of decimal approximations is generalizable: every real succession that is increasing and 
bounded superiorly converges to its lowest upper bound. The proof of this result is analogous to that of the 
theorem according to which a positive real number 𝑥𝑥 the limit of the succession of its decimal approximations. 

Note: in the case of decimal approximations of real numbers, the limit of the succession coincides with its 
minimum upper bound (or its maximum lower bound). 

Part 3: In this step we are dedicated to building the exponential function. In principle we define 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥 
for 𝑎𝑎 > 1 and 𝑥𝑥 𝜖𝜖 ℚ. For this we remember that there exist sequences {𝑟𝑟𝑛𝑛}𝑛𝑛∈ℕ and {𝑆𝑆𝑛𝑛}𝑛𝑛∈ℕ, the first crescent and 
the second decreasing such that: 

𝑟𝑟𝑛𝑛 ≤ 𝑥𝑥 < 𝑠𝑠𝑛𝑛 = 𝑟𝑟𝑛𝑛 +
1

10𝑛𝑛 ∀𝑛𝑛 ∈ ℕ 

Since 𝑎𝑎 > 1 we have that 𝑓𝑓(𝑟𝑟) = 𝑎𝑎𝑟𝑟 is strictly increasing in ℚ. Then we know that: 
𝑟𝑟1 ≤ 𝑟𝑟𝑛𝑛 ≤ 𝑟𝑟𝑛𝑛+1 ≤ 𝑥𝑥 ≤ 𝑠𝑠𝑛𝑛+1 ≤ 𝑠𝑠𝑛𝑛 ≤ 𝑠𝑠1,∀𝑛𝑛 ∈ ℕ 

we have to: 
𝑎𝑎𝑟𝑟1 < 𝑎𝑎𝑟𝑟𝑛𝑛 < 𝑎𝑎𝑟𝑟𝑛𝑛+1 < 𝑎𝑎𝑠𝑠𝑛𝑛+1 < 𝑎𝑎𝑠𝑠𝑛𝑛 < 𝑎𝑎𝑠𝑠1 ,∀𝑛𝑛 ∈ ℕ 

With this we show that the sequence {𝑎𝑎𝑟𝑟𝑛𝑛}𝑛𝑛∈ℕ is increasing and bounded superiorly by 𝑎𝑎𝑟𝑟1, while the 
sequence {𝑎𝑎𝑠𝑠𝑛𝑛}𝑛𝑛∈ℕ is decreasing and bounded below by 𝑎𝑎𝑟𝑟1. By the Weierstrass theorem, which says that every 
monotonous and bounded sequence is convergent, we deduce that both sequences are convergent. 

This allows us to define the following inheritance limits: 
This allows us to define the following inheritance limits: 

𝛾𝛾 = lim
𝑛𝑛→∞

𝑎𝑎𝑟𝑟𝑛𝑛 and 𝜇𝜇 = lim
𝑛𝑛→∞

𝑎𝑎𝑠𝑠𝑛𝑛 

On the other hand, knowing that the sequence �𝑎𝑎1 𝑛𝑛� �
𝑛𝑛∈ℕ

 converges to one, we can deduce that as 10𝑛𝑛 > 𝑛𝑛 

and then 1
10𝑛𝑛

< 1
𝑛𝑛
, from which we deduce that 1 < 𝑎𝑎

1
10𝑛𝑛� < 𝑎𝑎1 𝑛𝑛� . 

Then, since �𝑎𝑎1 𝑛𝑛� �
𝑛𝑛∈ℕ

 converges to one, then �𝑎𝑎1 10𝑛𝑛� �
𝑛𝑛∈ℕ

 converges to one, we have to: 

𝜇𝜇 = lim
𝑛𝑛→∞

𝑎𝑎𝑠𝑠𝑛𝑛 = lim
𝑛𝑛→∞

𝑎𝑎𝑟𝑟𝑛𝑛+
1
10𝑛𝑛� = lim

𝑛𝑛→∞
𝑎𝑎𝑟𝑟𝑛𝑛𝑎𝑎

1
10𝑛𝑛� = 𝛾𝛾 

Now, since 𝛾𝛾 is the only real number that is both greater than each 𝑎𝑎𝑟𝑟𝑛𝑛 and smaller than each 𝑎𝑎𝑠𝑠𝑛𝑛, if we 
want f to continue to be increasing, the only possible definition for 𝑎𝑎𝑥𝑥 is: 

𝑎𝑎𝑥𝑥 = 𝛾𝛾 = lim
𝑛𝑛→∞

𝑎𝑎𝑟𝑟𝑛𝑛 

This definition of the exponential function through the use of sequences greatly simplifies the work when 
demonstrating the properties of the exponential function for real exponents. However, the main tool to do it is 
the following motto. 

Lemma: If {𝛼𝛼𝑛𝑛}𝑛𝑛∈ℕ is a sequence of rationals that converges to x, then the sequence {𝑎𝑎𝛼𝛼𝑛𝑛}𝑛𝑛∈ℕ converges to 
𝑎𝑎𝑥𝑥. 

The demonstration of this motto requires the use of the Bernoulli inequality that is available in courses of 
mathematical analysis. Let’s now try the following properties: 
 For 𝑎𝑎 > 1 the function is strictly increasing in ℝ. 
In fact, let 𝑥𝑥 and 𝑦𝑦 ∈ ℝ be such that 𝑥𝑥 < 𝑦𝑦. Let {𝑠𝑠𝑛𝑛}𝑛𝑛∈ℕ and {𝑡𝑡𝑛𝑛}𝑛𝑛∈ℕ be sequences of rationals such that the 

first grows to 𝑥𝑥, and the second decreases to 𝑦𝑦. 

http://www.iejme.com/


 
 
 INT ELECT J MATH ED 
 

 
http://www.iejme.com   5 / 7 
 
 
 

Let p and 𝑞𝑞 ∈ ℚ such that 𝑥𝑥 < 𝑞𝑞 < 𝑝𝑝 < 𝑦𝑦 then: 
𝑎𝑎𝑠𝑠𝑛𝑛 < 𝑎𝑎𝑝𝑝 < 𝑎𝑎𝑞𝑞 < 𝑎𝑎𝑡𝑡𝑛𝑛 ,∀𝑛𝑛 ∈ ℕ 

Then, 
𝑎𝑎𝑥𝑥 = lim

𝑛𝑛→∞
𝑎𝑎𝑠𝑠𝑛𝑛 ≤ 𝑎𝑎𝑝𝑝 < 𝑎𝑎𝑞𝑞 ≤ lim

𝑛𝑛→∞
𝑎𝑎𝑡𝑡𝑛𝑛 = 𝑎𝑎𝑦𝑦 

 For 𝑥𝑥 and 𝑦𝑦 ∈ ℝ we have 𝑎𝑎𝑥𝑥+𝑦𝑦 = 𝑎𝑎𝑥𝑥𝑎𝑎𝑦𝑦. 
Taking {sn}n∈ℕ and {tn}n∈ℕ sequences of rationals such that: {sn}n∈ℕ converges to x and {tn}n∈ℕ converges to 

y; then {sn + tn}n∈ℕ converges to x + y. 
And for the previous lemma: 𝑎𝑎𝑥𝑥+𝑦𝑦 = 𝑙𝑙𝑙𝑙𝑚𝑚

𝑛𝑛→∞
𝑎𝑎𝑠𝑠𝑛𝑛+ 𝑡𝑡𝑛𝑛 = 𝑙𝑙𝑙𝑙𝑚𝑚

𝑛𝑛→∞
𝑎𝑎𝑠𝑠𝑛𝑛𝑎𝑎 𝑡𝑡𝑛𝑛 =  𝑎𝑎𝑥𝑥𝑎𝑎𝑦𝑦 . 

 For 𝑥𝑥 and 𝑦𝑦 ∈ ℝ we have (𝑎𝑎𝑥𝑥)𝑦𝑦 = 𝑎𝑎𝑥𝑥𝑦𝑦. 
Here you have to be a little more careful. First we assume that 𝑥𝑥 and 𝑦𝑦 are positive. Then we take three 

successions of positive rationals: {𝑟𝑟𝑛𝑛}𝑛𝑛∈ℕ, {𝑠𝑠𝑛𝑛}𝑛𝑛∈ℕ and {𝑡𝑡𝑛𝑛}𝑛𝑛∈ℕ such that {𝑟𝑟𝑛𝑛}𝑛𝑛∈ℕ grows to 𝑥𝑥; {𝑠𝑠𝑛𝑛}𝑛𝑛∈ℕ decreases to 
𝑥𝑥; and {𝑡𝑡𝑛𝑛}𝑛𝑛∈ℕ converges to 𝑦𝑦. 

Then as 𝑎𝑎𝑟𝑟𝑛𝑛 < 𝑎𝑎𝑥𝑥 then by the previous lemma we have to: 
𝑎𝑎𝑟𝑟𝑛𝑛𝑡𝑡𝑛𝑛 = (𝑎𝑎𝑟𝑟𝑛𝑛)𝑡𝑡𝑛𝑛 < (𝑎𝑎𝑥𝑥)𝑡𝑡𝑛𝑛 

and also by the previous lemma: 
𝑎𝑎𝑥𝑥𝑦𝑦 = lim

𝑛𝑛→∞
𝑎𝑎𝑟𝑟𝑛𝑛𝑡𝑡𝑛𝑛 ≤ lim

𝑛𝑛→∞
(𝑎𝑎𝑥𝑥)𝑡𝑡𝑛𝑛 = (𝑎𝑎𝑥𝑥)𝑦𝑦 

In a similar way 
𝑎𝑎𝑥𝑥𝑦𝑦 = lim

𝑛𝑛→∞
𝑎𝑎𝑠𝑠𝑛𝑛𝑡𝑡𝑛𝑛 ≤ lim

𝑛𝑛→∞
(𝑎𝑎𝑥𝑥)𝑡𝑡𝑛𝑛 = (𝑎𝑎𝑥𝑥)𝑦𝑦 

If we hit the two inequalities we obtain the equality sought. Then if 𝑥𝑥 < 0 or 𝑦𝑦 < 0 we have to proceed in a 
similar way.  

The properties shown above are still valid for 0 < 𝑎𝑎 < 1, except that now the function 𝑓𝑓 (𝑥𝑥) =  𝑎𝑎𝑥𝑥 would be 
strictly decreasing. 

Characteristics of the exponential function: Continuity 

Let 𝑎𝑎 >  1, and the function 𝑓𝑓 (𝑥𝑥)  =  𝑎𝑎𝑥𝑥 have just been defined. Recalling the inequality: 1 < 𝑎𝑎
1
𝑛𝑛  < 1 + 1

𝑛𝑛
, for 

𝑎𝑎 >  1 and 𝑛𝑛 ∈ 𝑁𝑁. 

Given ℰ > 0, let 𝑛𝑛 ∈ ℕ such that 𝑎𝑎
𝑛𝑛

< ℰ. Then for − 1
𝑛𝑛

< 𝑥𝑥 < 1
𝑛𝑛
 we have: 

𝑎𝑎𝑥𝑥 < 𝑎𝑎
1
𝑛𝑛 < 1 +

𝑎𝑎
𝑛𝑛

< 1 + ℰ 

And also: 

𝑎𝑎𝑥𝑥 > 𝑎𝑎−
1
𝑛𝑛 >

1
1 + ℰ > 1 − ℰ 

This proves that taking 𝛿𝛿 = 1
𝑛𝑛
 we have: 

|𝑥𝑥| < 𝛿𝛿 ⇒ |𝑎𝑎𝑥𝑥 − 1| < ℰ 
This means that 

lim
𝑥𝑥→0

𝑎𝑎𝑥𝑥 = 1 

In other words, the exponential function is continuous at 𝑥𝑥 =  0. In general, making the change 𝑡𝑡 =  𝑥𝑥 − 𝑥𝑥0 
we have: 

lim
𝑥𝑥→𝑥𝑥0

𝑎𝑎𝑥𝑥 = lim
𝑥𝑥→𝑥𝑥0

𝑎𝑎𝑥𝑥0𝑎𝑎𝑥𝑥−𝑥𝑥0 = 𝑎𝑎𝑥𝑥0 lim
𝑡𝑡→0

𝑎𝑎𝑡𝑡 = 𝑎𝑎𝑥𝑥0 

and then the exponential function of base a is continuous throughout ℝ. 

Characteristics of the exponential function: Surjection 

Once we test continuity, we can use the intermediate values theorem to conclude that the range of the 
exponential function is all ℝ+. 
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If we consider a 𝑦𝑦 > 0 we observe that: 
𝑎𝑎𝑛𝑛 = (1 + 𝑎𝑎 − 1)𝑛𝑛 > 𝑛𝑛(𝑎𝑎 − 1) 

For the Archimedean property there exists 𝑛𝑛1𝜖𝜖 ℕ such that 𝑛𝑛1(𝑎𝑎 − 1) > 𝑦𝑦, where: 
𝑎𝑎𝑛𝑛1 > 𝑛𝑛1(𝑎𝑎 − 1) > 𝑦𝑦 

In the same way there exists 𝑛𝑛0 ∈ ℕ such that 𝑛𝑛0 (𝑎𝑎 − 1) > 1
𝑦𝑦
, where an 𝑎𝑎𝑛𝑛0 > 1

𝑦𝑦
. Consequently we have: 

Consequently we have: 
𝑎𝑎−𝑛𝑛0 < 𝑦𝑦 < 𝑎𝑎𝑛𝑛1 

By the theorem of the intermediate values, there exists 𝑥𝑥 𝜖𝜖 (−𝑛𝑛0,𝑛𝑛1), such that 𝑎𝑎𝑥𝑥 = 𝑦𝑦. With this we prove 
that the following function is surjective: 

𝑓𝑓: ℝ → (0,∞) , 𝑓𝑓(𝑥𝑥)  =  𝑎𝑎𝑥𝑥 
As we already knew that it was injective (because it is strictly increasing), we conclude that it is in fact 

bijective. 

Note: For 0 < 𝑎𝑎 < 1 we have 𝑎𝑎𝑥𝑥 = 1
𝑏𝑏𝑥𝑥

, with 𝑏𝑏 = 1
𝑎𝑎

> 1, and it is not difficult to convince yourself that it is 
still bijective and continuous. From now on, when we talk about the exponential function, we will refer to the 
function defined by [1], with 𝑎𝑎 >  0 and 𝑎𝑎 ≠  1. 

In summary, everything said can be written as follows: 
Theorem: The exponential function 𝑓𝑓: ℝ → ( 0,∞) , 𝑓𝑓(𝑥𝑥)  =  𝑎𝑎𝑥𝑥 is bijective and continuous. Furthermore, it 

is strictly increasing if 𝑎𝑎 > 1, and strictly decreasing is 0 < 𝑎𝑎 < 1. 

Final Words 

In Argentina, the construction of the exponential function with real exponent from the potentiation that 
we have presented in this work, is not usually studied in the regular courses of analysis. However, its study 
in the mathematics education for teachers, allows to discuss the validity of the properties of this type of power, 
as well as to analyze issues, which from the functional point of view are accepted without questioning or simply 
ignored. 
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