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Abstract: A proposal for building a Free Electron Laser, EuPRAXIA@SPARC_LAB, at the Laboratori
Nazionali di Frascati, is at present under consideration. This FEL facility will provide a unique
combination of a high brightness GeV-range electron beam generated in a X-band RF linac, a 0.5 PW-class
laser system and the first FEL source driven by a plasma accelerator. The FEL will produce ultra-bright
pulses, with up to 10! photons /pulse, femtosecond timescale and wavelength down to 3 nm, which lies
in the so called “water window”. The experimental activity will be focused on the realization of a plasma
driven short wavelength FEL able to provide high-quality photons for a user beamline. In this paper,
we describe the main classes of experiments that will be performed at the facility, including coherent
diffraction imaging, soft X-ray absorption spectroscopy, Raman spectroscopy, Resonant Inelastic X-ray
Scattering and photofragmentation measurements. These techniques will allow studying a variety of
samples, both biological and inorganic, providing information about their structure and dynamical
behavior. In this context, the possibility of inducing changes in samples via pump pulses leading to the
stimulation of chemical reactions or the generation of coherent excitations would tremendously benefit
from pulses in the soft X-ray region. High power synchronized optical lasers and a TeraHertz radiation
source will indeed be made available for THz and pump-probe experiments and a split-and-delay station
will allow performing XUV-XUV pump—probe experiments.

Keywords: free electron lasers; coherent imaging; X-ray Raman; X-ray absorption; THz radiation

1. Introduction

The advent of Free Electron Lasers (FELs) opened up the way to an unprecedented, wide class of
experiments exploiting the peculiar features of these radiation sources. Key elements are the high peak
brilliance that can be higher than 10% photons/(s mm? mrad? 0.1% bandwidth) and the short pulse
duration, which is of the order of tens of femtoseconds. FELs can therefore allow high time resolution
measurements and may provide a high signal-to-noise ratio. By exploiting the high peak brilliance and
the extremely short FEL pulses the so-called diffract-and-destroy regime, in which interpretable data are
gathered before the sample is destroyed by the FEL pulse radiation [1], can be explored, overcoming
one of the main limitations of synchrotron radiation based experiments, namely sample radiation
damage. This idea has been proven in several experiments on various samples, both biological [1-6] and
non-biological [7], at different wavelengths ranging from the UV to the hard X-rays region. Actually,
this issue is particularly relevant since coherent diffraction imaging (CDI) of biological system using
conventional methods is ultimately limited by radiation damage owing to the large amount of energy
deposited in the sample by the photon beam [7,8].
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The unique FEL features (energy range, time resolution and brilliance) can be exploited in
several branches of physics, chemistry, material science and biology. In this paper, we describe
the main experimental lines that can be investigated at the EuPRAXIA@SPARC_LAB FEL [9,10]
(Figure 1). The EuPRAXIA@SPARC_LAB FEL will provide photon pulses with high intensity, up to
1012 photons/pulse, down to a wavelength of about 3 nm, in the so called “water window”. The foreseen
pulse energy will reach 180 puJ and the bandwidth will range between 0.4% and 0.9%, according to the
machine operation scheme. The pulse length will be of tens of femtoseconds. The experimental activity
will be focused on the realization of a plasma driven short wavelength FEL and the first expected FEL
operational mode will be based on the self amplification of spontaneous radiation (SASE) mechanism with
tapered undulators. Details about foreseen beam parameters are given in [9]. The facility will also provide
a high-power (0.5 PW) laser system and a TeraHertz (THz) radiation source. These sources will allow
performing laser pump-FEL probe and THz pump-FEL probe experiments. Moreover, a split-and-delay
element will allow laser pump-FEL probe experiments. A fully equipped experimental endstation
designed to perform this variety of experiments will be designed and built. The experimental hall will be
designed in order to allow the highest flexibility, optimizing the available space to perform a wide class of
experiments (see Figure 2). All the aspects of the experimental needs will be considered, therefore next to
the experimental hall a large space for the support to the experimental activities, but also for rest breaks of
people working on the experiments, will be available.
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Figure 1. A simplified layout of the experiments that will be performed at EX-TRIM.
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Figure 2. A layout of EuPRAXIA@SPARC_LAB. The building will be about 135 m long and 35 m wide.
The location of the injector and linac, of the klystrons, of the plasma module and of undulators is shown on
the left side. The location of the two THz/MIR and of the FEL endstation is highlighted on the right side.

2. Expected Results

In this section, we present and discuss some of the results that we expect to be able to obtain owing to
the peculiar features of the EUPRAXIA@SPARC_LAB facility.

2.1. Coherent Imaging of Biological Samples

FEL radiation can be used to gather information on several kinds of biological samples.
Biological single particle imaging is one of the main topics of FEL research with dedicated beamlines,
although the FEL intensity, the available detectors, and techniques to introduce the sample into the
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focused X-ray sampling position, were all insufficient to obtain (near) atomic resolution structural
information from single biological macromolecules [11]. Nevertheless, recent experiments performed at
LCLS showed that single-shot diffraction patterns from biological samples as small as 70 nm in diameter
(e.g., the enterobacteria phage PR772 [12,13]) can be measured, and still at LCLS signal up to 5.9 Aresolution
was observed from rice dwarf virus [14]. Measurements performed at SACLA allowed recovering the
electron density of chloroplast with 70 nm resolution [15]. Dataset of coherent imaging patterns have also
been made available for the scientific community [16,17]. In the specific case at hand here, thanks to the
photon energy range delivered by the EUPRAXIA@SPARC_LAB FEL, coherent imaging experiments in
the water window will allow obtaining structural information on cells, organelles, viruses and protein
aggregates [3-5,18] by performing measurements at room temperature and with samples staying in their
native state. Exploiting the high degree of transverse coherence of the EuPRAXIA@SPARC_LAB FEL
beam, which is foreseen to be between 80% and 100%, 2D images of a variety of biological samples,
including bacteria (see Figure 3a), viruses (see Figure 3b), cells, cell organelles and protein aggregates
and fibrils [19,20], can be obtained. The possibility of obtaining high resolution structures of fibrils in
native conditions is particularly relevant to study the dynamics of their formation, which is important for
both industrial /pharmaceutical [21,22] and bio-medical [20] applications. When dealing with a class of
identical objects (e.g., viruses or ribosomes), it is also possible to combine the diffraction patterns, coming
from different FEL pulses hitting different elements of the class, to get a full 3D reconstruction [23].

Figure 3. Simulated data for coherent imaging experiments at the EuPRAXIA@SPARC_LAB FEL.
(a) A simulated diffraction pattern and the reconstruction of the electron density of a 2 um long spheroid,
with a shape similar to that of an elongated bacterium. (b) A simulated diffraction pattern from a 600 nm
diameter icosahedral virus. Simulations were performed using the software Condor [24] assuming a
Gaussian-shaped beam with a diameter of 3 um, a wavelength of 2.87 nm and a pulse intensity of
100 pJ, which is, according to simulations, the expected pulse energy delivered on the sample by an
EuPRAXIA@SPARC_LAB pulse.

The attainable resolution depends on the sample’s composition and size and it is limited by FEL
wavelength and photon brilliance, but, thanks to the high contrast associated to the water-window energy
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range, the EUPRAXIA@SPARC_LAB will be a suitable facility to perform CXI measurements on a wide
class of biological objects. It is worth pointing out that, when dealing with biological samples, which are
mainly composed by light atoms and preferentially live in a water environment, there is a particular
interest in performing measurement in the so-called water window, i.e., the energy range between carbon
(282 eV) and oxygen (533 eV) K-edge. In this range, the absorption contrast between the carbon of
organelles and the water of both cytoplasm and the liquid surrounding the cell is quite high. For this
reason, the EUPRAXIA@SPARC_LAB will be particularly suitable to perform high-contrast imaging
experiments on biological samples in their living, hydrated, native state, without the need of cooling or
staining them, as is the case for other microscopy techniques such as electron microscopy.

2.2. Time-Resolved X-ray Absorption Spectroscopy in the Water Window

Besides imaging experiments, which typically require single wavelength pulses, spectroscopy
experiments requiring the scan of a (limited) energy range can also be performed at a FEL.

The main advantage of performing XAS experiments at the EUPRAXIA@SPARC_LAB FEL with
respect to the more compact HGG sources (as, for example, those described in [25]) is the number of
photons per pulse, which is foreseen to be as high as 10'? photons/pulse, thus being still significantly
higher than that currently achievable at HGG sources (e.g., Popmintchev et al. [26] reported a fux of more
than 10° photons/second in the water window energy range). The high intensity of the FEL pulses will
allow acquiring data with a good signal-to-noise ratio from single-shots measurements.

In this context, X-ray Absorption Spectroscopy (XAS) can be used as a tool to directly observe the
molecular structure during chemical dynamics studies [27,28]. Real time observations require indeed fast
time and small spatial resolutions, which can be guaranteed by the short, intense EuPRAXIA@SPARC_LAB
FEL pulses. In particular, either by tuning the undulators to the appropriate energy, or exploiting
the natural jitter of the FEL radiation generated in SASE mode, the experiments performed at
EuPRAXIA@SPARC_LAB will allow measuring the informative, low-energy portion of the XAS spectrum,
the so-called XANES (X-ray Absorption Near Edge Spectroscopy) region. Quantitative analysis tools of
XANES data are nowadays available [29,30] including those based on first principles calculations [31-33].
Therefore, FEL-XAS measurements will become a powerful tool to provide unique information on the local
geometry, electron density and spin states around selected atomic moieties [34]. Soft X-rays as the ones
that will be produced by EuPRAXIA@SPARC_LAB are well suited for chemical and biological studies in
the water window region. This region includes the K edge of elements such as C, N and O, and the L edge
of 3d transition metals, which are of interest in many biologically relevant cases [35,36].

Examples of pioneering soft X-ray L-edge FEL-XAS transmission experiments include measurements
of Al, Ge and Ti thin films for variable fluence (see, for example, [37-39]). In those experiments,
ultrafast electron heating pumping matter at extremely high temperatures, as well as saturable absorption
effects were observed. FEL experiments were found to be extremely useful to explore highly uniform
warm dense matter (WDM) conditions, a regime exceedingly difficult to reach in present laboratory
studies, but relevant to various fields, including high-pressure and planetary science, astrophysics,
and plasma production. Various FEL-based ultrafast techniques can be used to probe WDM properties at
electron temperatures in the 1-10 eV range and beyond. Those previous results naturally call for further
challenging experiments at the EuPRAXIA@SPARC_LAB FEL as well as for parallel developments of
suitable interpretation schemes for modeling and understanding the X-ray absorption cross section under
high-fluence conditions (see [40] and refs. therein).

For experiments near the chemically relevant carbon K edge at 284.2 eV, the EuPRAXIA@SPARC_LAB
FEL can be used to study dissociation reactions of molecular cations, that until today could not been
resolved in time, using transient absorption at the carbon K-edge. Moreover, XAS measurements at the
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L-edge of 3d transition metals provides unique information on the local metal charge and spin states
by directly probing 3d-derived molecular orbitals through 2p-3d transitions. However, this soft X-ray
technique has been rarely used at synchrotron facilities for mechanistic studies of metalloenzymes due
to the problems with X-ray-induced sample damage and strong background signals from light elements
that can dominate the low metal signal. It has been recently shown [34] that Mn L-edge absorption
spectra can be collected at room temperature at a FEL. This paves the way for future structural and
dynamical studies of metalloenzymes exploiting soft X-ray FEL radiation such as the one produced by
EuPRAXIA@SPARC_LAB.

2.3. Time-Resolved Coherent Raman Experiments with X-ray Pulses

One of the most intriguing challenges in modern scientific research is the capability of monitoring
transient atomic motions that govern physical, chemical and biological phenomena, measuring structural
molecular changes of reacting species over few Angstrom lengths on sub-picosecond timescales.
The standard approach used to investigate structural dynamics is the pump—probe scheme, in which
light pulses are used to first excite (pump) and subsequently interrogate (probe) a system [41]. The use of
intense, ultra-short, soft X-ray radiation pulses such as those generated by the EuPRAXIA@SPARC_LAB
FEL would tremendously benefit pump—probe investigations, whereof two different situations will be
addressed: on the one hand, X-ray pulses can be exploited as pump pulse for stimulating chemical
reactions or for generating coherent excitations, and, on the other hand, they can be used as selective probe
to monitor the evolution from reactant to photoproduct.

Raman spectroscopy is a very powerful experimental tool for the detection of molecular vibrations,
which are related to the force constant between atoms. In this scenario, accessing the Raman spectrum
during and upon the FEL interaction would disclose any vibrational and structural modification occurring
on the system under investigation. The subsequent electronic relaxation modifies the force field, generating
a fragmentation of the molecule. To follow the evolution from the point of view of molecular vibrations,
two crucial requirements are needed: (1) collimated signal, to avoid the luminescence background
generated from the sample after the FEL interaction; and (2) sub-picosecond time resolution to follow the
fragmentation process. Therefore, spontaneous Raman spectroscopies are ineffective in this exploration,
due to the isotropic signal and temporal resolution [42], compromised by the fundamental restrictions
dictated by the Fourier transform limit. Femtosecond stimulated Raman scattering (FSRS) is a recently
developed technique [43-47], in which a femtosecond actinic pulse (AP) initiates the photochemistry of
interest. The system is subsequently interrogated by a pair of overlapped pulses: the joint presence of a
broadband ultrashort probe pulse (PP) and a narrowband picosecond Raman pulse (RP) induces vibrational
coherences which are read out as heterodyne coherent Raman signals [48,49]. Notably, the probed Raman
features are engraved onto the highly directional PP, and, hence, SRS provides an efficient suppression
of the incoherent fluorescence background. Moreover, thanks to the different temporal and spectral
properties of the pulses, femtosecond SRS represents an ideal tool to study structural changes in ultrafast
photophysical and photochemical processes, providing both femtosecond time precision and high spectral
resolution [45,50-52]. The narrowband RP can be generated from a two-stage optical parametric amplifier
that produces tunable infrared-visible pulses, followed by spectral compression via frequency doubling
in a 25 mm beta-barium borate crystal [53]. The femtosecond AP, so far in the visible spectral region,
can be replaced with XUV-FEL. In this way, tuning the soft X-ray wavelength in resonance with a specific
atomic absorption edge, it would be possible to selectively excite specific atoms and follow the temporal
evolution of Raman mode disappearance, which depends on atomic role in molecular oscillation and the
electronic coupling between atoms. From another perspective, pulses in the X-ray domain, resonant with
valence excited-state transitions, can be used as probe pulses in Raman based spectroscopies, enabling
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to selectively isolate contributions from specific sites of molecular moieties. In particular, combining
an X-ray femtosecond probe pulse, with a visible photochemical pump pulse, would give the chance to
perform X-ray Impulsive Vibrational Scattering (X-IVS), in which a visible pump pulse, besides triggering
a photo-reaction, stimulates vibrational coherences on the system, modulating the transmission of a
temporally delayed XUV probe, at the frequencies of the coherently activated vibrations [54,55]. For this
reason, recording the transmission of the probe pulse enables real-time monitoring of Raman active modes.
Fourier transforming the detected signal over the temporal delay between pump and probe recovers the
transient Raman spectrum of the system under investigation. While IVS has been extensively exploited
in the visible spectral region for probing ground and excited state coherences on both molecular and
solid-state compounds [56,57], its potential in the X-ray domain is still an unexplored territory, which can
be disclosed thanks to the EUPRAXIA@SPARC_LAB FEL experimental endstation. Notably, in close
analogy with the atomic selectivity achieved by using a XUV pump pulse, employing a probe pulse
resonant with a specific electronic transition absorption edge would provide the chance of isolating
coherent atomic motions involving only the desired atomic moieties. A schematic view of a pump—probe
Raman experiment is depicted in Figure 4.

Figure 4. Schematic view of a time-resolved (pump—probe) Raman experiment on a protein.

Further development will be done in the field of localized dynamic studies by nano-Raman
instruments. Both apertureless and fiber-based Scanning Near-field Optical Microscopy (SNOM) will
be used to increase the lateral spatial resolution in the tens of nm: in this case, the excitation of the
sample is kept as uniform as possible, and collection of scattered signal from local spot on the sample is
conducted [58,59].

Another field where one can exploit the XUV photons generated by the EUPRAXIA@SPARC_LAB
FEL is the study by means of coherent electronic Raman process [39] of photo-induced chemical processes
represented by the detection of electronic coherences (based on a composite X-ray pulse sequence)
generated during the system dynamics [60]. For example, within such a scheme, a combination of
short, soft X-ray FEL pulses can be used to directly detect the passage through conical intersections (CIs).
Notably, the photoinduced excited state dynamics of polyatomic molecules is often dominated by CI,
regions of degeneracy between two or more electronic surfaces [61]. The dynamical behavior of molecules
in the vicinity of Cls dictates the resulting photophysics and photochemistry of the molecule. Given the
ubiquity and importance of Cls in all photoinduced processes, from solar energy conversion to vision,
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finding a direct, experimental observable of the dynamics through a CI would be a significant development
in our understanding of excited state photo-induced dynamics.

2.4. Photo-Fragmentation of Molecules

Another kind of applications that would largely benefit from the peculiar features of the
EuPRAXIA@SPARC_LAB FEL radiation is represented by the wide class of experiments aimed at studying
the interaction of intense radiation pulses with molecules. How organic and biological molecules
redistribute the energy of absorbed light is indeed a key fundamental question in organic chemistry
and biology which time-resolved experiment can help to settle [62-67]. This class of experiments will
help understanding the basic mechanisms of photo-protection/damage of amino acids [68], proteins and
DNA/RNA [69]. XUV or X-rays pump laser pulses of low intensity with a few femtoseconds duration
contain photons ranging up to hundreds of eV. Single-photon ionization is a dominant absorption channel
triggering the ultrafast charge migration process in the parent cation. Probing the resulting non-equilibrium
dynamics using short, intense pulses such as those produced by the EuPRAXIA@SPARC_LAB FEL at
delays varying on the femtosecond timescale allows resolving in real-time the electron density through
time-resolved imaging [70-74].

An example of what can be seen in a photo-fragmentation experiment as it will be implemented at
EuPRAXIA@SPARC_LAB FEL is given in Figure 5. In particular, we display the real-space distribution of
the molecular charge at six representative times of the phenylalanine amino acid after illumination with
an ionizing XUV 300-as pulse.

i— 6.7 fs —t
7fs

1.2fs !

4
$— 4.0fs

r%
g

30.0fs

Figure 5. Real-space distribution of the molecular charge at six representative times of the phenylalanine
amino acid after illumination with an ionizing XUV 300-as pulse. The figure is taken from Reference [68]
(Copyright 2018 by the American Chemical Society).

2.5. Resonant Inelastic X-ray Scattering

In atomic inner shell spectroscopy, spectra can show peculiar characteristics associated with a variety
of different scattering interactions. When atoms are irradiated with incident energy lower but close to an
absorption edge, scattering peaks appear due to an inelastic process known as Resonant Inelastic X-ray
Scattering (RIXS) or X-ray Resonant Raman Scattering [75]. These RIXS peaks display typical features,
such as a characteristic long-tail spreading to the region of lower energy. This scattering process is a
high demanding photon flux. In general, RIXS experiments are carried out at synchrotron facilities using
high-resolution spectrometers for detecting the scattering signal. Nevertheless, in recent years, RIXS has
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been observed using an Energy Dispersive Setup (EDS) with synchrotron radiation. The analysis of the
collected signal shows that hidden on the peak tails there is valuable information about the chemical
environment of the atom under study [76]. During the last decade, several works have been published
showing the first applications of a novel RIXS tool (named EDIXS) for the discrimination, determination
and characterization of chemical environments in a variety of samples and irradiation geometries and
even combined with other spectroscopic techniques [76-86]. Due to its versatility, EDIXS was applied in
the typical 45°—45° setup for inspection of the material bulk, in total reflection for the study of the most
external atomic layers of a sample, in grazing incidence used for depth resolved chemical speciation
analysis and even in confocal setup to obtain chemical state information in a 3D regime, reaching
nanometric spatial resolution. Owing to the EDIXS high sensitivity, this technique can be extended to the
study of local chemical environments with applications in many field of science, as geology, chemistry,
physics, material science and industry, etc., where a precise quantification of different compounds is
required [79]. This methodology is fast, reliable and straightforward. It has several benefits compared
with other spectroscopic techniques, such as fast acquisition, low self-absorption and the avoidance of
any energy scan during the measurements. A remarkable field of application of EDIXS is in the context
of pulsed X-ray sources, e.g., FELs. Besides the application of EDIXS for fast structural characterization
of materials, this tool allows time-resolved investigations of a variety of atomic processes and of the
dynamics of samples of interest exposed, for example, to changing conditions of temperature, atmosphere,
pressure, etc. Previous results regarding time-resolved discrimination of chemical environments [80] have
showed time resolution of the order of the second when monochromatic synchrotron radiation was used
(flux ~108 ph/s). Due to the higher FEL photon flux, we expect to obtaining sub-second, and even
millisecond, time-resolved experiments when a FEL source is used. This kind of (very) fast
characterizations are currently impossible to achieve by conventional methods. Even non-conventional
sources (storage rings) employing traditional techniques for atomic environment analysis (EXAFS, XANES,
etc.) are useless in time-resolved spectroscopy because of the need of energy scan. This limitation
establishes an ultimate frontier for these techniques that cannot be overcome during time dependent
measurements. At this point, the one-shot character of EDIXS makes a crucial difference in favor of it.
There are a variety of relevant cases to study with time-resolved EDIXS, both in basic research and in
applications to the industry and technology fields. As for the multiple applications of time-resolved EDIXS
using the EUPRAXIA@SPARC_LAB FEL (with produces photons with a maximum energy of ~415 eV) as
basic research, we mention the analysis of nitrogen and carbon states in the evolution of biological systems,
for example in the study of the role of nitrogen during photosynthesis and of the chemical state of carbon
during cell divisions. Concerning technological and industrial applications, a wide range of opportunities
exists, since carbon plays a role in many situations. Just to mention a few of them: diamond structural
variations under high conditions of pressure or graphene and complex carbon structures reactions to
external excitations. The key element at the basis of the feasibility of all the RIXS experiments we have
illustrated is the combination of a fast time resolution technique with the EUuPRAXIA@SPARC_LAB source,
delivering extremely high photon fluxes.

2.6. THz/MIR Sources

The interest in THz radiation is recognized since many years for its potential to advance research in
several scientific fields. In addition, THz research has many industrial prospects, so that THz activities
may offer potential spin-off not only associated to condensed matter basic research, e.g., semiconductor
and superconductors materials, whose characterization may have a direct impact on many technologies,
but also in R&D of detectors and imaging. A great expectation for industry is the development of imaging
for biomedical applications and security issues.
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THz radiation lies between the photonic and the electronic bands of the electromagnetic spectrum,
and it extends from 300 GHz up to 10 THz. THz is non-ionizing and highly penetrating in a large variety of
dielectric materials, e.g., plastic, ceramics, and paper. The wavelength of the THz radiation is of the order of
many important physical, chemical and biological processes (see Figure 6), including superconducting gaps,
exotic electronic transitions and protein dynamical processes. The THz part of the spectrum is energetically
equivalent to many important physical, chemical and biological processes including superconducting
gaps, exotic electronic transitions and protein dynamical processes. Recently, a new generation of sources,
based on particle accelerators, allows increasing the average and peak power, by many orders of magnitude,
and extends the spectral range up to the Mid-Infrared (100 THz, Middle-InfraRed (MIR)), making the whole
spectral region accessible to different frequency- and time-domain experiments. Indeed, a linac-driven
THz/MIR source can deliver broadband pulses with femtosecond shaping, and with the possibility to
store a high energy in a single pulse [87]. In addition, taking advantage of electron beam manipulation
techniques, high power, narrow-band radiation can be also generated [88]. Finally, high brightness electron
beams also permit the possibility to extend the emission towards the MIR, having a unique source covering
three decades in wavelength from 1000 microns to 1 micron. This provides a unique chance to realize
THz/MIR-pump/THz/MIR probe spectroscopy, a technique essentially unexplored up to now.

The potential of THz and MIR frequency and time domains spectroscopies are displayed in Figure 6,
where we show a not exhaustive review of excitations whose characteristic energy are in resonance with
those of specific processes.

UL P rvrm T TT1°T T TT0m Errrmm L
10 ps 1ps 100 fs 10 fs 1fs

T T T

‘ Illﬁ IIV-VI

Pinned modes 2D electron gas: EF
2D electron gas: plasmons Spin-orbit coupling
Cyclotron modes and Landau Level transitions
Localization peaks in disordered conductors
Carrier lifetimes in metals and semiconductors

Zeeman splitting [T 1 inter-band transitions

Superconducting gap polarons
(pseudo)gap in cuprates Charge transfer gap
Magnetic resonances Amplitude modes 7" transitions
and strong coupling effects (polymers) (polymers)
Josephson plasmons Correlation gaps in 1D conductors
Heavy Fermion plasmons bi-polarons

1 L L L L L LIt L1 LLit L1 LiiLi 111
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Figure 6. Frequency and time domain of THz/MIR spectroscopy.

An electromagnetic source can be characterized in terms of time duration, field strength, pulse shape,
bandwidth and frequency. Their choice depends on the class of experiments of interest. An effective
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THz/MIR source should have higher peak fields, from 100 kV/cm to 50 MV /cm, the coverage of a spectral
range up to a frequency of 100 THz, a full pulse shaping and a sub-ps duration. The THz/MIR source at
EuPRAXIA@SPARC_LAB will be designed to achieve these requirements.

THz/MIR radiation will be generated at EUPRAXIA@SPARC_LAB through different production
schemes based on ultra-short, i.e., ~10-100 fs, electron bunches. Two beam lines are considered in the first
phase of the EUuPRAXIA@SPARC_LAB project: one at low energy, i.e., 30-50 MeV, and the second one at
higher energy, i.e., 1 GeV, in proximity of the FEL extraction site (see Figure 2).

Being produced by the same electron beam, these two sources are naturally synchronized on few
femtosecond time scales. To perform THz pump X-ray probe experiments, we plan to take advantage
of laser-based THz streaking, which effectively phase-locks a single-cycle THz pulse to the X-ray pulse.
This technique simultaneously clocks the arrival time of the two sources and allows the measurement of
the X-ray pulse temporal profile with a precision of tens of femtoseconds.

The first beamline, consisting of a THz/MIR SASE FEL able to emit quasi-monochromatic and fully
polarized (with variable polarization), radiation from THz to MIR, will be optimized for experiments
involving high peak power and narrow band THz/MIR radiation. The second beamline will combine the
Coherent Diffraction Radiation [89], emitted from a rectangular slit in a metallic screen, to the VUV /X
SASE FEL radiation to perform THz pump X-ray probe experiments.

Coherent Transition and Diffraction Radiation (CTR and CDR, respectively) are the chosen production
mechanisms at high electron beam energy, i.e., ~GeV scale, with the advantage of a broadband spectrum
up to several THz depending on how short the bunch duration is. In the case of CDR, a further advantage
is represented by the non-disruptiveness for the electron beam [90]. Both electron and THz representative
radiation parameters are reported in Table 1.

Table 1. Electron beam and THz source parameters from CDR.

Beam Parameters Source Parameters
E (GeV) 1 Frequency (THz)  0.3-10
Q (pC) 200 Pw,k (MW) >100
0z (um) 30 Epn (1) ~100

At low electron beam energy, around 30 and 50 MeV, a SASE FEL operating in the MIR/THz range
has been considered for the generation of highly intense narrow band, tunable radiation. A SPARC-like
undulator [91] (2.8 cm period, K parameter (K = gzli%‘z , with By the magnetic field on axis and A, the
undulator period; e and m are the electron charge and mass, and c the speed of light in vacuum) of 1.2) with
variable gap has been considered for the calculation of MIR/THz radiation based on GPT simulations [92]
for the electron beam dynamics and Ming Xie formulas [93] for the SASE FEL performances; saturation
occurs within 5 m of undulator length. Both electron beam and MIR/THz radiation parameters are listed

in Table 2.

Table 2. Electron beam and MIR/THz source parameters from a MIR SASE FEL.

Beam Parameters Source Parameters
E (MeV) 30-50 Ay (Lm) 10-3
Q (C) 200 Lgat 3-4.4
0z (um) 50 Psat (MW) 140-135
Lpear (KA) 480 Ny ~1015

AE/E (%) 0.1-0.4 Eup, (1) ~60
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The magnetic structure of the undulator will be optimized to provide fully polarized light.
The polarization can be modfied from linear, circular, elliptical, to more complex structures such as
helicoidal polarization. These polarization states, which are absolutely unconventional for THz and MIR
lights and of difficult realization with thermal- and laser-based sources, will provide the possibility to
pump exotic modes such as skyrmions in magnetic systems, Weyl and Dirac fermions [94] in non-trivial
quantum matter, and Higgs and Legett modes in multi-gap superconductors and charge-density wave
materials. Experiments in which all phonon modes of exotic systems can be selectively pumped will be
also accessible, opening the possibility to control the lattice structure on the ps-scale and, consequently,
to modulate the electronic ground state of the systems [95]. Localized dinamical spectroscopic imaging
will be performed by THz apertureless-SNOM, where the tip’s antenna function will allow performing
imaging with a lateral resolution well below 1 micron [96].

3. Discussion and Conclusions

In this paper, we summarize the main experimental lines of investigation that can be implemented
at the EuPRAXIA@SPARC_LAB FEL exploiting its ultra-short, bright FEL pulses generated in the
“water-window”. The realization of the EUPRAXIA@SPARC_LAB infrastructure will allow INFN to
consolidate a strong scientific, technological and industrial role in a competing international context.
To exploit at best the features of this compact machine, a great effort will have to be addressed in
developing, designing and assembling all the optical components necessary to deliver the FEL photons to
the user endstation and in developing and characterizing detectors able to optimize the signal-to-noise
ratio for all the foreseen classes of experiments. We are confident that the EuPRAXIA@SPARC_LAB photon
source, with its multi-purpose beamline, designed and equipped to perform the classes of experiments
highlighted in this paper, will be highly beneficial for the national and international community of FEL
radiation users.
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Abbreviations

The following abbreviations are used in this manuscript:

AP Actinic Pulse

CDI  Coherent Diffraction Imaging
CDR  Coherent Diffraction Radiation
CTR  Coherent Transition Radiation

CI Conical Intersection

EDS  Energy Dispersive Setup

FEL Free Electron Laser

FSRS Femtosecond stimulated Raman scattering
MIR  Middle-InfraRed

PP Probe Pulse

RIXS Resonant Inelastic X-ray Scattering
RP Raman Pulse
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SASE Self Amplification of SpontanEous radiation
SNOM  Scanning Near-field Optical Microscopy

THz
XAS

Tera Hertz
X-ray Absortpion Spectroscopy

X-RIVS  X-ray Impulsive Vibrational Scattering

XUV

eXtreme Ultra Violet

References

1.

10.

11.

12.

13.

14.

Chapman, H.N.; Fromme, P.; Barty, A.; White, T.A,; Kirian, R.A.; Aquila, A.; Hunter, M.S.; Schulz, J.; DePonte, D.P;
Weierstall, U.; et al. Femtosecond X-ray protein nanocrystallography. Nature 2011, 470, 73-77. [CrossRef]
[PubMed]

Boutet, S.; Lomb, L.; Williams, G.J.; Barends, T.R.; Aquila, A.; Doak, R.B.; Weierstall, U.; DePonte, D.P;
Steinbrener, J.; Shoeman, R.L.; et al. High-resolution protein structure determination by serial femtosecond
crystallography. Science 2012, 337, 362-364. [CrossRef] [PubMed]

Seibert, M.M.; Ekeberg, T.; Maia, ER.; Svenda, M.; Andreasson, J.; Jonsson, O.; Odi¢, D.; Iwan, B.; Rocker,
A.; Westphal, D.; et al. Single mimivirus particles intercepted and imaged with an X-ray laser. Nature 2011,
470, 78-81. [CrossRef] [PubMed]

Hantke, M.F; Hasse, D.; Maia, FR.; Ekeberg, T.; John, K.; Svenda, M.; Loh, N.D.; Martin, A.V.; Timneanu, N.;
Larsson, D.S,; et al. High-throughput imaging of heterogeneous cell organelles with an X-ray laser. Nat. Photonics
2014, 8, 943-949. [CrossRef]

Van Der Schot, G.; Svenda, M.; Maia, ER.; Hantke, M.; DePonte, D.P.,; Seibert, M.M.; Aquila, A.; Schulz, J;
Kirian, R.; Liang, M.; et al. Imaging single cells in a beam of live cyanobacteria with an X-ray laser. Nat. Commun.
2015, 6, 5704. [CrossRef] [PubMed]

Fan, J.; Sun, Z.; Wang, Y,; Park, J.; Kim, S.; Gallagher-Jones, M.; Kim, Y.; Song, C.; Yao, S.; Zhang, J.; et al.
Single-pulse enhanced coherent diffraction imaging of bacteria with an X-ray free-electron laser. Sci. Rep. 2016,
6, 34008. [CrossRef] [PubMed]

Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy
of unstained biological molecules. Q. Rev. Biophys. 1995, 28, 171-193. [CrossRef] [PubMed]

Gutt, C.; Streit-Nierobisch, S.; Stadler, L.M.; Pfau, B.; Giinther, C.; Kénnecke, R.; Fromter, R.; Kobs, A.; Stickler, D.;
Oepen, H.; et al. Single-pulse resonant magnetic scattering using a soft X-ray free-electron laser. Phys. Rev. B
2010, 81, 100401. [CrossRef]

Ferrario, M.; Alesini, D.; Anania, M.; Artioli, M.; Bacci, A.; Bartocci, S.; Bedogni, R.; Bellaveglia, M.; Biagioni, A ;
Bisesto, F.; et al. EuPRAXIA@ SPARC_LAB Design study towards a compact FEL facility at LNF. Nuclear Instrum.
Methods Phys. Res. Sect. A 2018, 909, 134-138. [CrossRef]

Villa, F.; Cianchi, A.; Coreno, M.; Dabagov, S.; Marcelli, A.; Minicozzi, V.; Morante, S.; Stellato, F. Design study
of a photon beamline for a soft X-ray FEL driven by high gradient acceleration at EUPRAXIA@ SPARC_LAB.
Nuclear Instrum. Methods Phys. Res. Sect. A 2018, 909, 294-297. [CrossRef]

Oberthiir, D. Biological single-particle imaging using XFELs-towards the next resolution revolution. IUCr] 2018,
5, 663. [CrossRef] [PubMed]

Reddy, HK.; Yoon, C.H.; Aquila, A.; Awel, S.; Ayyer, K.; Barty, A.; Berntsen, P; Bielecki, J.; Bobkov, S.;
Bucher, M,; et al. Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light
source. Sci. Data 2017, 4, 170079. [CrossRef] [PubMed]

Rose, M.; Bobkov, S.; Ayyer, K.; Kurta, R.P.; Dzhigaev, D.; Kim, Y.Y.; Morgan, A.].; Yoon, C.H.; Westphal, D.;
Bielecki, J.; et al. Single-particle imaging without symmetry constraints at an X-ray free-electron laser. IUCr]
2018, 5, 727-736. [CrossRef] [PubMed]

Munke, A.; Andreasson, J.; Aquila, A.; Awel, S.; Ayyer, K.; Barty, A.; Bean, R.J.; Berntsen, P.; Bielecki, J.;
Boutet, S.; et al. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent
Light Source. Sci. Data 2016, 3, 160064. [CrossRef] [PubMed]


http://dx.doi.org/10.1038/nature09750
http://www.ncbi.nlm.nih.gov/pubmed/21293373
http://dx.doi.org/10.1126/science.1217737
http://www.ncbi.nlm.nih.gov/pubmed/22653729
http://dx.doi.org/10.1038/nature09748
http://www.ncbi.nlm.nih.gov/pubmed/21293374
http://dx.doi.org/10.1038/nphoton.2014.270
http://dx.doi.org/10.1038/ncomms6704
http://www.ncbi.nlm.nih.gov/pubmed/25669616
http://dx.doi.org/10.1038/srep34008
http://www.ncbi.nlm.nih.gov/pubmed/27659203
http://dx.doi.org/10.1017/S003358350000305X
http://www.ncbi.nlm.nih.gov/pubmed/7568675
http://dx.doi.org/10.1103/PhysRevB.81.100401
http://dx.doi.org/10.1016/j.nima.2018.01.094
http://dx.doi.org/10.1016/j.nima.2018.02.091
http://dx.doi.org/10.1107/S2052252518015129
http://www.ncbi.nlm.nih.gov/pubmed/30443350
http://dx.doi.org/10.1038/sdata.2017.79
http://www.ncbi.nlm.nih.gov/pubmed/28654088
http://dx.doi.org/10.1107/S205225251801120X
http://www.ncbi.nlm.nih.gov/pubmed/30443357
http://dx.doi.org/10.1038/sdata.2016.64
http://www.ncbi.nlm.nih.gov/pubmed/27478984

Condens. Matter 2019, 4, 30 15 of 19

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Takayama, Y.; Inui, Y.; Sekiguchi, Y.; Kobayashi, A.; Oroguchi, T.; Yamamoto, M.; Matsunaga, S.; Nakasako, M.
Coherent X-ray diffraction imaging of chloroplasts from Cyanidioschyzon merolae by using X-ray free electron
laser. Plant Cell Physiol. 2015, 56, 1272-1286. [CrossRef] [PubMed]

Van Der Schot, G.; Svenda, M.; Maia, FER.; Hantke, M.F.,; DePonte, D.P.; Seibert, M.M.; Aquila, A.; Schulz, J.;
Kirian, R.A.; Liang, M.; et al. Open data set of live cyanobacterial cells imaged using an X-ray laser. Sci. Data
2016, 3, 160058. [CrossRef] [PubMed]

Hantke, M.F;; Hasse, D.; Ekeberg, T.; John, K.; Svenda, M.; Loh, D.; Martin, A.V.; Timneanu, N.; Larsson, D.S.; Van
Der Schot, G.; et al. A data set from flash X-ray imaging of carboxysomes. Sci. Data 2016, 3, 160061. [CrossRef]
[PubMed]

Ackermann, W.a.; Asova, G.; Ayvazyan, V.; Azima, A.; Baboi, N.; Béhr, ].; Balandin, V.; Beutner, B.; Brandt, A,;
Bolzmann, A.; et al. Operation of a free-electron laser from the extreme ultraviolet to the water window.
Nat. Photonics 2007, 1, 336. [CrossRef]

Popp, D.; Loh, N.D.; Zorgati, H.; Ghoshdastider, U.; Liow, L.T.; Ivanova, M.I,; Larsson, M.; DePonte, D.P;
Bean, R.; Beyerlein, K.R,; et al. Flow-aligned, single-shot fiber diffraction using a femtosecond X-ray free-electron
laser. Cytoskeleton 2017, 74, 472-481. [CrossRef] [PubMed]

Stellato, F.; Fusco, Z.; Chiaraluce, R.; Consalvi, V.; Dinarelli, S.; Placidi, E.; Petrosino, M.; Rossi, G.; Minicozzi, V.;
Morante, S. The effect of B-sheet breaker peptides on metal associated Amyloid-S peptide aggregation process.
Biophys. Chem. 2017, 229, 110-114. [CrossRef] [PubMed]

Carbonaro, M.; Di Venere, A.; Filabozzi, A.; Maselli, P.; Minicozzi, V.; Morante, S.; Nicolai, E.; Nucara, A.;
Placidi, E.; Stellato, F. Role of dietary antioxidant (-)-epicatechin in the development of p-lactoglobulin fibrils.
Biochim. Biophys. Acta 2016, 1864, 766-772. [CrossRef] [PubMed]

Carbonaro, M.; Ripanti, F; Filabozzi, A.; Minicozzi, V.; Stellato, E; Placidi, E.; Morante, S.; Di Venere, A;
Nicolai, E.; Postorino, P; et al. Human insulin fibrillogenesis in the presence of epigallocatechin gallate and
melatonin: Structural insights from a biophysical approach. Int. ]. Biol. Macromol. 2018, 115, 1157-1164.
[CrossRef] [PubMed]

Ekeberg, T.; Svenda, M.; Abergel, C.; Maia, ER,; Seltzer, V.; Claverie, ].M.; Hantke, M.; Jénsson, O.; Nettelblad, C.;
Van Der Schot, G.; et al. Three-dimensional reconstruction of the giant mimivirus particle with an X-ray
free-electron laser. Phys. Rev. Lett. 2015, 114, 098102. [CrossRef] [PubMed]

Hantke, M.F,; Ekeberg, T.; Maia, ER. Condor: A simulation tool for flash X-ray imaging. |. Appl. Crystallogr. 2016,
49, 1356-1362. [CrossRef] [PubMed]

Pertot, Y.; Schmidt, C.; Matthews, M.; Chauvet, A.; Huppert, M.; Svoboda, V.; von Conta, A.; Tehlar, A ;
Baykusheva, D.; Wolf, J.P; et al. Time-resolved X-ray absorption spectroscopy with a water window
high-harmonic source. Science 2017, 355, 264-267. [CrossRef] [PubMed]

Popmintchev, D.; Galloway, B.R.; Chen, M.C.; Dollar, F,; Mancuso, C.A.; Hankla, A.; Miaja-Avila, L.; O'Neil, G.;
Shaw, ].M.; Fan, G.; et al. Near-and extended-edge X-ray-absorption fine-structure spectroscopy using ultrafast
coherent high-order harmonic supercontinua. Phys. Rev. Lett. 2018, 120, 093002. [CrossRef] [PubMed]
Chergui, M.; Zewail, A.H. Electron and X-ray Methods of Ultrafast Structural Dynamics: Advances and
Applications. ChemPhysChem 2009, 10, 28-43. [CrossRef] [PubMed]

Bressler, C.; Chergui, M. Molecular structural dynamics probed by ultrafast X-ray absorption spectroscopy.
Annu. Rev. Phys. Chem. 2010, 61, 263-282. [CrossRef] [PubMed]

Benfatto, M.; Della Longa, S.; Natoli, C. The MXAN procedure: A new method for analysing the XANES spectra
of metalloproteins to obtain structural quantitative information. J. Synchrotron Radiat. 2003, 10, 51-57. [CrossRef]
[PubMed]

Bunau, O.; Joly, Y. Self-consistent aspects of X-ray absorption calculations. ]. Phys. Condens. Matter 2009,
21, 345501. [CrossRef] [PubMed]

Rehr, ].J.; Kas, J.J.; Vila, ED.; Prange, M.P,; Jorissen, K. Parameter-free calculations of X-ray spectra with FEFF9.
Phys. Chem. Chem. Phys. 2010, 12, 5503-5513. [CrossRef] [PubMed]

La Penna, G.; Minicozzi, V.; Morante, S.; Rossi, G.; Stellato, F. A first-principle calculation of the XANES spectrum
of Cu?t in water. J. Chem. Phys. 2015, 143, 124508. [CrossRef] [PubMed]


http://dx.doi.org/10.1093/pcp/pcv032
http://www.ncbi.nlm.nih.gov/pubmed/25745031
http://dx.doi.org/10.1038/sdata.2016.58
http://www.ncbi.nlm.nih.gov/pubmed/27479514
http://dx.doi.org/10.1038/sdata.2016.61
http://www.ncbi.nlm.nih.gov/pubmed/27479842
http://dx.doi.org/10.1038/nphoton.2007.76
http://dx.doi.org/10.1002/cm.21378
http://www.ncbi.nlm.nih.gov/pubmed/28574190
http://dx.doi.org/10.1016/j.bpc.2017.05.005
http://www.ncbi.nlm.nih.gov/pubmed/28527974
http://dx.doi.org/10.1016/j.bbapap.2016.03.017
http://www.ncbi.nlm.nih.gov/pubmed/27049464
http://dx.doi.org/10.1016/j.ijbiomac.2018.04.134
http://www.ncbi.nlm.nih.gov/pubmed/29727655
http://dx.doi.org/10.1103/PhysRevLett.114.098102
http://www.ncbi.nlm.nih.gov/pubmed/25793853
http://dx.doi.org/10.1107/S1600576716009213
http://www.ncbi.nlm.nih.gov/pubmed/27504081
http://dx.doi.org/10.1126/science.aah6114
http://www.ncbi.nlm.nih.gov/pubmed/28059713
http://dx.doi.org/10.1103/PhysRevLett.120.093002
http://www.ncbi.nlm.nih.gov/pubmed/29547333
http://dx.doi.org/10.1002/cphc.200800667
http://www.ncbi.nlm.nih.gov/pubmed/19130540
http://dx.doi.org/10.1146/annurev.physchem.012809.103353
http://www.ncbi.nlm.nih.gov/pubmed/20055677
http://dx.doi.org/10.1107/S0909049502018137
http://www.ncbi.nlm.nih.gov/pubmed/12511791
http://dx.doi.org/10.1088/0953-8984/21/34/345501
http://www.ncbi.nlm.nih.gov/pubmed/21715786
http://dx.doi.org/10.1039/b926434e
http://www.ncbi.nlm.nih.gov/pubmed/20445945
http://dx.doi.org/10.1063/1.4931808
http://www.ncbi.nlm.nih.gov/pubmed/26429025

Condens. Matter 2019, 4, 30 16 of 19

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Stellato, F.; Calandra, M.; D’Acapito, F.; De Santis, E.; La Penna, G.; Rossi, G.; Morante, S. Multi-scale theoretical
approach to X-ray absorption spectra in disordered systems: An application to the study of Zn (II) in water.
Phys. Chem. Chem. Phys. 2018, 20, 24775-24782. [CrossRef] [PubMed]

Kubin, M.; Kern, J.; Gul, S.; Kroll, T.; Chatterjee, R.; Lochel, H.; Fuller, ED.; Sierra, R.G.; Quevedo, W,;
Weniger, C.; et al. Soft X-ray absorption spectroscopy of metalloproteins and high-valent metal-complexes at
room temperature using free-electron lasers. Struct. Dyn. 2017, 4, 054307. [CrossRef] [PubMed]

De Santis, E.; Minicozzi, V.; Proux, O.; Rossi, G.; Silva, K.I.; Lawless, M.].; Stellato, E.; Saxena, S.; Morante, S.
Cu (II)-Zn (II) Cross-Modulation in Amyloid—Beta Peptide Binding: An X-ray Absorption Spectroscopy Study.
J. Phys. Chem. B 2015, 119, 15813-15820. [CrossRef] [PubMed]

De Santis, E.; Shardlow, E.; Stellato, F.; Proux, O.; Rossi, G.; Exley, C.; Morante, S. X-ray Absorption Spectroscopy
Measurements of Cu-ProIAPP Complexes at Physiological Concentrations. Condens. Matter 2019, 4, 13. [CrossRef]
Nagler, B.; Zastrau, U.; Faustlin, R.R.; Vinko, S.M.; Whitcher, T.; Nelson, A.; Sobierajski, R.; Krzywinski, J.;
Chalupsky, J.; Abreu, E.; et al. Turning solid aluminium transparent by intense soft X-ray photoionization.
Nat. Phys. 2009, 5, 693.

Di Cicco, A.; Hatada, K.; Giangrisostomi, E.; Gunnella, R.; Bencivenga, F; Principi, E.; Masciovecchio, C,;
Filipponi, A. Interplay of electron heating and saturable absorption in ultrafast extreme ultraviolet transmission
of condensed matter. Phys. Rev. B 2014, 90, 220303. [CrossRef]

Principi, E.; Giangrisostomi, E.; Cucini, R.; Bencivenga, F; Battistoni, A.; Gessini, A.; Mincigrucci, R.; Saito, M.;
Di Fonzo, S.; D’Amico, E; et al. Free electron laser-driven ultrafast rearrangement of the electronic structure in Ti.
Struct. Dyn. 2016, 3, 023604. [CrossRef] [PubMed]

Hatada, K.; Di Cicco, A. Modeling Non-Equilibrium Dynamics and Saturable Absorption Induced by Free
Electron Laser Radiation. Appl. Sci. 2017, 7, 814. [CrossRef]

Zewail, A.H. Femtochemistry. Past, present, and future. Pure Appl. Chem. 2000, 72, 2219-2231. [CrossRef]
Kruglik, S.G.; Jasaitis, A.; Hola, K.; Yamashita, T.; Liebl, U.; Martin, J.L.; Vos, M.H. Subpicosecond oxygen
trapping in the heme pocket of the oxygen sensor FixL observed by time-resolved resonance Raman spectroscopy.
Proc. Natl. Acad. Sci. USA 2007, 104, 7408-7413. [CrossRef] [PubMed]

Batignani, G.; Pontecorvo, E.; Ferrante, C.; Aschi, M.; Elles, C.G.; Scopigno, T. Visualizing Excited-State Dynamics
of a Diaryl Thiophene: Femtosecond Stimulated Raman Scattering as a Probe of Conjugated Molecules. ]. Phys.
Chem. Lett. 2016, 7, 2981-2988. [CrossRef] [PubMed]

Batignani, G.; Bossini, D.; Di Palo, N.; Ferrante, C.; Pontecorvo, E.; Cerullo, G.; Kimel, A.; Scopigno, T.
Probing ultrafast photo-induced dynamics of the exchange energy in a Heisenberg antiferromagnet. Nat. Photonics
2015, 9, 506. [CrossRef]

Dietze, D.R.; Mathies, R.A. Femtosecond stimulated Raman spectroscopy. ChemPhysChem 2016, 17, 1224-1251.
[CrossRef] [PubMed]

Ferrante, C.; Pontecorvo, E.; Cerullo, G.; Vos, M.; Scopigno, T. Direct observation of subpicosecond vibrational
dynamics in photoexcited myoglobin. Nat. Chem. 2016, 8, 1137. [CrossRef] [PubMed]

McCamant, D.W.; Kukura, P.; Yoon, S.; Mathies, R.A. Femtosecond broadband stimulated Raman spectroscopy:
Apparatus and methods. Rev. Sci. Instrum. 2004, 75, 4971-4980. [CrossRef] [PubMed]

Yoshizawa, M.; Hattori, Y.; Kobayashi, T. Femtosecond time-resolved resonance Raman gain spectroscopy in
polydiacetylene. Phys. Rev. B 1994, 49, 13259. [CrossRef]

Ferrante, C.; Batignani, G.; Fumero, G.; Pontecorvo, E.; Virga, A.; Montemiglio, L.; Cerullo, G.; Vos, M.; Scopigno, T.
Resonant broadband stimulated Raman scattering in myoglobin. ]. Raman Spectrosc. 2018, 49, 913-920. [CrossRef]
Fumero, G.; Batignani, G.; Dorfman, K.E.; Mukamel, S.; Scopigno, T. On the Resolution Limit of Femtosecond
Stimulated Raman Spectroscopy: Modelling Fifth-Order Signals with Overlapping Pulses. ChemPhysChem 2015,
16, 3438-3443. [CrossRef] [PubMed]

Kukura, P,; McCamant, D.W.; Mathies, R.A. Femtosecond stimulated Raman spectroscopy. Annu. Rev. Phys. Chem.
2007, 58, 461-488. [CrossRef] [PubMed]


http://dx.doi.org/10.1039/C8CP04355H
http://www.ncbi.nlm.nih.gov/pubmed/30229765
http://dx.doi.org/10.1063/1.4986627
http://www.ncbi.nlm.nih.gov/pubmed/28944255
http://dx.doi.org/10.1021/acs.jpcb.5b10264
http://www.ncbi.nlm.nih.gov/pubmed/26646533
http://dx.doi.org/10.3390/condmat4010013
http://dx.doi.org/10.1103/PhysRevB.90.220303
http://dx.doi.org/10.1063/1.4935687
http://www.ncbi.nlm.nih.gov/pubmed/26798835
http://dx.doi.org/10.3390/app7080814
http://dx.doi.org/10.1351/pac200072122219
http://dx.doi.org/10.1073/pnas.0700445104
http://www.ncbi.nlm.nih.gov/pubmed/17446273
http://dx.doi.org/10.1021/acs.jpclett.6b01137
http://www.ncbi.nlm.nih.gov/pubmed/27428853
http://dx.doi.org/10.1038/nphoton.2015.121
http://dx.doi.org/10.1002/cphc.201600104
http://www.ncbi.nlm.nih.gov/pubmed/26919612
http://dx.doi.org/10.1038/nchem.2569
http://www.ncbi.nlm.nih.gov/pubmed/27874865
http://dx.doi.org/10.1063/1.1807566
http://www.ncbi.nlm.nih.gov/pubmed/17183413
http://dx.doi.org/10.1103/PhysRevB.49.13259
http://dx.doi.org/10.1002/jrs.5323
http://dx.doi.org/10.1002/cphc.201500548
http://www.ncbi.nlm.nih.gov/pubmed/26387662
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104456
http://www.ncbi.nlm.nih.gov/pubmed/17105414

Condens. Matter 2019, 4, 30 17 of 19

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Batignani, G.; Fumero, G.; Pontecorvo, E.; Ferrante, C.; Mukamel, S.; Scopigno, T. Genuine dynamics vs. cross
phase modulation artefacts in Femtosecond Stimulated Raman Spectroscopy. ACS Photonics 2019, 6, 492-500.
[CrossRef]

Pontecorvo, E.; Kapetanaki, S.; Badioli, M.; Brida, D.; Marangoni, M.; Cerullo, G.; Scopigno, T. Femtosecond
stimulated Raman spectrometer in the 320-520 nm range. Opt. Express 2011, 19, 1107-1112. [CrossRef] [PubMed]
Monacelli, L.; Batignani, G.; Fumero, G.; Ferrante, C.; Mukamel, S.; Scopigno, T. Manipulating impulsive
stimulated raman spectroscopy with a chirped probe pulse. J. Phys. Chem. Lett. 2017, 8, 966-974. [CrossRef]
[PubMed]

Liebel, M.; Schnedermann, C.; Wende, T.; Kukura, P. Principles and applications of broadband impulsive
vibrational spectroscopy. J. Phys. Chem. A 2015, 119, 9506-9517. [CrossRef] [PubMed]

Kuramochi, H.; Takeuchi, S.; Yonezawa, K.; Kamikubo, H.; Kataoka, M.; Tahara, T. Probing the early stages of
photoreception in photoactive yellow protein with ultrafast time-domain Raman spectroscopy. Nat. Chem. 2017,
9, 660. [CrossRef] [PubMed]

Batignani, G.; Fumero, G.; Kandada, A.R.S.; Cerullo, G.; Gandini, M.; Ferrante, C.; Petrozza, A.; Scopigno, T.
Probing femtosecond lattice displacement upon photo-carrier generation in lead halide perovskite. Nat. Commun.
2018, 9, 1971. [CrossRef] [PubMed]

Zavalin, A,; Cricenti, A.; Generosi, R.; Luce, M.; Morgan, S.; Piston, D. Nano-Raman mapping of porous glass
ceramics with a scanning near-field optical microscope in collection mode. Appl. Phys. Lett. 2006, 88, 133126.
[CrossRef]

Sonntag, M.D.; Pozzi, E.A.; Jiang, N.; Hersam, M.C.; Van Duyne, R.P. Recent advances in tip-enhanced Raman
spectroscopy. J. Phys. Chem. Lett. 2014, 5, 3125-3130. [CrossRef] [PubMed]

Kowalewski, M.; Bennett, K.; Dorfman, K.E.; Mukamel, S. Catching conical intersections in the act:
Monitoring transient electronic coherences by attosecond stimulated X-ray Raman signals. Phys. Rev. Lett. 2015,
115, 193003. [CrossRef] [PubMed]

Polli, D.; Altoe, P.; Weingart, O.; Spillane, K.M.; Manzoni, C.; Brida, D.; Tomasello, G.; Orlandi, G.; Kukura, P;
Mathies, R.A; et al. Conical intersection dynamics of the primary photoisomerization event in vision. Nature
2010, 467, 440. [CrossRef] [PubMed]

Calegari, F; Ayuso, D.; Trabattoni, A.; Belshaw, L.; De Camillis, S.; Anumula, S.; Frassetto, F.; Poletto, L.;
Palacios, A.; Decleva, P; et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses.
Science 2014, 346, 336-339. [CrossRef] [PubMed]

Lara-Astiaso, M.; Galli, M.; Trabattoni, A.; Palacios, A.; Ayuso, D.; Frassetto, F.; Poletto, L.; De Camillis, S.;
Greenwood, J.; Decleva, P; etal. Attosecond Pump-Probe Spectroscopy of Charge Dynamics in Tryptophan.
J. Phys. Chem. Lett. 2018, 9, 4570-4577. [CrossRef] [PubMed]

Beaulieu, S.; Comby, A.; Clergerie, A.; Caillat, J.; Descamps, D.; Dudovich, N.; Fabre, B.; Géneaux, R.; Légaré, F.;
Petit, S.; et al. Attosecond-resolved photoionization of chiral molecules. Science 2017, 358, 1288-1294. [CrossRef]
[PubMed]

Attar, A.R; Bhattacherjee, A.; Pemmaraju, C.; Schnorr, K.; Closser, K.D.; Prendergast, D.; Leone, S.R. Femtosecond
X-ray spectroscopy of an electrocyclic ring-opening reaction. Science 2017, 356, 54-59. [CrossRef] [PubMed]
Marciniak, A.; Despré, V,; Barillot, T.; Rouzée, A.; Galbraith, M.; Klei, J.; Yang, C.H.; Smeenk, C.; Loriot, V.;
Reddy, S.N.; et al. XUV excitation followed by ultrafast non-adiabatic relaxation in PAH molecules as a
femto-astrochemistry experiment. Nat. Commun. 2015, 6, 7909. [CrossRef] [PubMed]

Nelson, T.R.; Ondarse-Alvarez, D.; Oldani, N.; Rodriguez-Hernandez, B.; Alfonso-Hernandez, L.; Galindo, J.E;
Kleiman, V.D.; Fernandez-Alberti, S.; Roitberg, A.E.; Tretiak, S. Coherent exciton-vibrational dynamics and
energy transfer in conjugated organics. Nat. Commun. 2018, 9, 2316. [CrossRef] [PubMed]

Perfetto, E.; Sangalli, D.; Marini, A.; Stefanucci, G. Ultrafast Charge Migration in XUV Photoexcited
Phenylalanine: A First-Principles Study Based on Real-Time Nonequilibrium Green’s Functions. ]. Phys.
Chem. Lett. 2018, 9, 1353-1358. [CrossRef] [PubMed]

Ren, X.; Wang, E.; Skitnevskaya, A.D.; Trofimov, A.B.; Gokhberg, K.; Dorn, A. Experimental evidence for ultrafast
intermolecular relaxation processes in hydrated biomolecules. Nat. Phys. 2018, 14, 1062. [CrossRef]


http://dx.doi.org/10.1021/acsphotonics.8b01467
http://dx.doi.org/10.1364/OE.19.001107
http://www.ncbi.nlm.nih.gov/pubmed/21263650
http://dx.doi.org/10.1021/acs.jpclett.6b03027
http://www.ncbi.nlm.nih.gov/pubmed/28177628
http://dx.doi.org/10.1021/acs.jpca.5b05948
http://www.ncbi.nlm.nih.gov/pubmed/26262557
http://dx.doi.org/10.1038/nchem.2717
http://www.ncbi.nlm.nih.gov/pubmed/28644485
http://dx.doi.org/10.1038/s41467-018-04367-6
http://www.ncbi.nlm.nih.gov/pubmed/29773798
http://dx.doi.org/10.1063/1.2191738
http://dx.doi.org/10.1021/jz5015746
http://www.ncbi.nlm.nih.gov/pubmed/26276323
http://dx.doi.org/10.1103/PhysRevLett.115.193003
http://www.ncbi.nlm.nih.gov/pubmed/26588377
http://dx.doi.org/10.1038/nature09346
http://www.ncbi.nlm.nih.gov/pubmed/20864998
http://dx.doi.org/10.1126/science.1254061
http://www.ncbi.nlm.nih.gov/pubmed/25324385
http://dx.doi.org/10.1021/acs.jpclett.8b01786
http://www.ncbi.nlm.nih.gov/pubmed/30044916
http://dx.doi.org/10.1126/science.aao5624
http://www.ncbi.nlm.nih.gov/pubmed/29217568
http://dx.doi.org/10.1126/science.aaj2198
http://www.ncbi.nlm.nih.gov/pubmed/28386006
http://dx.doi.org/10.1038/ncomms8909
http://www.ncbi.nlm.nih.gov/pubmed/26268456
http://dx.doi.org/10.1038/s41467-018-04694-8
http://www.ncbi.nlm.nih.gov/pubmed/29899334
http://dx.doi.org/10.1021/acs.jpclett.8b00025
http://www.ncbi.nlm.nih.gov/pubmed/29494772
http://dx.doi.org/10.1038/s41567-018-0214-9

Condens. Matter 2019, 4, 30 18 of 19

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

Pullen, M.G.; Wolter, B.; Le, A.T.; Baudisch, M.; Hemmer, M.; Senftleben, A.; Schroter, C.D.; Ullrich, J,;
Moshammer, R; Lin, C.D; et al. Imaging an aligned polyatomic molecule with laser-induced electron diffraction.
Nat. Commun. 2015, 6, 7262. [CrossRef] [PubMed]

Erk, B.; Boll, R.; Trippel, S.; Anielski, D.; Foucar, L.; Rudek, B.; Epp, S.W.; Coffee, R.; Carron, S.; Schorb, S.; et al.
Imaging charge transfer in iodomethane upon X-ray photoabsorption. Science 2014, 345, 288-291. [CrossRef]
[PubMed]

Yang, J.; Zhu, X.; Wolf, T.].; Li, Z.; Nunes, ].P.F; Coffee, R.; Cryan, J.P,; Giihr, M.; Hegazy, K.; Heinz, T.F,; et al.
Imaging CF3I conical intersection and photodissociation dynamics with ultrafast electron diffraction. Science
2018, 361, 64—67. [CrossRef] [PubMed]

Kraus, PM.; Ziirch, M.; Cushing, S.K.; Neumark, D.M.; Leone, S.R. The ultrafast X-ray spectroscopic revolution
in chemical dynamics. Nature 2018, 2, 82-94. [CrossRef]

Kuleff, A.L; Kryzhevoi, N.V.; Pernpointner, M.; Cederbaum, L.S. Core ionization initiates subfemtosecond charge
migration in the valence shell of molecules. Phys. Rev. Lett. 2016, 117, 093002. [CrossRef] [PubMed]

Karydas, A.; Paradellis, T. Measurement of KL and LM resonant Raman scattering cross sections with a
proton-induced X-ray beam. J. Phys. B 1997, 30, 1893. [CrossRef]

Leani, J.J.; Sinchez, H.J.; Valentinuzzi, M.; Pérez, C. Determination of the oxidation state by resonant-Raman
scattering spectroscopy. J. Anal. At. Spectrom. 2011, 26, 378-382. [CrossRef]

Robledo, ].I; Leani, ].].; Karydas, A.G.; Migliori, A.; Pérez, C.A.; Sanchez, H.]. Energy-Dispersive Total-Reflection
Resonant Inelastic X-ray Scattering as a Tool for Elemental Speciation in Contaminated Water. Anal. Chem. 2018,
90, 3886-3891. [CrossRef] [PubMed]

Leani, J.J.; Pérez, R.D.; Robledo, ].I.; Sdnchez, H. 3D-reconstruction of chemical state distributions in stratified
samples by spatially resolved micro-X-ray resonant Raman spectroscopy. J. Anal. At. Spectrom. 2017, 32, 402-407.
[CrossRef]

Leani, ]J.J.; Robledo, J.I; Sdnchez, H.J. Quantitative speciation of manganese oxide mixtures by RIXS/RRS
spectroscopy. X-ray Spectrom. 2017, 46, 507-511. [CrossRef]

Robledo, J.I; Sadnchez, H.J.; Leani, J.J.; Pérez, C.A. Exploratory methodology for retrieving oxidation state
information from X-ray resonant Raman scattering spectrometry. Anal. Chem. 2015, 87, 3639-3645. [CrossRef]
[PubMed]

Leani, ].J.; Sanchez, H.]J.; Pérez, C.A. Oxide nanolayers in stratified samples studied by X-ray resonant Raman
scattering at grazing incidence. J. Spectrosc. 2015, 2015, 618279. [CrossRef]

Sanchez, H.J.; Leani, ].J.; Pérez, C.; Perez, R.D. Arsenic Speciation by X-ray Spectroscopy using Resonant Raman
Scattering. |. Appl. Spectrosc. 2014, 80, 912-916. [CrossRef]

Leani, ].J.; Sadanchez, H.].; Pérez, R.D.; Peérez, C. Depth profiling nano-analysis of chemical environments using
resonant Raman spectroscopy at grazing incidence conditions. Anal. Chem. 2013, 85, 7069-7075. [CrossRef]
[PubMed]

Leani, J.J.; Sdnchez, H.J.; Valentinuzzi, M.C.; Pérez, C.; Grenén, M. Qualitative microanalysis of calcium local
structure in tooth layers by means of micro-RRS. J. Microsc. 2013, 250, 111-115. [CrossRef] [PubMed]

Leani, ].J.; Sanchez, H.; Valentinuzzi, M.; Pérez, C. Chemical environment determination of iron oxides using
RRS spectroscopy. X-ray Spectrom. 2011, 40, 254-256. [CrossRef]

Leani, J.J.; Robledo, J.I; Sdnchez, H.]. Energy dispersive inelastic X-ray scattering (EDIXS) spectroscopy-A
review. Spectrochim. Acta Part B 2019, 154, 10-24. [CrossRef]

Chiadroni, E.; Bacci, A.; Bellaveglia, M.; Boscolo, M.; Castellano, M.; Cultrera, L.; Di Pirro, G.; Ferrario, M.;
Ficcadenti, L.; Filippetto, D.; et al. The SPARC linear accelerator based terahertz source. Appl. Phys. Lett. 2013,
102, 094101. [CrossRef]

Giorgianni, F.; Anania, M.P; Bellaveglia, M.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Daniele, M.; Del Franco, M.;
Di Giovenale, D.; Di Pirro, G.; et al. Tailoring of highly intense thz radiation through high brightness electron
beams longitudinal manipulation. Appl. Sci. 2016, 6, 56. [CrossRef]


http://dx.doi.org/10.1038/ncomms8262
http://www.ncbi.nlm.nih.gov/pubmed/26105804
http://dx.doi.org/10.1126/science.1253607
http://www.ncbi.nlm.nih.gov/pubmed/25035485
http://dx.doi.org/10.1126/science.aat0049
http://www.ncbi.nlm.nih.gov/pubmed/29976821
http://dx.doi.org/10.1038/s41570-018-0008-8
http://dx.doi.org/10.1103/PhysRevLett.117.093002
http://www.ncbi.nlm.nih.gov/pubmed/27610850
http://dx.doi.org/10.1088/0953-4075/30/8/008
http://dx.doi.org/10.1039/C0JA00046A
http://dx.doi.org/10.1021/acs.analchem.7b04624
http://www.ncbi.nlm.nih.gov/pubmed/29412641
http://dx.doi.org/10.1039/C6JA00377J
http://dx.doi.org/10.1002/xrs.2782
http://dx.doi.org/10.1021/ac5035677
http://www.ncbi.nlm.nih.gov/pubmed/25708543
http://dx.doi.org/10.1155/2015/618279
http://dx.doi.org/10.1007/s10812-014-9864-2
http://dx.doi.org/10.1021/ac4000317
http://www.ncbi.nlm.nih.gov/pubmed/23782456
http://dx.doi.org/10.1111/jmi.12026
http://www.ncbi.nlm.nih.gov/pubmed/23495759
http://dx.doi.org/10.1002/xrs.1324
http://dx.doi.org/10.1016/j.sab.2019.02.003
http://dx.doi.org/10.1063/1.4794014
http://dx.doi.org/10.3390/app6020056

Condens. Matter 2019, 4, 30 19 of 19

89.

90.

91.

92.

93.

94.

95.

96.

Castellano, M.; Verzilov, V.; Catani, L.; Cianchi, A.; Orlandi, G.; Geitz, M. Measurements of coherent diffraction
radiation and its application for bunch length diagnostics in particle accelerators. Phys. Rev. E 2001, 63, 056501.
[CrossRef] [PubMed]

Chiadroni, E. Bunch Length Characterization at the TTF VUV-FEL. Ph.D. Thesis, Universita degli Studi di Roma
“Tor Vergata”, Roma, Italy, September 2006.

Alesini, D.; Vicario, C.; Bertolucci, S.; Biagini, M.E.; Biscari, C.; Boni, R.; Boscolo, M.; Castellano, M.; Clozza, A ;
Di Pirro, G.; et al. Technical Design Report for the SPARC Advanced Photo-Injector; Palumbo, L., Rosenzweig, ].B., Eds.;
INFN: Pisa, Italy, 2004.

Van der Geer, S.; De Loos, M.; Bongerd, D. General Particle Tracer: A 3D code for accelerator and beam line
design. In Proceedings of the 5th European Particle Accelerator Conference, Stockholm, Sweden, 10-14 June 1996.
Xie, M. Design optimization for an X-ray free electron laser driven by SLAC linac. In Proceedings of the IEEE
Particle Accelerator Conference, Dallas, TX, USA, 1-5 May 1995; Volume 1, pp. 183-185.

Giorgianni, F.; Chiadroni, E.; Rovere, A.; Cestelli-Guidi, M.; Perucchi, A.; Bellaveglia, M.; Castellano, M.;
Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; et al. Strong nonlinear terahertz response induced by Dirac surface
states in BiySes topological insulator. Nat. Commun. 2016, 7, 11421. [CrossRef] [PubMed]

Mitrano, M.; Cantaluppi, A.; Nicoletti, D.; Kaiser, S.; Perucchi, A.; Lupi, S.; Di Pietro, P.; Pontiroli, D.; Ricco, M.;
Clark, S.R.; et al. Possible light-induced superconductivity in K3Cgp at high temperature. Nature 2016,
530, 461-464. [CrossRef] [PubMed]

Chen, H.T.; Kersting, R.; Cho, G.C. Terahertz imaging with nanometer resolution. Appl. Phys. Lett. 2003,
83, 3009-3011. [CrossRef]

@ (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution (CC

BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1103/PhysRevE.63.056501
http://www.ncbi.nlm.nih.gov/pubmed/11415022
http://dx.doi.org/10.1038/ncomms11421
http://www.ncbi.nlm.nih.gov/pubmed/27113395
http://dx.doi.org/10.1038/nature16522
http://www.ncbi.nlm.nih.gov/pubmed/26855424
http://dx.doi.org/10.1063/1.1616668
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Expected Results
	Coherent Imaging of Biological Samples
	Time-Resolved X-ray Absorption Spectroscopy in the Water Window
	Time-Resolved Coherent Raman Experiments with X-ray Pulses
	Photo-Fragmentation of Molecules
	Resonant Inelastic X-ray Scattering
	THz/MIR Sources

	Discussion and Conclusions
	References

