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We study the ultra slow domain wall motion in ferromagnetic thin films driven by a weak mag-
netic field. Using time resolved magneto-optical Kerr effect microscopy, we access to the statistics
of the intermittent thermally activated domain wall jumps between deep metastable states. Our
observations are consistent with the existence of creep avalanches: roughly independent clusters
with broad size and ignition waiting-time distributions, each one composed by a large number of
spatio-temporally correlated thermally activated elementary events. Moreover, we evidence that
the large scale geometry of domain walls is better described by depinning rather than equilibrium
universal exponents.

I. INTRODUCTION

Domain walls (DW) in thin ferromagnetic films have
become a paradigmatic system1–6 to learn about the uni-
versal interplay between disorder, elasticity and thermal
fluctuations in driven interfaces. Such physics is rele-
vant for a large variety of experimental systems7–9, and
for potential applications as DW are building blocks for
proposed magnetic storage devices10. The caveat is that
even an arbitrarily weak disorder has a rather dramatic
effect on the DW dynamics, notably the occurrence of a
depinning threshold11,12. Below the threshold, DW are
pinned at zero temperature and they present a thermally
activated glassy behavior called the creep regime at fi-
nite temperature. A better understanding of the impact
of disorder in the low velocity regimes is thus fundamen-
tal for a comprehensive study of DW dynamics, and of
disordered elastic interfaces in general.

Most of the experimental studies on weakly driven DW
motion, including very recent ones 2–6, focused on the
universal features of the steady DW mean velocity vs the
field H and temperature T , but not in its spatio-temporal
fluctuations. Such kind of study has been mostly per-
formed close to the depinning threshold where the fluc-
tuations are dominated by large deterministic collective
events. For example, avalanche size distribution and its
universal properties has been discussed in the context
of Barkhausen noise13, contact lines of liquids7, crack
propagation14 and even in reaction fronts in disordered
flows8 and active cell migration9. Well below the depin-
ning threshold, the phenomenology of avalanches have
remained much less clear15. Recently however, theoret-
ical studies of ultra-slow creep motion16 have unveiled
rather unexpected and non trivial spatio-temporal pat-
terns, whose elementary events strongly differ from those
encountered close to the depinning threshold. There-
fore, tackling experimentally a detailed statistical study
of magnetization reversal events is particularly interest-

ing.

The numerical simulations reported in Ref. 16 show
that creep motion of a one dimensional interface model
proceeds via a sequence of elementary events (EE) of
fluctuating sizes. These EE are the minimal thermally
activated jumps that make the DW overcome energy bar-
riers and irreversibly advance under the applied field H.
The size statistics of EE display broad distributions, with
a characteristic lateral size cut-off Lopt ∼ H−3/4 and a

characteristic area size Sopt ∼ L
5/3
opt . These results con-

firm the existence of an optimal “thermal nucleous”, as
proposed in the pioneer creep theories11,12. Since en-

ergy barriers for DW motion scale as Uopt ∼ L
1/3
opt ∼

H−1/4 (Ref. 17), Arrhenius activation of these nuclei
leads to the celebrated creep-law ln v ∼ −H−1/4/T for
the mean velocity v at which the DW move under the
action of a small magnetic field H. The EE are not nor-
mally distributed in size and are not independent as tra-
ditionally assumed. On one hand, below Sopt, EE areas
are power-law distributed as PEE(S) ≈ S−τEEG(S/Sopt),
with τEE a characteristic exponent and G(x) a rapidly
decaying function for x > 1. On the other hand, EE
tend to cluster in space and time forming larger clus-
ter events (CE). These CE are similar to the so called
“creep avalanches” suggested by functional renormaliza-
tion group calculations in Ref. 17 and experimentally
noticed in Ref. 15. Such composite objects are, unlike
EE, weakly correlated and have a much broader distri-
bution of areas, PCE(S) ∼ S−τCE with τCE a universal ex-
ponent. These interesting predictions were not yet evi-
denced experimentally nor confirmed by other theoretical
approaches.

In this work we test the above scenario by a statistical
analysis of the ultra slow time evolution of magnetiza-
tion reversal in ferromagnetic Pt/Co/Pt thin films. For
different time windows of duration ∆t, we determine the
size (S) distribution PWE(S) ≡ PWE(S; ∆t, T,H) of the ob-
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served consecutive compact magnetization reversal area
that we call “window-event” (WE). This procedure per-
mits us to relate WE with EE and CE and to show that
the features displayed by PWE(S) are consistent with the
picture summarized above of rare localized EE acting as
epicenters of large CE or “creep avalanches”, each made
of a large number of spatio-temporally correlated EE.
Furthermore, our analysis of the intermittent collective
DW motion allows to characterize the statistics of wait-
ing times between epicenter EE, thus going beyond the
“geometric” predictions of Ref 16.

II. METHODS

Experiments were mainly performed on a Pt(4.5
nm)/Co(0.7 nm)/Pt(3.5 nm) thin ferromagnetic film
with perpendicular magnetic anisotropy. A polar
magneto-optical Kerr effect (PMOKE) microscope was
used to image magnetic domains. In order to characterize
the DW dynamics, starting with a seed magnetic domain,
a train of magnetic field pulses of duration t and inten-
sity H were applied perpendicular to the film plane to
favour the growth of the initial domain. The DW veloc-
ity was then computed following a standard differential
protocol. After identifying the creep regime in the H−T
plane by fitting the creep-law ln v ∼ −H−1/4/T , we fix T
to two possible values, room temperature and 50 ◦C, and
choose H = 46.1 Oe and H = 24.2 Oe respectively, such
that v ∼ 1 nm s−1 in each case. We then analyze the
magnetization reversal events at each temperature, for a
total applied field time t = 27000 s. Since the character-
istic areas of EE are expected to scale as Sopt ∼ H−5/4,

and the energy barriers for nucleation as Uopt ∼ H−1/4,
choosing fields deep in the creep regime allows us to max-
imize, in principle, our spatial and temporal sensitivity
to intrinsic collective events. For these fields we indeed
observe a clear intermittent (i.e. not smooth) growth.
To characterize it statistically, during the long-time mag-
netic field pulse we stroboscopically observe the growth
at intervals ∆t, such that t � ∆t. The duration ∆t is
much larger than the acquisition time of each image, and
much smaller than the pulse time t so to collect a large
number of events. This allows us to compute their area
distribution, PWE(S), for different ∆t and T . Although we
mainly report results for one region of a specific sample,
we have also performed less detailed but similar mea-
surements in other regions of the same sample and also
in a different material and checked robustness of our re-
sults. We discard WE touching any border of the region
of interest in order to not underestimate their area and
make a proper comparison with theoretical predictions.
We have checked that this protocol does not affect the
tails of PWE(S) for the time windows ∆t used. We refer
the reader to appendix A for further details on our ex-
perimental setup and protocols. Magnetization reversal
events were previously obtained in irradiated Pt/Co/Pt
samples15, identifying between 30 and 50 events depend-

ing on field values. In the present work we were able to
obtain thousands of WE, thus allowing a more precise
statistical description, amenable to comparison with the
universal theoretical predictions.

III. RESULTS

A. Domain wall motion within the creep regime

The obtained field dependence of domain wall velocity
for the analyzed sample is presented in Fig. 1(a). The fig-
ure shows the evolution of the velocity as a function of the
magnetic field over eight orders of magnitude. Within the
creep regime, thermal activation over a field dependent
energy barrier leads to a stretched exponential increase
of the velocity, given by1,11,12,17

v = v0 exp

[
−Td
T

(
H

Hd

)−µ]
, (1)

where v0 is a temperature dependent velocity4, T the
temperature, kBTd a typical energy scale coming from
the competition between elasticiy and disorder (kB be-
ing the Boltzmann constant), Hd the depinning field and
µ = 1/4 the universal creep exponent. As shown in
Fig. 1(b), a straight line with a negative slope in a plot
of ln v against H−1/4 confirms that the measured veloc-
ities are within the creep regime, and in addition that
the system belongs to the universality classes of one di-
mensional elastic systems displacing in a two dimensional
media, with a random-bond type of disorder and short-
range elasticity. The fit to the creep formula of Eq. (1)
for the two temperatures we analyzed are

ln[v m−1s] = −128(1)(Oe)1/4H−1/4 + 27.6(3), (2)

= −100(2)(Oe)1/4H−1/4 + 24.4(5) (3)

at T = RT [Eq.(2)] and T = 50◦C [Eq.(3)]. This data,
the experimental estimates for the depinning fieldHd, the
depinning temperature Td and key characteristic scales
are reported in Table I.

TABLE I. Characteristic depinning values for the studied
temperature and field values: Hd is the depinning field, Td is

the depinning temperature, H
1/4
d

Td
T

is the slope of the creep

plot [see Eqs. (2) and (3)], and T/Td and
(
T
Td

)(
H
Hd

)1/4

are

related to the distribution of waiting times as discussed in
Sec. III E.

T [K] 293 323
H[Oe] 46.1 24.2
Td[K] 7142 6369
Hd[Oe] 760 650

H
1/4
d

Td
T

[Oe1/4] 128 100
T
Td

0.04 0.06(
T
Td

)(
H
Hd

)1/4

0.02 0.02
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FIG. 1. (a)-(b) Velocity-field characteristics for ultrathin
Pt/Co/Pt magnetic thin film in different scales. In (b) the fit-
ted solid line confirms agreement with the creep velocity law:
ln v ∼ H−1/4. The red point corresponds to a single long pulse
of duration t = 27000 s at a small field of H = 46.1 Oe and
room temperature (RT). The total reversed area over this long
pulse is indicated in (c) and corresponds to v = 1.7 10−9 m/s.
During this long pulse PMOKE images were taken every
t0 = 15 s, allowing to identify NWE(t0, t) = 1151 magneti-
zation reversal events or “window events” (WE), highlighted
over the image. The color scale corresponds to the time at
which each WE was observed.

With the aim of pursuing the characterization of small
magnetization reversal events responsible of the creep
motion of elastic systems, one should consider that the
typical area size Sopt of the “optimal thermal nuclei” re-
sponsible for the velocity of Eq.(1) dramatically increases
when the magnetic field decreases, as Sopt ∝ H−νeq(1+ζeq),
with νeq and ζeq positive universal exponents 1,11,12,17.
Since velocity follows an streched exponential depen-
dence with Sopt

11,12, decreasing the magnetic field im-
plies to perform very long time experiments. Therefore,
after nucleation of a single domain, a small magnetic
field (H = 46.1 Oe) is applied during a single long time
pulse (t = 27000 s, i.e. 7.5 hours), reaching a veloc-
ity v = 1.7 10−9 m/s. The velocity-field data thus ob-
tained is indicated as a red point in Fig. 1(b), and the
differential image shown in Fig. 1(c) corresponds to the
full displacement of the domain wall under these condi-
tions. In order to identify magnetically reversed regions
(WE), during the total long pulse time t, PMOKE im-
ages were taken every t0 = 15 s, which corresponds to
the minimum time window ∆t. During the image acqui-
sition the magnetic field remained always ON. Consec-
utive images were subtracted and, since the velocity is
small (v = 1.7 10−9 m/s), most of differential images do

not show a clear advance of the domain wall. Eventually
a magnetization reversal region resulting in a local ad-
vance of the domain wall position is observed. After the
whole long time pulse experiment, the total reversed area
(indicated in Fig. 1(c)) is fragmented into many small
spatially compact regions obtained from the subtraction
of consecutive images taken after t0. The number of WE,
is NWE(t0, t) = 1151 and are highlighted with a color code
over the image of the reversed area in Fig. 1(c). Due to
the characteristics of the used PMOKE microscope and
the image analysis, the smallest detectable displacement
of the domain wall correspond to events close to 0.3 µm2

(25 pixels).

B. Event areas

FIG. 2. Sequences of magnetization reversal areas (WE) de-
tected for different time windows of duration ∆t, for T = RT
and H = 46.1 Oe. The color scale corresponds to the time at
which each WE, delimited by contours lines, was detected.

In Fig. 2 we show typical WE sequences, for four differ-
ent values of ∆t, from a 15 s to 120 s. We can appreciate
that, for a given growth, each ∆t induces a particular par-
tition of the total reversed area of the sequence. At large
∆t the coalescence of several smaller WE corresponding
to smaller ∆t becomes evident.

In Fig. 3(a),(b) we compare size distributions PWE(S),
from ∆t = 15 to 180 s at room temperature T = RT
and a field H = 46.1 Oe, and from ∆t = 20 to 160 s
at T = 50 ◦C and a field H = 24.2 Oe, respectively.
The first remarkable feature of all these distributions
is their broadness, which can be roughly described by
PWE(S) = S−τWEGWE(S/SWE), where τWE is an effective
power-law exponent and SWE the cut-off value such that
the function GWE(x) is constant for small x and decays
faster than a power-law for x & 1. Quantitatively simi-
lar size-distributions were observed in different regions of
the same sample and also in other kind of magnetic films
(see appendix A).
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FIG. 3. WE area distributions for increasing window times ∆t
(as indicated) at RT and H = 46.1 Oe (a) and at T = 50 ◦C
and H = 24.2 Oe (b). In both cases v ∼ 1 nm s−1. At small
S we compare the initial decay of PWE(S) with S−τCE , with
τCE ≈ 1.11, where τCE corresponds to depinning avalanches.
(c) The collapse scaling shows that the data of (a) and (b)

displays a large size cut-off scaling SWE ∼ (∆t/t∗)1/2, with
t∗ an H and T dependent characteristic time. (d) Effective
power-law exponents τWE for PWE(S) vs ∆t/t∗.

Both τWE and the large-size cut-off SWE depend on ∆t.
As can be appreciated in Fig. 3 (a)-(b) SWE increases with
∆t, more specifically SWE ∼ (∆t/t∗)1/2. The fair collapse
of P (S)∆t1/2 vs S/∆t1/2 shown in Fig. 3(c) confirms this
dependence. Here, t∗ ≡ t∗(T,H) is a characteristic time.
Concomitantely, in Fig. 3(d) we show that τWE ≈ 1 for
the smallest ∆t/t∗ for the whole data of Figs 3(a),(b).
Note also that the same t∗ that describes the SWE (T,H)-
dependence allows to build a master curve for τWE vs.
∆t/t∗. For the characteristic times t∗ we find t∗50C ≈ 1 s
at T = 50 ◦C, H = 24.2 Oe and t∗RT ≈ t∗50C/3 at T = RT,

H = 46.1 Oe. Therefore SWE ≈ (∆t)1/2 µm2s−1/2 in the
first case, and SWE ≈ (3∆t)1/2 µm2s−1/2 in the second
one.

Since EE of Ref. 16 are power-law distributed with
an exponent τEE ≈ 1.17 it is tempting to directly com-
pare small ∆t WE, which are also typically small, to
EE. A rough estimate for the Pt/Co/Pt films we study
shows that the largest EE are of the order of Sopt =
10−3(Hd/H)1.25 µm2, where Hd is the depinning field18.
Since Hd ≈ 637 Oe, and our lowest field is H = 46 Oe,
we get that Sopt ∼ 10−5 µm2, which is clearly well be-
low our PMOKE resolution of roughly 0.3 µm2 (25 pix-
els). We thus conclude that our detected WE can not

be single EE, but the sum of a large number of them.
Namely, if in a time window ∆t we have NEE such events,
of sizes s1, s2, ..., sNEE

, compactly grouped in a WE, its

random area is SWE ≈
∑NEE

i=1 si. The statistics of SWE thus
directly relates to the statistics of EE random sizes si
contributing to the same WE and of their ∆t dependent
and fluctuating number NEE.

Given the small area of the EE compared to our de-
tected WE, a pure statistical analysis is convenient. If
the EE were considered independent and accumulating
at a well defined rate on each WE, by virtue of the
central limit theorem we would naively expect PWE(S)
to develop an approximate gaussian shape around NEEs.
PWE(S) shows no tendency to approximate a normal nor
even a peaked distribution however: it is broad, even
for ∆t in the minutes time scale. To interpret this it
is worth recalling that the central limit theorem tell us

that SWE ≈
∑NEE

i=1 si should converge to a Gaussian distri-
bution if NEE is large enough and the si have finite vari-
ance and short-ranged correlations19. The EE have finite
variance and, although they appear to be spatially cor-
related, there is no evidence of correlation between their
areas16. We hence interpret that NEE must be a strongly
fluctuating quantity for all the ∆t analysed. Indeed, we
experimentally observe for a fixed ∆t well defined bursts
of magnetic activity, with SWE � 0.3 µm2, coexisting with
WE in the resolution edge SWE & 0.3 µm2, at the same H
and T . Since any PMOKE resolved area SWE > 0.3 µm2

has a large number of EE we arrive to the first impor-
tant observation of our paper: EE are strongly clustered
spatio-temporally.

C. Domain Wall roughness

The results of the previous section are consistent with
the EE clustering predicted for simple domain wall mod-
els16,20. To go beyond, since EE are too small to be
experimentally resolved, one is inmediately tempted to
compare our experimentally resolved WE with the pre-
dicted CE. Indeed, unlike EE, CE are not expected 16 to
be strongly correlated as we also observe for WE. More-
over, the predicted value for τCE ≈ 1.11 is only slightly
above τWE ≈ 1 observed in Fig. 3(d) for the smallest
∆t. To argue that WE may indeed approach the sin-
gle intrinsic CE in the small ∆t limit, we start by not-
ing that the same scaling of zero temperature depinning

avalanches, Si ∼ L1+ζd
i , is also expected for CE16 at fi-

nite temperature. In Fig. 4(a) we analyse for T = RT
the approximately oblong shapes of WE by plotting the
areas Si of each WE sampled from a long sequence, ver-
sus their corresponding lateral size Li, defined as the
major axis length of the reversed blobs. A crossover
is observed at S ≈ 2 µm2 below which we observe a
Si ∼ L2.25

i scaling21. The two main canditate depinning
universality classes that are consistent with the observed
creep law ln v ∼ H−1/4/T are the 1d quenched-Edwards-
Wilkinson (qEW), and the 1d quenched-Kardar-Parisi-



5

Zhang (qKPZ). The first predicts ζd ≈ 1.2522 while the
second ζd ≈ 0.6323–25. Only the qEW value is in good
quantitative agreenment with Fig. 4(a), in the small size
WE limit26. In addition Fig. 3(d) is quantitatively con-
sistent with the relation τCE = 2− 2/(1 + ζd) ≈ 1.11 pre-
dicted for qEW. To investigate this issue in Fig. 4(b) we

computed the squared width W 2(L) ≡ u2L(x) − uL(x)
2

from different small segments of size L extracted from
typical DW configurations, where uL(x) is the DW dis-
placement measured with respect to the untilted segment
(see Appendix B details). The scaling W 2 ∼ L2ζd is
consistent with the qEW depinning roughness exponent
ζd = 1.25 and thus with Figs. 3(d) and 4(a). We then
arrive to the second important observation of our paper:
WE approach single CE in the small ∆t limit and we
find experimental evidence that the DW roughness and
CE statistical properties are better described by depin-
ning rather than equilibrium exponents as theoretically
predicted in Refs. 17, 27, and 28. A smaller rough-
ness exponent 0.69± 0.07 was observed in extended DW
in the same material in the pionering work by Lemerle
et. al. 1, and interpreted to be the equilibrium expo-
nent ζeq = 2/3. Such interpretation implies an observa-
tion scale below Lopt

27. However, from Ref. 1 we infer
Lopt ≈ 0.18 µm, lower than their PMOKE resolution
of 0.28 µm. We thus conclude that a spatial crossover
from the qEW value ζd ≈ 1.25 to a non-equilibrium ex-
ponent ∼ 0.69± 0.07 must exist. A natural candidate is
the Quenched Kardar-Parisi-Zhang (qKPZ) or directed
percolation depinning exponent ζd ≈ 0.63.

FIG. 4. (a) Aspect ratio scaling of ∆t = 15 s WE. The
solid (dashed) line shows the expected depinning scaling Si ∼
L

1+ζd
i for qEW (qKPZ) class. (b) Scaling of the square width

W 2 of DW segments of size L, for two typical configurations at
RT. The solid (dashed) line shows the expected qEW (qKPZ)
scaling at depinning, W 2 ∼ L2ζd , with ζd = 1.25(0.63).

D. Event lengths

In Fig. 5(a) we show the areas Si vs the major axis
lenght Li of each WE. The difference with Fig. 4(a),
where ∆t = 15s, is that now we plot WE for all the ∆t,
from 15s to 180s, in order to observe the effects of large

WE. We show both the cloud obtained from raw data and
an averaged version by grouping areas in small logarith-
mically increasing bins and by taking the corresponding
average value of Li in such groups. We compare with the

depinning scaling Si ∼ L1+ζd
i , expected for cluster events

(CE) in the creep regime16, both for the qEW class where
ζd = 1.25 and for the qKPZ class, where ζd ≈ 0.63. At
Li ≈ L∗ = 2µm a clear crossover is observed (indicated
by the vertical line). As can be appreciated in the figure,
for Li < L∗ a better agreement is obtained for qEW, as
compared for instance with the qKPZ class.

In Fig. 5(b) we show the (non normalized) probability
distribution PWE(L) for all the Li observed. As for PWE(S),
we observe a broad distribution. If WE were a part,
single, or dominated by single CE we expect indeed WE
to display power law distributions similar to the ones
observed for depinning avalanches, PCE(S) ∼ S−τCE and
PCE(L) ∼ S−τL , where τCE and τL are related to depinning
exponents. The general exponents are well known29

τCE = 2− (ζd + 1/νd)/(1 + ζd), (4)

τL = τCE(1 + ζd)− ζd (5)

where ζd is the depinning roughness exponent and νd
the depinning correlation length exponent. For the qEW
universality class, we have ζd ≈ 1.25 and, by virtue of
the statistical tilt symmetry30, νd = 1/(2 − ζd) ≈ 1.33.
On the other hand ζd ≈ 0.63 and νd ≈ 1.73 for the
qKPZ class25, where the statistical tilt symmetry is bro-
ken. This yields τCE ≈ 1.11, τL ≈ 1.25 for the qEW class,
and τCE ≈ 1.25, τL ≈ 1.42 for the qKPZ class. The ef-
fective power law at intermediate L . L∗ (indicated by
the vertical line) is roughly consistent with qEW. Un-
fortunately however, the effective power law observed in
Fig. 5(b) is roughly consistent with both classes, unlike
Fig. 5(a) which is more consistent with the qEW class.

The crossover at L∗, observed in Figs. 5(a), may be as-
sociated to the CE coalescence process occuring for large
WE31. In that case, a WE area can be written as a sum

of a given number NCE of CE areas. SWE ≈
∑NCE

i=1 Si.
Since PCE(S) is a broad distribution, the typical WE
area is dominated by the largest areas and thus re-

lates to the typical number of CE as SWE ∼ N
1/(τ−1)
CE .

The lateral size of a WE instead satisfies an inequality

LWE <
∑NCE

i=1 Li, as the fluctuating CE lateral extensions
Li can now overlap. Since PCE(L) is also a broad dis-
tribution, we can use the same extreme value argument

to estimate LWE . N
1/(τL−1)
CE . Combining these results

we get SWE & L
(τL−1)/(τ−1)
WE ≡ L1+ζd

WE . This shows that
WE areas should scale with their length approximately
as CE in the Li < L∗ regime, as observed in Fig. 5(a).
Above L∗ however, where large WE become a non negli-
gible fraction of the interface, the last scaling prediction
breaks down. In section III G we discuss a simple model
that quantitatively accounts for the crossover observed
at L∗ in the Si vs Li plot.
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FIG. 5. (a) Aspect-ratio of WEs obtained experimentally,
between the area Si and major axis length Li of individual
WE. We display the data Si vs Li for WE corresponding to all
values of ∆t, in order to enhance the crossover behaviour and
access large WE. Small WE fairly scale as CE or depinning
avalanches in the qEW class, Si ∼ L

1+ζd
i with ζd ≈ 1.25 and

thus Si ∼ L2.25
i (solid line), as compared to the qKPZ class,

with ζd = 0.63, predicting Si ∼ L1.63
i (dashed line). The

dotted-dashed line indicates a fair Si ∼ L1.4
i scaling, which

can be rationalized using a simple model. (b) Probability
distribution (non normalized) for the major axis length Li of
the events shown in (a). In (a) and (b) a vertical line indicates
the approximate location of the aspect-ratio crossover, L∗.

E. Waiting times

The behaviour at large ∆t, where the probability to
observe single CE in a WE decreases, is directly re-
lated to the behaviour of the large-size PWE(S) cut-off,
SWE, with ∆t. In such regime we can regard each WE
area as the sum of a given number NCE of cluster ar-

eas, SWE =
∑NCE

i=1 Si. As NCE can only grow irreversibly
with ∆t, so does the large size cut-off SWE. Naively one
may think that SWE should linearly increase with ∆t be-
cause the sum of all WE areas observed in a region of a
fixed lateral size L should grow as Lv∆t in a steady-state
regime. As shown in Fig. 3(c) we find instead a sub-linear
increase SWE ∼ (∆t/t∗)1/2. To make sense of this strik-
ing observation it is instructive to regard the area SWE
vs. ∆t as a continous-time continous-jump random-walk,
with random CE area increments Si and waiting times

δi for the ignition of a new CE, such that ∆t =
∑NCE

i=1 δi.
If we assume that the δi are distributed according to
ψ(δ) ∼ t∗α δ−(1+α), with 0 < α ≤ 1 characterizing the

broadness of ψ(δ), we get ∆t ∼ t∗N
1/α
CE for the typical

number of events NCE in a ∆t. Since the same heuristic
arguments apply for the broadly distributed CE we get

SWE ∼ N
1/(τCE−1)
CE . Combining the two last results we get

SWE ∼ (∆t/t∗)α/(τCE−1), which fairly describes our data of
Fig. 3(c) if α/(τCE−1) ≈ 1/2. Using τCE ≈ 1.11 we obtain
α ≈ 0.05.

Broad waiting time distributions have been heuris-
tically derived for creep motion32,33, borrowing ideas
from more general random energy models (see for in-
stance Ref. 19), and also observed numerically close to
the depinning threshold34. The basic idea is to assume
that the EE barrier distribution behaves as P (U) ∼
exp[−U/U∗]/U∗ for a large barrier U , with U∗ a charac-
teristic energy (with U and U∗ in units of temperature).
If temperature is small enough, the typical time to over-
come U is given by the Arrhenius law, δ ∼ t∗ exp[U/T ],
with t∗ a characteristic time. Changing variables we ob-
tain ψ(δ) ∼ αt∗α δ−(1+α), with α ∼ T/U∗. Since clus-
tering implies that not all EE have the same U we will
argue that the δi corresponds to the special EE that act
as CE epicenters. These EE may be associated to the
ones allowing to escape from dominant configurations 28.
Two different predictions for U∗ and thus for α are found
in the literature. In Ref. 32, it is assumed that U∗ ≡ Td.
with Td From Table I we obtain α = 0.04 for T = 293K
and α = 0.06 for T = 323K. Both results are in exce-
lent agreenment with our data, which gives α ≈ 0.05. In
Ref. 33 on the other hand, the characteristic energy is
taken as the optimal nucleous barrier U∗ ≡ Td(Hd/H)µ,
with µ = 1/4 for the one dimensional elastic string. The
exponent is thus again nonuniversal but now it is also
field dependent, α ≈ (T/Td)(H/Hd)

µ. From table I we
obtain α ≈ 0.02 both for the two temperatures and their
corresponing fields. This value is only slighlty below but
is again of the order of α ≈ 0.05 we infer from our mea-
surements. Both predictions are in rough agreenment
with the empirical α ≈ 0.05 we obtain from the time-
scaling of SWE we observe in Fig. 3(c) for the two tem-
peratures. It would be interesting to perform a more
systematic study as a function of T and H to further
test these theories. The previous observations lead us
to argue that WE give access not only to the CE area
(at small ∆t) but also to the waiting-time statistics (at
larger ∆t). As CE start at a seed EE, the δi must be
controlled by their energy barrier distribution35.

F. Event correlations

In order to further test the connection between WE
and CE we have also studied correlations from the spatio-
temporal correlations of the registered positions xi of the
N measured WE epicentres. To do that we used the mean

square distance 〈δ2x(T )〉 ≡
∑N
i=1[xi+n − xi]2/N , which

depends only on the temporal separation T = nt0. For
non-correlated WE epicentre sequences, 〈δ2x(T )〉 tends
to a constant value C = (L0+1)(L0+2)/2, where L0 is ap-
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proximately the lenght of the DW in units of the spatial
discretization36. Figure 6 shows 〈δ2x(T )〉/C measured at

FIG. 6. Normalized mean square distance 〈δ2x(T )〉/C as a
function of T , measured at T = RT and H = 46.1 Oe.

T = RT and H = 46.1 Oe. One can see that even for
short T it becomes approximately constant as expected
for uncorrelated events (note that 〈δ2x(T )〉/C > 1 for
large T due to an underestimation of the length of DW).
We hence conclude that WE are very weakly correlated
in sharp contrast with the predicted EE correlations in
Ref. 16 and consistent to what is predicted for CE and
more generaly for depinning avalanches. This observa-
tion further confirms our identification of WE with single
CE or with coalesced groups of them, for small or large
∆t respectively.

G. Heuristic model for large WE

Summing up, our results are consistent with the predic-
tions of Ref.16 after identifying the small ∆t WE with the
predicted CE. At large ∆t WE can not be single CE how-
ever, and deviations from the predicted properties for CE
are expected. This is already apparent in Fig. 5(a) where
large WE display a clearly different length to area aspect
ratio than the expected for CE. Moreover, Fig. 5(a) shows

a clear crossover from the expected Si ∼ L1+ζd
i CE be-

haviour to a different behaviour, rather well described
by a new power-law, Si ∼ L1.4

i . There is no theoretical
predictions yet for this crossover so we propose here a
simple, heuristic model.

A very simple model can explain the behaviour of Si
vs Li observed experimentally, shown in Fig. 5(a). The
idea is to think WE as the compact objects formed by
random deposition of simulated CE, with a lateral sizes
Li sampled from PCE(L) ∼ L−τL . We can also assume,
for simplicity, that the corresponding areas satisfy a de-

terministic relation Si = L1+ζd
i , assumption that leads

automatically to PCE(S) ∼ S−τCE , with τL, τCE and ζd

FIG. 7. A simple model for understanding the area vs ma-
jor axis length of WEs. (a) Simulation results for the model
(compare them experimental results in Fig. 5(a)). The solid
line indicates the qEW depinning scaling, and the dashed dot-
ted line the effective power law observed at large WE. The
color bar indicates number of randomly deposited CEs. Re-
sults are reported in arbitrary units. (b) Probability distribu-
tion for percolation, as a function of the number of randomly
deposited CE. (c) Average aspect-ratio scaling versus num-
ber of CE. (d) From bottom to top, four actograms showing
the growth of compact WE as we increase the number of de-
posited CE (as indicated by the color-bar). The actograms
display segments centered at uniformely distributed epicen-
ters, whose size equals the lateral extension of the growing
WE. When the system percolates, i.e. a single WE spans
the system (set to unity), the actogram is reseted and a new
deposition process starts.

related by Eqs.(4) and (5). Both assumptions are rea-
sonable approximations according to creep simulations16.
To simulate this model we generated such events in the
interval [0, 1], sequentially increasing the number of de-
posited CE. The process starts with one WE which equals
the first deposited CE. Adding more CE may produce
more WE (specially for small number of deposited CE)
or can decrease their number due to the possible coales-
cence with an existing WE, if the new CE overlaps it.
When a coalescence between a new CE and an existing
WE takes place, the area of the resulting WE is the sum
of the new CE area with the previous area of the WE, but
the lenght of the new WE can either remain constant or
increase at its left, rigth or both corners simultaneously.
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In more rare cases the new CE can overlap more than
one WE. The process finishes when a single WE spans
the whole interval, i.e. when the deposited CE percolate
the system. To make statistics over many sequences, at
this point we reset the simulation and restart adding a
first CE into a new actogram. Fig. 7(d) shows actograms
corresponding to four runs.

To be concrete, for the simulations we use the val-
ues ζd = 1.25, τ = 1.11 and τL = ζd corresponding to
the 1d qEW depinning class. We sample the epicenter
of each CE from a uniform distribution in the interval
[0, 1] and its lateral size li by li = 0.05[r(lτL+1

max − lτL+1
min ) +

lτL+1
min )]1/(τL+1) with lmin = 10−5 and lmax = 1.5, and r

a different uniform random number in the interval [0, 1].
This produces a power-law distribution PCE(l) ∼ l−τL

with a cut-off at lmax. The area of such CE is simply

si = l1+ζdi . Using different parameters yields qualita-
tively similar results.

We now discuss the results of the model. In Fig. 7(a)
we show that the model reproduces the main features
observed experimentally in Fig. 5(a). Small WE, below a
characteristic crossver scale, display the Si ∼ L2.25

i . This
is natural, as most of the small WE are individual CE.
At approximately L∗ ∼ 0.07 there is a crossover towards
Si ∼ L1.4

i for large WE. Remarkably, this new exponent is
indistinguishable from the one we obtain experimentally
(see Fig. 5(a)). We leave for a future study to understand
the origin and possible universality of this new exponent.
It is worth noting however, that the crossover may be
associated to the lateral acceleration that occurs when
the WE almost percolate the [0, 1] interval. In Fig. 7(b)
we show the probability to percolate as a function of the
number of deposited CE. Most of the points in Fig. 7(a)
in the Si ∼ L1.4

i regime, belong to states with a high
probability to percolate. It is also worth noting that
finite size effects, due to the finiteness of the interval
and the broad range of the CE lateral size distribution
play an important role here. In 7(c) we show that the
average anisotropic aspect-ratio Si/L

2.25
i is unity only

for a small number of CE, but then decreases implying
an accelerated lateral growth of WE, compared with the
area growth. This effect may produce the crossover and
the downward deviation appreciated in Fig. 7(a) and also
experimentally shown in Fig. 5(a). For an even larger
number of CE, the aspect-ratio increases as large WE
tend to completely overlap with most of the new CE and
thus increase their areas without modifying its lateral
size. Those states are near to percolate but need a rare
CE to overlap the voids between the few remaining WE.

The model presented has some unphysical features. In
particular, the random deposition process implies, in the
long time limit, a growing interface with a non-stationary
width. The model describes satisfactorily the crossover
in Si vs Li observed in the experiments however, so the
necessary surface relaxation effects or correlations that
may make the width to saturate are not relevant for the
regime we aim to describe. In addition, the number of
deposited CE does not strictly represent time. Broadly

distributed times between random depositions could be
easily added however, in order to further test the picture
suggested by the experiments. Particularly, to reproduce
the area and lateral size distributions as a function of the
window time ∆t found experimentally.

IV. CONCLUSIONS

From our results the following picture emerges. Creep
dynamics is driven by EE with a broad size distribution
and a large size cut-off controlling the mean velocity. The
seed EE that trigger a cascade of extra EE are sepa-
rated by broadly distributed waiting times. Repeated,
this collective process of ignition and correlated growth
produce independent CE statistically very similar to de-
pinning avalanches, that may coalesce into larger com-
pact objects. Hence, CE can be truly regarded as “creep
avalanches”. The described picture, that drastically
changes the naive view of creep motion as independent
thermally nucleated displacements, is likely to appear not
only in other magnetic films but in the creep regime of
other disordered elastic systems in general.
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Appendix A: Samples & Experimental Protocol

Experiments were mainly performed on a Pt/Co/Pt
ultrathin ferromagnetic film, a prototypical system
which has been the focus of many studies of do-
main wall motion1,2,4,5,37–40. The studied sample was
a Pt(4.5nm)/Co(0.7nm)/Pt(3.5nm) thin film, with the
thickness of each layer indicated in parenthesis. The
film was sputter grown at 300 K on etched Si/SiO2 sub-
strate. The magnetic response of this system to an ex-
ternal out-of-plane magnetic field is characterized by a
square magnetic cycle with a well defined remnant mag-
netization, typical of systems with perpendicular mag-
netic anisotropy2.

Polar magneto-optical Kerr effect (PMOKE) mi-
croscopy has been used to image magnetic domains after
applying magnetic field pulses perpendicular to the film
plane. After fully magnetizing the sample in one direc-
tion, a short pulse in the opposite direction and of inten-
sity H = 130 Oe was first applied in order to nucleate a
seed magnetic domain. Then, a second pulse of duration
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t and intensity H was applied to favour the growth of
the initial magnetic domain. DW velocity was then com-
puted as the ratio between the linear advance of the DW
linear advance ∆x and the pulse duration, v = ∆x/t.
Experiments were performed at T = RT (room temper-
ature) and T = 50 ◦C. To measure velocities between
10−9 m/s and 10−1 m/s pulses of different amplitude
and duration were used. In all the cases, the total num-
ber of pulses was 15 or more and the rise time of the
pulses was more than one order of magnitude faster than
the pulse duration. The shortest pulse was 1 ms and the
largest one 1800 s. Due to the spatial resolution of our
microscope, for velocities smaller than 10−8 m/s we ob-
served that there was no difference in the observed DW
velocity if the magnetic field was ON or OFF during the
image acquisition. In all the cases given the illumination
condition, the used shutter time of the camera was 200
ms.

Although we mainly report results for one region
of a specific sample, we have made similar measure-
ments in other regions of the same sample and also
in a Pt(6nm)/[Co(0.2nm)/ Ni(0.6nm)]3/Al(5nm) sam-
ple, where the numbers in parenthesis stand for thick-
ness and the ferromagnetic layer consists in a stack of
three Co(0.2nm)/ Ni(0.6nm) bilayers (for more informa-
tion about these samples and their domain wall dynamics
see Refs. 41 and 42). In both cases the results are con-
sistent with the main universal results reported for the
specific region of the Pt/Co/Pt sample in Section III.

FIG. 8. Histograms for the Ntot(t0, t) = 1151 WE shown in
Fig. 1(c), obtained by comparing consecutive images taken
every ∆t = t0 = 15 s at T = RT and H = 46.1 Oe. The
histogram with uniform binning is presented in the left panel,
while in the right panel a logarithmic binning is used for same
WE. Power-law behaviour at small sizes can be described with
PWE(S) ∼ S−τWE with the distribution exponent τWE ≈ 0.76 ±
0.1.

Magnetization reversal events were previously ob-
tained in irradiated Pt/Co/Pt samples15, identifying be-
tween 30 and 50 events depending on field values. In the
present work, as we previously anticipated, we were able
to obtain a large amount of WE. This represents a quan-
titative progress in view of the fact that this allows us
to perform a deeper statistical description of the data.
Figure 8 shows the obtained histogram of the 1151 WE

areas shown in Fig. 1(c) by comparing consecutive images
taken every t0 = 15 s. Since we are seeking power-law
like distributions and their effective exponents, it is con-
venient to use logarithmic binning. In the right panel
of Fig. 8 we use the same WE used in the left panel
to build a new histogram. In this case, dividing the
number of events per interval by the width of the in-
terval, the probability distribution is obtained. Fig. 8
shows a power-law signature at small size values with a
cut-off around 3 µm2. The distribution is of the form
PWE(S) = S−τWEGWE(S/SWE), where τWE is the power-law
exponent and SWE the cut-off value such that the func-
tion GWE(x) rapidly decays for x & 1.

For a proper comparison with theoretical predictions
we discarded in the statistical analysis events touching
the borders of the region of interest, i.e. the observation
region, otherwise their area would be underestimated.
This may affect however the tails of the size distribution,
corresponding to large events, with a lateral size of the
order or larger than the lateral size L of the observation
region. For the range of time windows ∆t we consider
WE of lateral size L are extremely rare however. Indeed
we observe a ∆t-dependent but clearly L-independent
cut-off in our distributions, growing as ∆t1/2 (with a
temperature dependent prefactor). Such ∆t dependence
is used to estimate the waiting time distribution expo-
nent for cluster “ignition events”. On the other hand,
the power-law decay effective exponent of WE, which is
also central to our analysis and for the comparison with
theory is not sensible to the tails. This justifies our event
detection protocol.

To evidence the robustness of our results, in Fig. 9
we show results for the event area distribution mea-
surements done in a different region of the same
Pt(4.5nm)/Co(0.7nm)/Pt(3.5nm) sample (upper panel),
and for a Pt(6nm)/[Co(0.2nm)/ Ni(0.6nm)]3/Al(5nm)
sample (lower panel). As can be appreciated, not only
the effective power-law decay exponent is similar, but
also the time dependence is qualitatively similar to the
one of Fig. 3 reported in in Sec.III for the sample and
region we have chosen for most of our analysis.

Appendix B: Domain wall roughness

In order to have a more direct estimate of the rough-
ness exponent of our DW, and check consistency with
our interpretaion of the WE statistics, we have computed
the single-value displacement field uL(x) of segments of
given sizes L partitioning a larger DW configuration.
Here we discuss our practical method. The displacements
uL(x) for each segment are measured with respect to the
straight line fitting each segment. This straigth line is
also used as the x-axis to parametrize the displacement
field. Such an approach is justified by taking into account
that the theoretical description of a directed driven in-
terface assumes that the interface is flat in average in the
direction perpendicular to the motion. The field on mag-
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FIG. 9. WE area histograms obtained from a different region
(upper panel) of the same Pt(4.5nm)/Co(0.7nm)/Pt(3.5nm)
sample used to report most our results in the main
text, and obtained for a different Pt(6nm)/[Co(0.2nm)/
Ni(0.6nm)]3/Al(5nm) sample (lower panel).

netic DW on the other hand act as a pressure, allways
normal to the DW. Having uL(x) for segments of different
length L, we can now compute their global squared width

W 2(L) ≡ u2L(x)−uL(x)
2
. If the interface is self-affine, we

expect W 2 ∼ L2ζ with a well defined roughness exponent
ζ. We have tested this methodology numerically on large
discretized interfaces of size L0, with displacement field
U(x), where x = 0, 1, ..., L0 − 1, with different precise
values of ζ. We do so by superimposing Fourier modes
U(x) =

∑
q Uqe

iqx with q = 2πn/L0 (n = 0, ..., L0 − 1),

Uq complex hermitian gaussian amplitudes of zero mean,
〈Uq〉 = 0, and variance 〈|Uq|2〉 ∼ 1/q1+2ζ (also known
as “self-affine gaussian signals”43). This construction as-
sures that the signal U(x) is periodic, U(x) = U(x+L0),
and self-affine with identical spectral and global expo-
nent ζ. Finally, we compute W 2(L) for these inter-
faces, by the partition procedure previously described.
In Fig. 10 we compare W 2(L) vs L with the correspond-
ing scalings for each ζ, averaged over 10 uncorrelated nu-
merically sampled configurations U(x). A good agreen-
ment is allways obtained if the fit does not include val-
ues of L larger than a fixed fraction of the order of
the total size L0, so to have a large number of seg-
ments and to reduce boundary effects. It is worth noting
that our method also allows to accurately measure values
ζ > 1, corresponding to super-rough interfaces. This is
an advantage over the displacement correlator function

FIG. 10. Numerical test for the practical implementation used
to compute W 2 for a DW. We compute W 2 for numerically
generated self-affine gaussian signals of size L0 = 1024 for
several precise values of ζ. We average over 10 samples for
each ζ. The solid lines show agreenment with the expected
W 2 ∼ L2ζ . The method allows to measure super-rough cases
ζ > 1.

B(x) ≡
∫ L0−x
0

dx0 [u(x+ x0)− u(x0)]2/(L0 − x) which

gives the correct global ζ, B(x) ∼ x2ζ , only if ζ < 1,
otherwise it saturates to ζ = 1.
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J. Ferré, V. Baltz, B. Rodmacq, B. Dieny, and R. L.
Stamps, Phys. Rev. Lett. 99, 217208 (2007).

3 K.-J. Kim, J.-C. Lee, S.-M. Ahn, K.-S. Lee, C.-W. Lee,
Y. J. Cho, S. Seo, K.-H. Shin, S.-B. Choe, and H.-W. Lee,
Nature 458, 740 (2009).

4 J. Gorchon, S. Bustingorry, J. Ferré, V. Jeudy, A. B.
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