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Highlights  

 

- We present an updated summary on ZnPcs as antitumor photosensitizers  

- ZnPcs localized in lysosomes, mitochondria or ER are efficient antitumor agents 

- Apoptosis, necrosis and autophagy are the main cellular responses induced by 

ZnPc PDT  

- Current efforts to improve in vivo PDT treatments with ZnPcs are discussed 

- More clinical trials are required to evaluate ZnPcs as therapeutic agents 
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Photodynamic therapy (PDT) is a highly specific and clinically approved method for cancer 

treatment in which a nontoxic drug known as photosensitizer (PS) is administered to a 

patient. After selective tumor irradiation, an almost complete eradication of the tumor can be 

reached as a consequence of reactive oxygen species (ROS) generation, which not only 

damage tumor cells, but also lead to tumor-associated vasculature occlusion and the 

induction of an immune response. Despite exhaustive investigation and encouraging results, 

zinc(II) phthalocyanines (ZnPcs) have not been approved as PSs for clinical use yet. This 

review presents an overview on the physicochemical properties of ZnPcs and biological 

results obtained both in vitro and in more complex models, such as 3D cell cultures, chicken 

chorioallantoic membranes and tumor-bearing mice. Cell death pathways induced after PDT 

treatment with ZnPcs are discussed in each case. Finally, combined therapeutic strategies 

including ZnPcs and the currently available clinical trials are mentioned. 

 

Abbreviations: AIF, apoptosis-inducing factor; DCF-DA, 2´,7´-dichlorfluorescein 

diacetate; EGFR, epidermal growth factor receptor; ER, endoplasmic reticulum; FAAD, 

Fas-associated death domian;  GA, Golgi apparatus; LDH, Lactate dehydrogenase; NP, 

nanoparticles; PARP, poly(ADP-ribose) polymerase; PDT, photodynamic therapy; PEG, 

polyethylene glycol; PS, photosensitizer; Pcs, phthalocyanines; ROS, reactive oxygen 

species; UCNPs, upconverting nanoparticles; ZnPcs, zinc(II) phthalocyanines; ZnNcs, 

zinc(II)-naphthalocyanines.   

 

Keywords: Photodynamic therapy; Zinc phthalocyanines; Photophysical properties; In 

vitro antitumor assays; In vivo tumor models 
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1. Introduction 

The first approaches to photodynamic therapy (PDT) are found in ancient texts such 

as the Egyptian medical treatise Ebers Papyrus and the Atharvaveda from the Hinduism. 

Despite this background, the observation of photochemical sensitization of tissues was first 

performed in detail by Raab (1900) in Germany and shortly afterwards by Von Tappeiner 

(1900), who coined the term "photodynamic action" to describe the treatment of skin tumors 

by using topical administration of eosin combined with sunlight (Kou et al., 2017). PDT is a 

therapeutic procedure based on the administration of a non-toxic photosensitizer (PS), which 

after activation by visible light in the presence of molecular oxygen, produces cytotoxic 

reactive oxygen species (ROS) that lead to cell damage (Henderson and Dougherty, 1992; 

Sharman et al., 1999; Detty et al., 2004; Plaetzer et al., 2009). Since the PS is preferentially 

localized into the cells to be treated and is activated only after irradiation of these cells, the 

PDT is a selective procedure frequently used for the treatment of a diversity of 

dermatological, ophthalmic and oncological diseases (Agostinis et al., 2011; van Straten et 

al., 2017). In clinical use, after topical or intravenous administration of a PS, the patient is 

irradiated with light of a suitable wavelength in the area to be treated and then maintained in 

the dark to minimize the probability of PS activation in other body regions. PS clearance 
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from the organism will allow the patient to resume usual activities with exposure to both 

solar and artificial light.  

At molecular level, light irradiation at a specific wavelength delivers the necessary 

energy to produce an electronic transition of the PS from its ground state to an excited singlet 

state of short half-life. The loss of energy caused by the return of electrons from the excited 

level to the basal energy level (deactivation process) may involve fluorescence/heat emission 

or intersystem crossing to generate a lower energy excited triplet state. Deactivation of this 

triplet species can occur mainly by two mechanisms, known as type I or type II reactions, 

that generate reactive oxygen species (ROS) (Agostinis et al., 2011; Oliveira et al., 2011; 

Gomes et al., 2018). In type I reactions, the PS transfers an electron to biological substrates 

to form free radicals, which finally give rise to cytotoxic species such as superoxide anion, 

hydrogen peroxide and hydroxyl radicals. In type II reactions, the triplet oxygen (3O2) is 

converted into singlet oxygen (1O2), a highly cytotoxic species with a very short half-life, 

between 10 and 320 ns (Agostinis et al., 2011). As this species can diffuse 10-55 nm on 

average, a distance that represents one thousandth of the diameter of eukaryotic cells, the 

intracellular organelles containing the PS are considered to be the main sites where the 

phototoxic damage is triggered. The final consequence of the ROS formation is the induction 

of a cell death process, the destruction of the microvasculature and the activation of a local 

inflammatory reaction that may trigger an immune response (Engbreht et al., 1999; Castano 

et al., 2006; Buytaert et al, 2007; van Straten et al., 2017).  

Many photo-activable molecules, including porphyrins, phthalocyanines, chlorines 

and bacteriochlorine derivatives, among others, have been found to be useful candidates for 

PDT applications (Gomes et al., 2018; Kou et al., 2017). In the 70´s, the use of PDT as a 

therapeutic option generated a renewed interest in the oncological field from the performance 

of systematized trials for tumors treatment (Diamond et al., 1972). Dougherty et al. (1975, 
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1978) carried out the first clinical trial in patients with Photofrin as photosensitizer. This 

PS together with other porphyrin derivatives formed the first generation of PSs. This group 

of PSs showed some unfavourable characteristics, including low absorptions in the red light 

region (range between 600 to 800 nm, where tissue light penetration is high), poor solubility 

in polar solvents and skin phototoxicity (Allison and Sibata, 2010; Kou et al., 2017; Gomes 

et al., 2018). Due to this last feature, the patient has to take extreme precautions from 

environmental light exposure. The second generation of PSs emerged either from structural 

modifications made on the macrocycles of the first generation or from changes in the 

synthetic routes to generate new families of molecules. These new compounds, more similar 

to what is expected for an ideal PS, include chlorine or bacteriochlorin, benzoporphyrin (or 

new porphyrin derivatives), purpurins, texaphyrins and phthalocyanines (Kou et al., 2017; 

Gomes et al., 2018). Among these PSs, the phthalocyanines (Pcs) have drawn attention as 

promising antitumor phototoxic drugs. Besides various physicochemical characteristics that 

will be mentioned later, several Pcs coordinated to zinc, aluminum or silicon are very 

efficient generators of singlet oxygen (Paquette et al., 1991; Boyle et al., 1992; Margaron et 

al., 1996; Colussi et al., 1999). Afterwards, the third generation of PSs was developed to 

promote a higher and more specific accumulation of PS in target cells. The main strategies 

employed to achieve this objective involve PS binding to antibodies (Kudarha and Sawant, 

2017; Pereira et al., 2014a) or incorporation to nanocarriers (Abrahamse et al., 2017; Yang 

et al., 2017). 

In this review, among the extensive list of recognized PSs for cancer treatment, we 

focus on the characteristics of zinc(II) phthalocyanines (ZnPcs), as many variants of this type 

of photo-activable drugs with improved physicochemical and biological properties have been 

developed in the last years (Figure 1). The photophysical properties of ZnPcs, the in vitro 
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antitumor mechanism of action in 2D and 3D cell cultures, and the in vivo effectiveness as 

anticancer agents in animal models and clinical trials will be herein summarized. 

 

2. Physicochemical properties of zinc(II) phthalocyanines  

2.1. Zinc(II) phthalocyanines for PDT 

Phthalocyanines are synthetic dyes that were first obtained by Braun and Tcherniac 

in 1907. Pcs are aromatic heterocycles that consist of four units of isoindoles bridged by 

nitrogen atoms. They have a characteristic UV-visible absorption spectrum with two main 

bands: the weak Soret band located in the UV zone of the spectrum at ~350 nm and the Q 

band, located in the red zone of the visible spectrum at around 680 nm, whose high intensity 

is one of the main characteristics of these dyes with a molar extinction coefficient of 1x105 

M-1 cm-1, two orders of magnitude higher than most porphyrins (Leznoff and Lever, 1989). 

Their photochemical properties are strongly influenced by the nature of the coordinated 

central metal ion. Thus, the presence of diamagnetic elements in the central cavity, such as 

zinc (II), aluminum (III), gallium (III) or silicon, gives them high triplet quantum yields ( 

T> 0.4) with long triplet lifetimes (T> 100 s) and adequate triplet energies (ET1 = 1.2 eV), 

making them efficient generators of singlet oxygen (> 0.4 (Lagorio et al., 1993).  

           ZnPcs have advantageous characteristics including low dark toxicity, high chemical 

and photochemical stability, high therapeutic effect, minimal skin photosensitivity and 

excitation at wavelengths greater than 630 nm, which allows greater tissue penetration of 

radiation (Jori, 1992; Marino et al., 2010). Despite these attractive features, one disadvantage 

of Pcs is their poor solubility in organic solvents (Nyokong and Antunes, 2010).  Their 

solubility can be increased by introducing peripheral ( position) and non-peripheral 

(position) substituents in the Pc framework (Figure 1). The tetrasubstituted Pcs are usually 

more soluble than octasubstituted due to the formation of constitutional isomers and the high 
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dipole moment resulting from the asymmetric rearrangement of the substituents (Leznoff et 

al., 1985). However, the four possible structural isomers of a tetrasubstituted Pc are difficult 

to separate and purify (Hanack et al., 1993).            

               On the other hand, the formation of aggregates in solution decreases the capacity 

to produce singlet oxygen because the photochemical activity is exclusively related to 

monomer species. Thus, aggregates decrease not only the photoactivity of the PS but also 

limit the access to the neoplastic cells, affecting its bioavailability. The presence of bulky or 

electrically charged peripheral substituents bound to the macrocycle and/or axial ligands 

coordinated to the central metal minimizes the tendency to form aggregates (García Vior et 

al., 2009, Wang et al., 2012; Muli et al., 2015). Ke et al. (2009) demonstrated that tetra-α-

substituted ZnPcs exhibit a reduced aggregating trend, higher photostability and enhanced 

photocytotoxicity toward human gastric carcinoma cells than the tetra-β-substituted 

counterparts. Our group also showed a similar behavior when the photodynamic effect of  

and  cationic substitution of ZnPcs was studied in human nasopharynx KB carcinoma cells 

(Marino et al., 2010). 

             In order to improve water solubilization of ZnPcs, the synthesis of anionic 

derivatives containing sulfonic (Haywood-Small et al., 2006; Lan et al., 2016), phosphonic 

(Venkatramaiah et al., 2015) or carboxylic groups (Zhou et al., 2016) has been carried out. 

For instance, Zhou et al. (2016) demonstrated that a ZnPc substituted with 16 COOH groups 

existed in its monomeric form under physiological conditions and showed superior 1O2 

generation than other derivatives containing less COOH groups. To control the degree of 

aggregation in aqueous media, Ikeuchi et al. (2016) synthetized a water-soluble ZnPc bearing 

four 3-sulfone-linked propylsulfonyl at non-peripheral positions. Other authors have also 

demonstrated the importance of positive charges in ZnPcs (Wood et al. 1997, Li et al., 2008; 

Sekhejane et al., 2014; Wang A. et al. 2014). In this sense, we studied the synthesis and 
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photophysical properties of cationic bioisosteric ZnPcs containing peripheral chains bound 

to the macrocycle by oxygen, sulfur or selenium (García Vior et al., 2009; Marino et al. 2010; 

Gauna et al., 2011, Ezquerra Riega et al., 2018). A bathochromic shift of 8–10 nm for the Q-

bands of ZnPcs was observed when sulfur or selenium were present, allowing the excitation 

of PSs in deeper regions of a tissue. In addition, although selenium ZnPcs reported the highest 

value of quantum yield of , both selenium and sulfur substituted ZnPcs showed similar 

phototoxic activities in colon carcinoma cells (Ezquerra Riega et al., 2018).  

2.2. Third generation zinc(II) phthalocyanines   

Even though lipophilic PSs show an increased tumor to normal tissue ratio (Stockert 

et al., 2004), the intravenous administration is difficult. To overcome this issue and avoid 

post-PDT skin photosensitivity, the so-called third generation PSs have been developed. 

They comprise second generation PSs associated to a carrier able to promote PS 

accumulation in tumor cells, to reduce aggregation tendency and minimize localization in 

normal cells. On these bases, formulation of ZnPcs in different nanosized delivery systems 

has been attempted. In the last years the most studied carriers include liposomes (de Oliveira 

et al., 2010; Garcia et al., 2011; López Zeballos et al., 2013; Kim et al., 2014), polymeric 

micelles (García Vior et al., 2013; Pucelik et al., 2016; Lamch et al., 2016; Debele et al., 

2017) and different types of nanoparticles (NPs) (Camerin et al., 2010;  Ping et al., 2016; 

Oluwole et al., 2016; Yurt et al, 2017), all of which showed an increase in the bioavailability, 

stability and transport of ZnPcs to the target tissue. Our group, after studying the 

incorporation of a lipophilic tetrasubstituted ZnPc into polymeric micelles and different 

liposomes, demonstrated a similar increase in solubility for both carriers, but a higher 

photodynamic activity against tumor cells in micellar formulations (López Zeballos et al., 

2013; García Vior et al., 2013; Chiarante et al., 2017). ZnPc molecules have been also 

encapsulated into NPs of different nature, such as polymeric NPs (Conte et al., 2013; Ping et 

ACCEPTED M
ANUSCRIP

T



 9 

al., 2016; Huang et al., 2016), TiO2 NPs (Yurt et al, 2017; Lopez et al., 2010), gold NPs 

(Camerin et al., 2010; Manoto et al., 2017a; Mfouo-Tynga et al., 2018a, 2018b; Dube et al., 

2018; Garcia Vior et al., 2019) and silica based NPs (Tu et al., 2012; Oluwole et al., 2016). 

Ricci-Junior et al. (2018), after evaluating the photobiological activity of three nanosystems 

(nanoparticles, nanoemulsions and mesoporous silica) containing ZnPc, demonstrated that 

all of these formulations could be used for clinical purposes in PDT. Furthermore, 

upconverting nanoparticles (UCNPs), based on the absorption and conversion of near 

infrared light to visible photons that can further activate the PS, have been efficiently 

employed as PDT carriers for ZnPcs (Guo et al., 2010; Tian et al., 2013; Wang H. et al., 

2014a; Hou et al., 2015). 

Targeting moieties that recognize specific sites expressed in tumor cells have been 

coupled to nanocarriers to improve ZnPcs accumulation. For instance, ZnPcs surrounded by 

a carbohydrate shell of galactose (Pereira et al., 2014b) or lactose (García Calavia et al., 

2018) units have shown to increase tumor selectivity, since cancer cells are known to 

overexpress carbohydrate-binding proteins, such as galectin-1 and the glucose GLUT-1 

transporter. Folic acid incorporated into micelles (Liang et al., 2014a) or UCNPs (Cui et al., 

2013) has been employed for targeting cancer cells overexpressing folate receptor. Wang H. 

et al. (2014b) demonstrated the efficacy of ZnPc and UCNP encapsulated into lipid micelles 

carrying cell-penetrating peptides. Likewise, ZnPcs conjugated with peptides or antibodies 

directed to EGFR have been properly incorporated by cells overexpressing EGFR (Ongarora 

et al., 2012a; Broekgaarden et al., 2016a). UCNPs conjugated with ZnPc and the monoclonal 

antibody Trastuzumab were designed by Ramirez Garcia et al. (2018) for specific HER2-

positive breast cancer detection and PDT. 

 

3. In vitro photodynamic assays of zinc(II) phthalocyanines  
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3.1. ROS formation, cellular uptake and intracellular localization  

As already mentioned, an appropriate PS should be capable of inducing an efficient 

formation of ROS after being irradiated. Among these phototoxic species, the main reacting 

species in vivo seems to be singlet oxygen (Agostinis et al, 2011; Gomes et al., 2018). 

Although this species has short life-time and short radius of action, cell damage is initiated 

in the intracellular sites where the PS is localized. Consequently, the oxidative damage 

begins the cascade of molecular events that finally lead to cell death (Oleinick et al., 2002; 

Chiu et al., 2010; Kessel, 2004). Based on the complexity imposed by cellular models, the 

ability of PSs to generate ROS has to be tested not only in fluid media but also in cellular 

environments. To this end, intracellular ROS content can be measured by using a fluorescent 

probe, such as 2´,7´-dichlorfluorescein-diacetate (DCFH-DA). This probe, after diffusing 

into cells, is deacetylated by esterases and then oxidized to the fluorescent 2´,7´-

dichlorfluorescein (DCF) in the presence of ROS (mainly hydrogen peroxide and lipid 

hydroperoxides). DCF fluorescence is in general detected by fluorescence microscopy, flow 

cytometry or with a fluorometer. All the ZnPc-based photosensitizers studied so far in cell 

cultures showed high ROS generation quantum yields, revealing that they behave as 

competent PSs for PDT applications (Yu W et al., 2018; Nag et al., 2018; Wang et al., 2017; 

Lu et al., 2016). In spite of this property, it should be taken into account that tumor hypoxia 

might reduce the antitumor efficacy of PDT due to the activation of the hypoxia-inducible 

factor 1 (HIF-1). In this regard, it was demonstrated that combined treatments of ZnPc 

with a HIF-1 inhibitor improved PDT efficacy in human carcinoma cells (Weijer et al., 

2016; Broekgaarden et al., 2016b).  

 The intracellular PS location, which determines both the primary site of photodamage 

and the mechanisms of cell death, is markedly influenced by the structural characteristics of 

the PS and the type of cell. In addition, cellular uptake of ZnPcs is a time- and concentration-
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dependent process. These fluorescent dyes are distributed homogeneously in the cytosol, as 

shown by confocal microscopy studies, and no evidence of nuclear localization has been 

detected. The mechanism of ZnPcs internalization seems to be dependent on the vehicule 

used to dissolve the PS. In this sense, Soriano et al. (2013) demonstrated that caveolin-

mediated endocytosis was responsible for internalizing a ZnPc dissolved in 

dimethylformamide, while an endocytic pathway dependent on clathrin mediated the 

incorporation of ZnPc included in liposomes.  

By using organelle-specific fluorescent probes, ZnPcs have been mainly found in 

mitochondria, lysosomes, endoplasmic reticulum (ER), plasma membrane or Golgi 

apparatus (GA) (Figure 2). Despite the variety of studies on the main sites of intracellular 

accumulation of ZnPcs, it is still not very simple to establish a clear relationship between the 

subcellular localization and the structural characteristics of these PSs. For instance, by 

working with an unsubstituted ZnPc, Fabris et al. (2001) showed that a liposomal formulation 

of the PS mainly localized in GA and plasma membrane after 2 h of incubation with 

transformed fibroblast, whereas both GA and mitochondrial localization were found after 24 

h of exposure. Soriano et al. (2014), using a liposomal formulation of the same PS in HeLa 

cells, reported a similar intracellular localization after short incubation periods. Although 

these results suggested that the incubation time is a variable that must be considered in 

subcellular localization studies, Cristobal et al. (2006) found that a ZnPc/liposomal 

formulation localized in GA, but not lysosomes or mitochondria, after either 3 or 18 h of 

incubation with lung carcinoma cells.  

The localization of a ZnPc dissolved in dimethylformamide or incorporated into a 

network of titanium dioxide was studied by Lopez et al. (2010) after 24 h of incubation in 

different cell lines. These authors reported an exclusive mitochondrial or lysosomal 

localization of the PS tested depending on the cell line studied. In 2013, Shao et al., with the 
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aid of specific organelle-probes, concluded that the unsubstituted ZnPc solubilized in the 

Cremophor EL formulation mainly localized in mitochondria, lysosome and ER after 24 h 

of incubation with hepatocellular carcinoma cells. Based on the dissimilar findings found 

with different formulations of unsubstituted ZnPc, it is possible to conclude that either the 

intrinsic properties of each formulation, the type of cell, the incubation time or the fluorescent 

probes employed to detect subcellular organelles could influence the results obtained.  

Regarding studies performed with substituted ZnPcs, Wood et al. (1997) showed that 

while anionic and cationic polysubstituted ZnPcs localized in lysosomes, neutral ZnPcs 

accumulated in GA. Afterwards, a great number of reports showed that either mono or 

polysubstituted ZnPcs target mainly to mitochondria and/or lysosomes, and in a lower degree 

to ER. In this regard, the mitochondrial and lysosomal localization of mixed sulfonated ZnPc 

(ZnPcSmix) has been shown in different cell types (Manoto et al, 2012; Manoto el al, 2013; 

Mfouo-Tynga et al., 2013; Sekhejane et al, 2014). The same distribution pattern was 

observed by Li et al. (2012) working with ZnPc-(Lys)n, a group of amphipathic 

monosubstituted ZnPcs conjugated to different numbers of lysine residue. Therefore, both 

mitochondrial and lysosomal localization have been reported for either negatively or 

positively charged PSs. Similarly, independently of the charge or the 

hydrophobic/hydrophilic nature of the PS, just a lysosomal accumulation was reported for 

hydrophobic ZnPcs, such as sulfur-linked octaalkylamino substituted ZnPc (Rumie Vittar et 

al., 2008), methoxy (Yslas et al., 2007) or amine-terminated monosubstituted ZnPcs (Peng 

et al., 2017), and hydrophilic ZnPcs, as cationic sulfur-linked (Gauna et al., 2011) or arginine 

substituted ZnPcs (Wang et al., 2017).  

A series of cationic ZnPcs conjugated to a bifunctional peptide were only found in 

lysosomes (Sibrian-Vazquez et al., 2007). On the other hand, Ge et al. (2013) reported the 

design and synthesis of an specific mitochondria-targeted ZnPc substituted with a quaternary 
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ammonium salt on the periphery, whereas Muli et al. (2008), based on the properties of 

rhodamine B to target mitochondria, described the synthesis and characterization of 

asymmetric ZnPc-rhodamine B conjugates for selective mitochondrial targeting. Duan et al. 

(2010) also showed a selective affinity to the mitochondria of a non-ionic 2-

(dimethylamino)ethylthio ZnPc. In addition, the effect of the formulation on the intracellular 

localization of ZnPcs should not be neglected. In this sense, Lan et al. (2016) described a 

restricted mitochondrial localization or a mitochondrial/lysosomal localization for a ZnPc 

substituted with sulfonated quinolineoxy groups and formulated either with Cremophor EL 

or PBS. It should also be considered that the exclusive mitochondrial localization of ZnPc-

based PSs found in several reports responds to the employment of just a specific 

mitochondrial probe (Oluwole et al., 2017; Ke et al., 2017; Huang et al., 2016; Lo et al., 

2007; Alexandratou et al., 2005).  

Our group demonstrated a lysosomal localization of a water-soluble tetrasubstituted 

ZnPc replaced with sulfur-linked cationic aliphatic chains in the human nasopharynx KB 

carcinoma cell line (Marino et al., 2010). The same cationic phthalocyanine targeted 

lysosomes and mitochondria in murine melanoma cells (Valli et al., 2019), reinforcing the 

concept that the intracellular location may vary according to the cell line studied. We also 

reported a preferential lysosomal localization of a lipophilic ZnPc (Pc9: tetrakis-[(2-

dimethylamino)ethylsulfanyl]phthalocyaninatozinc(II)) loaded either into liposomes or 

poloxamine micelles in KB cells (García Vior et al., 2013; López Zeballos et al., 2013). Since 

both formulations showed different phototoxic potencies (IC50 values were in the range of 

0.21-0.47 μM for Pc9-loaded into liposome formulations and 9.5-22 nM for Pc9-micelles 

formulations), the results herein obtained suggested that PS location was independent of the 

vehicle used and other factors, such as a differential uptake, could explain the variation in 

potency. At comparable intracellular concentrations, Garcia et al. (2016) demonstrated that 
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the intracellular fate of the PS did depend on the nature of the vehicle used. In this case, when 

the location of an unsubstituted ZnPc internalized in liposomes or BSA was studied, 

ZnPc:BSA preferentially located in GA, while the liposomal formulation was mostly located 

in the cellular membrane. In the last years, as interest in the role of ER in phototoxic cell 

death increased, various studies focused on this organelle as possible localization site. 

However, it must be taken into account that while lysosomal and mitochondrial probes have 

been extensively used for the study of ZnPcs, ER probes have been employed to a lesser 

degree. As mentioned before, Shao et al. (2013) verified the ER location of a 

ZnPc/Cremophor formulation by using an ER fluorescent Tracker. Likewise, when Manoto 

et al. (2012) demonstrated the mitochondrial and lysosomal distribution of ZnPcSmix in 

different tumor cell types, they also verified the absence of co-localization in the ER with a 

specific probe. Ongarora et al. (2012b), after studying the subcellular distribution of a series 

of cationic ZnPcs in tumor cells, showed that although these compounds localized in multiple 

sites within the cell (such as mitochondria, lysosomes, ER and GA), the most active ones -

containing a PEG group- were mainly found within the ER, suggesting that pegylation could 

favor the intracellular localization in the ER. Fujishiro et al. (2018) also reported that a 

cationic ZnPc carrying N-methyl-pyridinium groups was observed in greater amounts in the 

ER, Golgi, and lysosomes, whereas Kiew et al. (2017), working with a ZnPc conjugated to 

poly-L-glutamic acid, revealed a high co-localization in lysosomes and partial co-

localization with the ER and mitochondria. In our laboratory, we explored the intracellular 

distribution of a micellar formulation of a lipophilic ZnPc in CT26 colon cells, and found 

preferential photosensitizer incorporation into lysosomal vesicles and ER cisterns, but not 

mitochondria (Chiarante et al., 2017).  

In summary, since the subcellular localization of PSs is directly related to the 

mechanisms involved in cell oxidative damage, we strongly believe that a rigorous study of 
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the subcellular localization of ZnPcs, using a complete battery of organelle-specific probes, 

is an important step to achieve a clear understanding of the type of cell death. 

 

3.2. Mechanisms of cell death 

The photo-oxidative damage caused by PDT in tumor cells may activate different 

modalities of cell death, which can act independently, simultaneously or in combination, 

depending on the nature of PS, the administered dose, the cell type and the light exposure 

dose. Accordingly, for each tumor cell line treated under specific experimental conditions 

with a particular type of PS, the intracellular localization of the PS strongly determines the 

mode of cell death. The most frequent cellular responses induced in 2D or 3D cultures after 

PDT treatment include apoptosis, necrosis and autophagy (Butyaert et al., 2007; Agostinis et 

al., 2011; Mroz et al., 2010) (Figure 2). More recently, but only in 2D cultures, paraptosis 

has been described as a type of cell death induced by PSs that target the ER for photodamage, 

but it has not been described yet for ZnPcs (Kessel, 2018; Kessel and Oleinck, 2018; Kessel, 

2019). Apoptosis has been recognized as a frequent mechanism associated to the photo-

oxidative damage induced by PDT (Buytaert et al., 2007) and has been extensively 

characterized after ZnPc-induced photodamage. This cell death programme is mediated 

through the activation of either death receptor or mitochondrial-dependent pathways 

(extrinsic and intrinsic pathways, respectively), usually regulated by caspases (Grütter, 2000; 

Kaufmann and Hengartner, 2001; Galluzzi et al., 2012). 

3.2.1. Death receptor-dependent apoptosis: although the extrinsic pathway of apoptosis can 

contribute to the PDT-induced apoptotic response (Butyaert et al., 2007), few evidence of 

the involvement of this pathway after photodamage triggered by ZnPcs are found. The 

activation of the receptor death machinery has been suggested by Machado et al. (2009) who 

showed that Fas dimerization induced by p38MAPK activation in tumor cells treated with a 

ZnPc favors the formation of the Fas-FADD death complex needed to activate caspase 8. On 
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the other hand, the decrease of Fas levels reported by Xia et al. (2011), after PDT treatment 

with a tetra-α-(4-carboxyphenoxy) ZnPc, suggested indeed an alteration of the death receptor 

complex assembly. Therefore, it seems that more than a direct involvement of this pathway, 

some molecular signals induced after ZnPcs PDT could be responsible for the activation or 

inhibition of an extrinsic apoptotic response. 

3.2.2. Mitochondrial-dependent apoptosis: since mitochondrial homeostasis is essential for 

cell viability, the damage to this organelle after ZnPcs PDT has been extensively studied 

taking into account both the mitochondrial localization of PSs and a possible downstream 

effect due to the injury initiated at other subcellular locations. Caspases activation, 

deregulation in the expression levels of Bcl-2 family proteins, reduction of mitochondrial 

membrane potential, cytosolic release of cytochrome c, PARP cleavage and chromatin 

condensation, among others, have been characteristics widely explored following ZnPcs 

PDT (Figure 3). Thus, after treatment, activation of caspases 8 and 9, leading to the cleavage 

of procaspase 3, has been reported in different cell types (Shao et al., 2013; Wang Y et al., 

2014; Doustvandi et al., 2017; Wang Y et al., 2018a). A time- and dose-dependent increase 

of the executioner caspase 3 has been described after irradiation of both unsubstituted and 

substituted ZnPcs (Fabris et al., 2006; Shao et al., 2012; Kuzyniak et al., 2017). Interestingly, 

an apoptotic caspase-independent mechanism has been described after irradiation of a water-

soluble octakis(3-aminopropyloxy) ZnPc in a human breast adenocarcinoma cell line (Rumie 

Vittar et al., 2010). In this work, the authors showed that ZnPc PDT induces the translocation 

of the apoptosis-inducing factor (AIF) to the nucleus, a mediator involved in DNA 

fragmentation in a caspase-independent manner (Figure 3). Also noteworthy, Doustvandi et 

al. (2017), after exploring the apoptotic response induced by a ZnPc at different light doses, 

suggested that an increase in light dose could switch a caspase-independent apoptotic 

mechanism to a caspase-dependent one.  
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Regarding the involvement of other caspases, some insights have been reported about 

the role of caspase 2 after PDT with ZnPcs. Thus, Cristóbal et al. (2006) demonstrated that 

caspase 2 was rapidly activated after treatment with a ZnPc liposomal formulation 

exclusively located in GA and suggested that this activation preceded the disorganization of 

the organelle to trigger an apoptotic response. Later, Mfouo-Tynga et al. (2014), by using 

ZnPcSmix, showed that the proteolytic caspase 2 cleaves and activates Bid into its truncated 

form (tBid) to promote mitochondrial permeabilization. Other studies with substituted ZnPcs 

also demonstrated that Bid cleavage occurs after irradiation (Rumie Vittar el al., 2010; 

Marino et al, 2013; Chiarante et al., 2018), although, in most reports, caspase 8 and lysosomal 

proteases have been identified as the main enzymes responsible for Bid fragmentation 

(Butyaert el al, 2007; Kessel and Oleinick, 2018) (Figure 4).   

The unbalance in the expression levels of Bcl-2 family proteins unquestionably plays 

a role in the mitochondria-mediated cell death (Figure 3). A down-regulation of antiapoptotic 

Bcl-2 proteins (Machado et al., 2009; Dai et al., 2016; Doustvandi et al., 2017; Zamani et al., 

2018) and up-regulation of some apoptotic proteins, such as Bak (Liu et al., 2017) and Bax 

(Machado et al., 2009; Dai et al., 2016; Zamani et al., 2018), have been commonly informed 

after PDT treatment with different formulations of ZnPcs in a wide variety of cell types. In 

some cases, although Bax levels remained unchanged after irradiation (Marino et al., 2013; 

Kuzyniak et al., 2016), a clear translocation of this protein from cytosol to mitochondrial 

membrane suggested its involvement in the opening of mitochondrial pores (Rello-Varona 

et al., 2008; Acedo et al., 2014). As a consequence of changes in Bcl-2 proteins, ZnPcs PDT 

treatment leads to the loss of mitochondrial membrane potential regardless of the chemical 

nature of the PS employed (Alexandratou et al., 2005; Huang et al., 2005; Shao et al., 2013; 

Ge et al., 2013) and the release of apoptogenic molecules, such as cytochrome c, to the 

cytosol (Medina et al., 2009; Marino et al., 2013; Soriano et al., 2014). The cytosolic release 
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and nuclear translocation of other mitochondrial apoptogenic species, such as AIF, have also 

been demonstrated after irradiation of some substituted ZnPcs (Rumie Vittar et al., 2010; 

Wang Y et al., 2018a). 

3.2.3. Lysosomal membrane permeabilization: PSs mainly located in lysosomes are expected 

to permeabilize lysosomal membrane upon light activation and promote mitochondrial injury 

through the release of lysosomal proteases into the cytosol (Figure 4). The contribution of 

lysosomal enzymes to the apoptotic response following photodamage has been earlier 

described (Reiners et al., 2002; Cirman et al., 2004; Ichinose et al., 2006). In particular, the 

first reports of ZnPcs affecting lysosomal integrity involved fluorescence microscopy 

studies. These works showed either a loss of the fluorescent punctuate staining of the specific 

LysoTracker Green probe after irradiation of different tumor cells (Yslas et al., 2007; Rumie 

Vittar et al., 2008; Manoto et al., 2013) or the lost of the acridine orange probe from intact 

acidic lysosomes (Marino et al., 2013; Sun et al., 2017; Chiarante et al., 2018). Studies 

performed in our laboratory either with a cationic (Marino et al., 2013) or a lipophilic 

(Chiarante et al., 2018) ZnPc located in lysosomes revealed that PDT treatment promotes the 

cytosolic release of the lysosomal protease cathepsin D in a ROS-dependent manner, since 

the expression levels of cathepsin D significantly diminished in the presence of antioxidants. 

We further showed that Bid cleavage was inhibited in the presence of a Pepstatin A, a 

cathepsin D inhibitor, supporting a role of cathepsin D in Bid activation (Marino el al., 2013). 

In addition, the reduction of caspase 8 activity observed after incubation of ZnPc-treated with 

Pepstatin A supported the involvement of cathepsin D in caspase 8 activation (Chiarante et 

al., 2018) (Figure 4).  

3.2.4. ER stress: as a key organelle involved both in the folding and trafficking of newly 

synthesized proteins as well as in the maintenance of Ca2+ homeostasis, ER photodamage 

after PDT can contribute to an apoptotic cell death (Buytaert et al., 2007; Moserova and 
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Kralova, 2012). In the field of ZnPcs, Yu L et al. (2018) reported the ER localization of a 

biotinylated glutathione-responsive ZnPc that triggers ER stress after light irradiation. 

Studies performed in our laboratory with a lipophilic ZnPc also showed that ER stress 

induced by PDT can be propagated to the mitochondrial apoptotic pathway (Chiarante et al., 

2018). In both reports, an increase of intracellular Ca2+ concentration and higher expression 

levels of ER stress marker proteins, such as BIP/GRP78 and CHOP/GADD153, were 

demonstrated after photoactivation (Figure 5). Remarkably, we also demonstrated that 

calpains, activated by the high cytosolic Ca2+ concentrations reached after ER stress, 

contribute to Bax proteolytic damage (Chiarante et al., 2018). This Bax fragmentation, as it 

was shown in other apoptotic processes, could favor the formation of a more apoptotic 

fragment (Toyota et al., 2003). 

3.2.5. Necrosis: the first works addressing the mechanism of tumor necrosis showed areas of 

necrotic degeneration in tumor tissues treated by PDT with unsubstituted ZnPcs (Milanesi et 

al., 1990; van Leengoed et al., 1994; Ruck et al., 1996; Winsborrow et al., 1997). Necrotic 

regions were also described following in vivo PDT treatment with more complex 

formulations of ZnPcs (Allémann et al., 1997; Hu et al., 1998; Porthilo et al., 2013). Since 

tumor necrosis was defined by the analysis of histological tumor sections or the macroscopic 

appearance of PDT-treated tumors, it should be taken into account that these necrotic areas 

do not actually reflect the mechanism of cell death. Indeed, in cell cultures, necrosis is 

characterized by several features, including extensive plasma membrane damage, cell 

swelling, release of cellular contents to the environment, swelling of cytoplasmic organelles 

and moderate chromatin condensation (Galluzzi et al., 2007). In the field of PDT, although 

several of the typical characteristics of necrosis were identified in tumor cell lines after 

treatment with ZnPc formulations, sometimes the necrotic process might be secondary to a 

late apoptosis (de Oliveira et al., 2010; Broekgaarden et al., 2015). In addition, it is generally 
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considered that the necrotic cell death induced by photodamage predominates at high doses 

of PDT (Oleinick et al., 2002). In this regard, Yslas et al. (2007), by working with a 0.5 μM 

concentration of a substituted ZnPc, showed that PDT treatment can induce either necrosis 

or an apoptotic cell death depending on the light dose used. Thus, while an apoptotic pathway 

occurs mainly at a light dose of 11 J/cm2, necrosis predominates at 29 J/cm2. Similarly, 

Acedo et al. (2014) demonstrated that the simultaneous administration of a ZnPc and a 

cationic porphyrin changes the mechanism of cell death from apoptosis to necrosis when the 

light dose increases from 2.4 to 3.6 J/cm2. Interestingly, our group reported a dual apoptotic 

and necrotic response triggered by a sulfur-linked cationic ZnPc located both in lysosomes 

and mitochondria in melanoma cells. In this case, although necrosis increased at high light 

doses or PS concentrations, this type of cell death was also detected simultaneously with the 

activation of an apoptotic response after irradiating cells with 340 mJ/cm2 (Valli et al., 2019).  

Fabris et al. (2001) showed that necrosis represents the main mode of death of 

transformed fibroblasts incubated with a liposomal formulation of an unsubstituted ZnPc 

mainly localized in the GA and plasma membrane after short periods of incubation, whereas 

after 24 h of exposure, morphological changes typical of apoptosis were observed when the 

Pc was found in GA and also in mitochondria. Soriano et al. (2014) reported a necrotic cell 

death induced after PDT with a ZnPc located in the plasma membrane, but the induction of 

a process of regulated necrosis (necroptosis) when the PS is located in the GA. Kim et al. 

(2014) developed a liposomal delivery system to localize an hydrophobic ZnPc selectively 

into the plasma membrane and showed that a substantial membrane disruption occurs upon 

irradiation, leading to a necrosis-like cell death. Thus, in a broad sense, the occurrence of 

PDT-induced apoptosis or necrosis may depend on several factors, including the PS used and 

its intracellular localization, the light dose, incubation times, the cell type and even the nature 

of the formulation. About the influence of the vehicle, de Oliveira et al. (2010), after 

ACCEPTED M
ANUSCRIP

T



 21 

evaluating the phototoxic activity of different ZnPcs liposomal formulations containing 

cholesterol, showed that the phototoxicity is totally dependent on the presence of cholesterol 

and cell death of irradiated tumor cells is consistent with necrosis. Later, García et al. (2016) 

revealed different mechanisms of cell death for ZnPcs, depending both on the delivery 

vehicle and the PS intracellular location, being apoptosis dominant for ZnPcs formulations 

preferentially accumulated in GA, and necrosis for those located in cell membrane. 

3.2.6. Autophagy: this process displays a dual role, since it may induce either a survival 

response or contribute to a death pathway (Butyaert et al., 2007; Kessel and Oleinik, 2018). 

In the field of ZnPcs, Yu et al. (2019) demonstrated that PDT treatment with an unsubstituted 

ZnPc and the autophagy inhibitor 3-methyladenine inhibited tumor growth in a model of 

tumor metastasis, indicating that autophagy indeed exerts a protective role. On the other 

hand, Mfouo-Tynga et al. (2018b), after PDT treatment of breast cancer cells with a novel 

formulation of ZnPcSmix and gold nanoparticle encapsulated dendrimers, showed an up-

regulation of ULK-1, an autophagy gene that has been reported to contribute to cellular 

damage and death. 

 

4. Photodynamic effect of ZnPcs in 3D cultures and in vivo assays  

In order to evaluate the contribution of the cellular environment, tumor vasculature 

and the immunological response in PDT efficacy, more complex tumor models, that resemble 

more closely what actually happens in the treatment of oncological diseases, are required. 

To this end, 3D spheroids, chicken chorioallantoic membrane and animal tumor assays have 

been employed to examine the antitumor efficacy of ZnPcs. 

 

4.1. Multicellular tumor spheroids (MCTS) 
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These 3D cell aggregates represent models intermediate in complexity between 2D 

cultures and in vivo tumors (Sutherland et al., 1970). A few works employing MCTS showed 

that photoactivation of ZnPcs could efficiently reduce cell viability. Studies performed in our 

laboratory with a micellar formulation of a lipophilic ZnPc revealed that although an efficient 

phototoxic response was observed after treatment of colon tumor spheroids, almost a 40 

times higher IC50 value was obtained in 3D cultures with respect to 2D cell monolayers 

(Chiarante et al., 2017). Similar differences in the phototoxic response were observed by 

Manoto et al. (2015) between lung tumor spheroids and 2D cultures. Both groups also 

demonstrated the induction of an apoptotic response in MCTS (Chiarante et al., 2017; 

Manoto et al., 2013; 2015). In addition, the influence of tumor spheroids size has been 

explored. In this sense, it has been reported that MCTS with a size of 500 μm are more 

resistant to PDT as compared to MCTS with a size of 250 μm. Since oxygen pressure and 

nutrients gradually decrease from the spheroid surface to the core, and PDT is an oxygen 

dependent therapy, the resistance to PDT seen in spheroids might be due to the reduced 

amount of oxygen found in the inner region of larger MCTS (Madsen et al., 2006; Manoto 

et al, 2015). Furthermore, a different gene expression profile was observed after ZnPcSmix 

PDT of tumor cells grown as monolayers or MCTS, suggesting that different mechanisms of 

action would be involved in 2D or 3D cell photodamage (Manoto et al., 2017b). 

Tumor spheroids were also employed to evaluate the efficacy of different carriers to 

transport lipophilic ZnPcs. For example, natural membrane vesicles derived from tumor cells 

loaded with ZnPc (Lee et al., 2015) or nanocarriers prepared via ZnPc deposition on TiO2 

(Flak et al., 2017) exhibited high potential as drug delivery agents and behaved as efficient 

phototoxic agents in tumor spheroids. 

 

4.2. Chicken chorioallantoic membrane assays 
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As an alternative in vivo model, tumor cells can be inoculated on the chicken 

chorioallantoic membrane of fertilized eggs to evaluate the antitumor and antiangiogenic 

effect of different compounds (Uchida et al., 1987; Shoin et al., 1991). A total occlusion of 

chorioallantoic membranes vessels and improved photodynamic properties were observed 

by Chin et al. (2014) after photoactivation of a substituted ZnPc. Obata et al. (2015) 

demonstrated a significant growth inhibition of B16-F10 tumor cells transplanted to 

chorioallantoic membranes of chick-embryos irradiated with trifluoroethoxy-ZnPc 

formulations conjugated with β-cyclodextrin. Likewise, Kuzyniak et al. (2016; 2017), by 

working with substituted ZnPcs, showed a significant reduction of tumor growth and changes 

in the vascular network of chorioallantoic membranes.  

 

4.3. Animal tumor models 

Pharmacokinetics studies and the in vivo efficacy of ZnPcs have been investigated in 

different murine tumor models. After systemic administration, the phthalocyanine content in 

tumor and normal tissues has been usually determined by spectrofluorometric analysis. Reddi 

et al. (1990) evaluated the pharmacokinetic properties of ZnPc in mice bearing transplanted 

MS-2 fibrosarcoma and showed an improved selectivity of tumor targeting when low density 

lipoproteins, instead of liposomes, were employed as drug delivery systems. The slow 

clearance of ZnPc by the tumor also suggested that PDT effectiveness can be maintained at 

relatively long time intervals after administration. As a result, an efficient tumor response 

was obtained when irradiation was performed at 70 h after ZnPc administration. Shopova et 

al. (1992) also showed the maintenance for 72 h of the concentration of a liposomal ZnPc 

formulation in tumor tissues of hamsters bearing induced or transplanted 

rhabdomyosarcoma. Similar results were obtained with zinc(II)-naphthalocyanines (ZnNcs) 

in a Lewis lung carcinoma model (Shopova et al., 1994). 
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Different chemical modifications and vehicles have been employed to improve 

pharmacokinetics in mice, including increased tumor targeting and lower liver and spleen 

retentions. A study performed with unsubstituted ZnPc and octapentyl or octadecyl ZnPc 

derivatives in fibrosarcoma-bearing mice showed that the maximal concentration of 

phthalocyanines in tumors was reached at 24 h post-injection. In addition, a slight increase 

in the efficiency and selectivity of tumor targeting was obtained upon increasing the length 

of the alkyl chains protruding from the macrocycle (Fabris et al., 1997; Jori and Fabris, 1998). 

Thus, both derivatives showed an approximately 50-fold higher concentration in the tumor 

than in the peritumoral tissue (Fabris et al., 1997). As most of the hydrophobic 

photosensitizers, Pcs were accumulated in large amounts in the liver and were eliminated 

from the organism through the bile-gut pathway (Jori, 1990; 2004). When the biodistribution 

of two substituted ZnPcs was studied, the monosulphonated analogue ZnPcF12S1, which 

exhibited high phototoxicity in murine tumors, displayed faster hepatic clearance and lower 

retention by the spleen than the perfluorinated ZnPcF16 (Allémann et al., 1997). Camerin et 

al. (2010) reported the in vivo PDT efficiency of a gold NP loaded with a hydrophobic ZnPc 

derivative (C11Pc). This formulation exhibited good tumor selectivity after 24 h of injection 

(Camerin et al., 2010). Later, Camerin et al. (2016) described a different delivery vehicle 

based on the co-self-assembly of C11Pc and a polyethylene glycol derivative (PEG) onto 

gold NPs. The incorporation of PEG on the particle surface enhanced the half-life of the 

conjugate in the serum, improving the in vivo photodynamic therapy of amelanotic 

melanoma. The pharmacokinetic studies showed that the retention time of the conjugates 

both in the serum and in the tumor increased as compared with NPs functionalized with 

C11Pc alone. The conjugates were eliminated via the bile-gut pathway without observable 

toxicity. Milla et al. (2009) also showed that a liposomal formulation of a 

trifluoromethylbenzyloxy ZnPc was accumulated in spleen, liver and duodenum. In spite of 
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these findings, the absence of hepatic toxicity after treatment with substituted ZnPcs was 

demonstrated by monitoring the hepatic cytochrome P450 activity and the levels of serum 

glutamic-pyruvic transaminase (Larroque et al., 1996; Yslas et al., 2010). The lack of renal 

toxicity was also assessed by Yslas et al. (2010) by checking creatinine and urea levels.  

Light sources employed in PDT with ZnPcs include lasers between 670 and 700 nm, 

the wavelengths corresponding to their maximum absorption. ZnPcs and light dose-

dependent phototoxic action was demonstrated in different in vivo models (Reddi et al., 1990; 

Allémann et al., 1997). Yslas et al. (2009) evaluated the effect of a tetra-methoxy ZnPc 

liposomal formulation, employing different light doses. The highest PDT efficacy in a mouse 

mammary adenocarcinoma model was obtained for the maximal light dose evaluated in the 

study (210 J/cm2). Doses mostly employed in vivo for a variety of ZnPcs are in the range of 

150-400 J/cm2.  

In vivo studies demonstrated that, not only the photochemical properties of ZnPcs, 

but also tumor drug uptake, are important factors for an effective PDT. For instance, different 

PS tumor concentrations and phototherapeutic effects were observed in vivo for ZnNcs 

liposomal formulations that exhibited similar quantum yields of 1O2-formation in vitro 

(Shopova et al., 1994). Furthermore, maximum concentrations of ZnPcs were reached 24 h 

after intravenous PS administration in different tumor models (Shopova et al., 1992; 

Allémann et al., 1997; Jori and Fabris, 1998; Yslas et al, 2009; Camerin et al., 2010). In 

general, the photosensitizing effect of ZnPcs in vivo was demonstrated by a decrease of tumor 

volume (Larroque et al., 1996; Yslas et al., 2010; Camerin et al., 2010) and an increase in 

the survival time of treated animals (Shopova et al., 1992; 1994). In addition, apoptotic 

pathway (Fabris et al., 1997; Jori and Fabris, 1998; Yslas et al, 2009, 2010; Xu et al., 2014) 

and random necrosis (Fabris et al., 1997; Jori and Fabris, 1998; Rumie Vittar et al., 2008) 

have been identified as the main mechanisms responsible for cell death.  
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It is interesting to mention that, when the interval of time between drug and light 

administration was reduced to 1 h or 3 h, signs of vascular damage were reported. For 

example, Bremner et al. (1999) evaluated the effects of water-soluble ZnPcs containing 

neutral, positive and negative side-chains in a murine fibrosarcoma model and showed that 

tumor growth delay was greater with a 1 h than with a 24 h time interval, being the positive-

charged ZnPc the most effective sensitizer. In this study, a reduction in blood flow was shown 

to be an important factor in PDT. The effect of PDT on vessels was evaluated by Fingar et 

al. (1993) in Sprague-Dawley rats. Release of eicosanoids, vessel constriction, venule 

leakage and increased tumor interstitial pressure, as well as tumor reduction, were observed 

with monosulfonated and tertiary butyl substituted ZnPcs after light exposure 24 h post 

photosensitizer injection. Vascular damage after PDT treatment of a murine melanoma with 

ZnPc was also reported by Camerin et al. (2010), who confirmed damage of blood capillaries 

and endothelial cells by electron microscopy. Nevertheless, increased expression of vascular 

endothelial growth factor (VEGF) and higher microvessel density were detected in animals 

exposed to PDT. VEGF up-regulation was proposed to be associated with PDT-induced 

hypoxia (Bhuvaneswari et al., 2007; Das et al., 2010), and may suggest a side effect of PDT 

promoting tumor recurrence after treatment (Xu et al., 2014). 

Novel carriers to transport and efficiently activate ZnPcs have been developed and 

tested in vivo. Lanthanide-dope upconversion nanoparticles coupled with a -carboxy ZnPc 

(Wang M et al., 2014) and other synthetic materials, such as layered double hydroxides 

bound to unsubstituted ZnPc or to the octasulfonate ZnPc, showed to be efficient PDT agents 

for tumor growth inhibition  (Liang et al., 2014b; Li et al., 2017). A tumor-pH-responsive 

photosensitizer, prepared by conjugating ZnPc with 2,4,6-tris (N, N-dimethylaminomethyl) 

phenoxy, showed not only to ablate tumor cells in 4T1 cells-bearing mice, but also presented 
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fluorescence imaging of tumor sites, suggesting that this Pc may be employed for tumor 

treatment and theranostics (Yan et al., 2018a). 

To sum up, all the in vivo studies provided strong evidences for the clinical 

application of ZnPcs and its derivatives formulations in PDT for cancer treatment. As it was 

mentioned, critical parameters must be adjusted to obtain a proper PDT efficacy, such as the 

optimal PS dose, the interval between photosensitizer administration and time of irradiation, 

light dose and light dose rate.  

 

5. Toxicity studies and clinical trials  

The first clinical trials were performed with the ZnPc tetrasulfonate (ZnPcS4) for use 

in veterinary medicine. ZnPcS4 was initially administered to Swiss Webster mice to assess 

acute toxicity. Doses >100 mg/kg produced renal tubular nephrosis, resulting in acute 

toxicity and mortality. Based on these data, a phase I clinical trial of ZnPcS4-based PDT 

against spontaneous tumors in dogs was started at a dose of 0.25 mg/kg and irradiation with 

675 nm light (100 J/cm2) 24 h after PS intravenous injection (Borgatti-Jeffreys et al., 2005). 

This study demonstrated tumor response using doses of 0.25 mg/kg and no adverse effects 

were observed with ZnPcS4 doses up to 2 mg/kg. Then, a new phase I clinical trial with an 

enlarged cohort of dogs was performed (Borgatti-Jeffreys et al., 2007). The PDT efficacy 

was confirmed in both mesenchymal and epithelial tumors. Another study showed partial 

responses or complete remissions of squamous cell carcinoma of the head and neck in dogs 

and cats treated with ZnPcS4-PDT with no prolonged cutaneous photosensitization or 

adverse effects (Lucroy, 2006). 

In parallel, a repeated-dose toxicity study of ZnPc-based-PDT was performed in 

Wistar rats. The intravenous administration of di-sulfo-di-phthalimidomethyl ZnPc, known 

as Photocyanine, and irradiation with a 670 nm laser light induced liver abnormalities and 
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pigmentation in several important organs at 4 mg/kg/day. The no-observed-adverse-effect 

levels were 1.0 mg/kg in Wistar rats (Zhang et al., 2006) and 1.5 mg/kg in dogs (Liu et al., 

2007). Characterization studies with Photocyanine were performed in order to determine 

optimal light dose and drug dosage in a murine sarcoma S180 model. An inhibitory effect on 

tumor growth was observed for 2 mg ZnPc/kg when irradiation doses using a 670-nm laser 

increased in the range of 36-144 J/cm2. Vertical resection of irradiated tumors showed that 

the depth of local tissue necrosis was 5.7-7.5 mm (Xue et al., 2011). 

 

6. ZnPc-PDT combined strategies 

In the last years several works have focused on the employment of combined 

therapies in order to overcome the high failure rate of single-agent or single-regimen therapy. 

Multiple drug combinations for cancer aim to exploit the additive or synergistic effects 

obtained from the action of two species, resulting in an improved antitumor efficacy, reduced 

side effects, and retarded drug resistance. Thus, PDT coupled with chemotherapy agents has 

proven to be a promising combination treatment for some kinds of tumors (Brodin et al., 

2015). The encapsulation of ZnPc and doxorubicin (DOX) into nanovehicles linked to folic 

acid achieved a synergistic chemotherapy-PDT in tumor cells overexpressing folic acid 

receptors (Liang et al., 2015; Flak et al., 2017; Huang et al., 2018). ZnPc and DOX were also 

conjugated through acid-labile and redox-responsive disulfide linkers in polymeric micelles. 

The observation of DOX fluorescence in the nucleus and ZnPc in the cytoplasm 

demonstrated that acidic and reducing intracellular environments could trigger the release of 

drugs by cleaving the linkers (Gao and Lo, 2018). A synergistic cytotoxicity was therefore 

found for certain DOX:ZnPc ratios in tumor-bearing mice. ZnPc was also covalently 

conjugated with DOX by the sequence Thr-Ser-Gly-Pro. In this case, although the 

conjugation of ZnPc with DOX led to the inhibition of the photodynamic activity of the PS 
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and reduced DOX cytotoxicity, the peptide was sensitive to the activity of a protease highly 

expressed on cancer-associated fibroblasts. As a consequence, an enhanced cytotoxicity was 

observed upon cleavage and illumination (Ke et al., 2017). Synergistic anticancer effects of 

PDT and chemotherapy were also demonstrated by the combination of ZnPc with docetaxel 

(Conte et al., 2013) or paclitaxel (Wang Y et al., 2018b). In addition, the simultaneous 

administration of two PSs, such as ZnPc and a cationic porphyrin, led to a potentiated 

antitumor effect in mice bearing amelanotic melanoma cells (Acedo et al., 2014). ZnPc-PDT 

has also been efficiently combined with a Bcl-2 inhibitor (Liu et al., 2017), an autophagy 

inhibitor (Yu et al., 2019), a cell cycle inhibitor (Yan et al., 2018b) or an immunostimulant 

agent (Marrache et al., 2013). In addition, the combination of the autophagy inhibitor 3-

methyladenine with ZnPc-PDT as an strategy for osteosarcoma treatment down-regulated 

the expression levels of death ligand-1 (PD-L1), inhibiting tumor growth in a model of tumor 

metastasis (Yu et al., 2019). Recent studies have pointed out the role of PD-1 and its ligand 

PD-L1 as the most critical immune checkpoint blocking T-cell response and promoting 

tumor growth (Herbst et al., 2014; Dermani et al., 2019). Thus, further studies of combined 

therapy with immune checkpoint blockade and ZnPc-PDT will broaden the possibility of 

enhancing the immune anti-tumor response.  

When ZnPcs were incorporated into systems employed for hyperthermia generation, 

such as carbon nanohorns and gold nanorods, enhanced PDT efficiency was obtained. In 

these systems, laser irradiation was useful to simultaneously activate the PS and 

hyperthermia surfaces (Zhang et al., 2008; Freitas et al., 2017). Similarly, 

magnetohyperthermia and PDT with ZnPcs incorporated into magnetic nanoemulsions or 

nanoparticles led to significant tumor regression (Primo et al., 2008; Bolfarini et al., 2012; 

Feuser et al., 2015). Therefore, the development of multiple drug combinations or new 
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strategies will undoubtedly contribute to finding better therapeutic options for cancer 

treatment in the near future. 

 

7. Conclusions  

Based on the properties that should posses an ideal PS, phthalocyanines have been widely 

employed as second generation sensitizers. In particular, many efforts have been made to 

develop medicinal Pcs with therapeutic efficacy. In the field of ZnPcs, the photophysical and 

photochemical properties, subcellular localization, phototoxic activity, mechanisms of cell 

death and improved targeting to tumor tissues have been the main topics explored. The 

simultaneous localization of some ZnPcs in lysosomes/mitochondria or lysosomes/ER seems 

to be optimal for cell photodamage and its potential as therapeutic agents. Although the most 

extensive mode of cell death characterized so far has been apoptosis, it is necessary to 

continue investigating the contribution of other death modalities, such as necrosis, autophagy 

or even paraptosis, a type of cell death not yet studied for ZnPcs. The search of new possible 

mechanisms of action may consequently contribute to novel applications for single or 

combined ZnPcs treatments. Up to this moment, there is an immediate need to increase the 

number of clinical trials evaluating ZnPcs. As a result, it would be possible to confirm 

preclinical studies and orientate future research. PDT has much to offer to cancer treatment 

due to its unique combination of tumor cytotoxicity, vessel occlusion and immune response 

with minimal side effects. A deeper understanding of the effects of PDT with ZnPcs could 

enable in the future the improvement of currently used protocols and the treatment of an 

increased number of oncological diseases.   
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Legends to Figures 

 

Figure 1. Chemical structure of ZnPc (A), α-tetrasubstituted ZnPc (B) and β-

tetrasubstituted ZnPc (C) 

 

Figure 2. Main intracellular sites of ZnPcs localization. After irradiation, ZnPcs promote 

the generation of ROS that triggers different phototoxic cellular responses. 
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Figure 3. Mitochondria membrane permeabilization (MMP) induced by deregulation in 

the expression levels of Bcl-2 family proteins leads to activation of either caspase- 

dependent and independent apoptosis. 

 

Figure 4. Contribution of GA photodamage and lysosomal membrane permeabilization 

(LMP) to the activation of the mitochondrial-dependent apoptosis.  

 

Figure 5. Involvement of ER stress induced by photoactivated ZnPcs in the mitochondrial 

apoptotic pathway. 
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