
Fundamenta Informaticae XX (2019) 1–50 1

DOI 10.3233/FI-2016-0000

IOS Press

Satisfiability Calculus: An Abstract Formulation of Semantic Proof
Systems

Carlos G. Lopez Pombo∗

CONICET-Universidad de Buenos Aires.
Instituto de Investigación en Ciencias de la
Computación (ICC)
clpombo@dc.uba.ar

Pablo F. Castro†

CONICET- Department of Computer Science
Universidad Nacional de Rı́o Cuarto
Rı́o Cuarto, Argentina
pcastro@dc.exa.unrc.edu.ar

Nazareno M. Aguirre‡

CONICET- Department of Computer Science
Universidad Nacional de Rı́o Cuarto
Rı́o Cuarto, Argentina
naguirre@dc.exa.unrc.edu.ar

Thomas S.E. Maibaum§

Department of Computing & Software
McMaster University, Canada
tom@maibaum.org

Abstract. The theory of institutions, introduced by Goguen and Burstall in 1984, can be thought
of as an abstract formulation of model theory. This theory has been shown to be particularly
useful in computer science, as a mathematical foundation for formal approaches to software con-
struction. Institution theory was extended by a number of researchers, José Meseguer among
them, who, in 1989, presented General Logics, wherein the model theoretical view of institutions
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is complemented by providing (categorical) structures supporting the proof theory of any given
logic. In other words, Meseguer introduced the notion of proof calculus as a formalisation of
syntactical deduction, thus “implementing” the entailment relation of a given logic. In this paper
we follow the approach initiated by Goguen and introduce the concept of Satisfiability Calculus.
This concept can be regarded as the semantical counterpart of Meseguer’s notion of proof calcu-
lus, as it provides the formal foundations for those proof systems that resort to model construction
techniques to prove or disprove a given formula, thus “implementing” the satisfiability relation
of an institution. These kinds of semantic proof methods have gained a great amount of interest
in computer science over the years, as they provide the basic means for many automated theorem
proving techniques.

Keywords: Institution Theory, Semantic Proof Systems, Formal Methods

1. Introduction

The theory of institutions [1] provides a formal and generic definition of the notion of logical system
from an abstract model-theoretic point of view, mainly using constructions originating in category
theory. In [2], Meseguer complemented the theory of institutions by providing a categorical character-
ization for the notions of entailment system (also called π-institutions by Fiadeiro and Sernadas in [3])
and the corresponding notion of proof calculi. Let us note that the original formulation of institutions
stresses the semantic side of logical systems, leaving the deductive part implicit. This issue was noted
in [4], where the authors proposed to encode the structure of proofs into the category of sentences of
the corresponding institution; however, this idea was left as further work in that seminal paper.

Another important topic of research in this field is the characterisation of the possible functorial
relations between different institutions, intuitively interpreted as semantics preserving translations be-
tween logical systems. In [4, 5, 6] Goguen and Burstall, Tarlecki, and Goguen and Roşu, respectively,
define several kinds of these semantics preserving translations. The most obvious relation between
institutions is the so-called institution morphism, introduced in [4]. Roughly speaking, an institu-
tion morphism captures a “structure forgetting” relationship between two logical systems. As shown
in these articles, the collection of institutions together with the institution morphisms between them
form the category Ins. Additionally, their dual morphisms (named institution co-morphisms [6] or
institution representations [5]) also form a category denoted as CoIns. Relations between institutions
can be defined in many ways and their intuitive interpretation is obtained by examining the direction
of the functorial relations between the components of the related institutions.

Several applications of the theory of institutions in computer science and software engineering
have been proposed in the literature. Sannella and Tarlecki [7] studied how specifications in an arbi-
trary logical system can be structured by using the abstract setting provided by institutions, and later,
in [8], the authors presented an abstract theory for software specification and development introduc-
ing the notion of refinement of specifications based on the idea of implementation step. In [9, 10]
and [11, 12], we can find two alternative proposals for the use of institutions as a foundation for
heterogeneous environments for software specification proposed by Mossakowski and Tarlecki, and
Diaconescu, respectively. Institutions have also been proposed as a very general version of abstract
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model theory [13], offering a suitable formal framework for addressing heterogeneity in specifications
[14, 15], including applications related to modelling languages such as UML [16] and other languages
relevant in computer science and software engineering.

As we already mentioned, the original presentation of the theory of institutions provides an ab-
stract definition of the notion of logical system, but only from its model-theoretical perspective. In
this sense, deductive aspects of logical systems were relegated to satisfy the basic need of formalising
theory presentations, and formulating soundness and completeness with respect to an ideal entailment
relation. Extensions of the theory of institutions capturing proof-theoretical concepts have been exten-
sively studied, most notably by Meseguer [2]. Roughly speaking, Meseguer proposed the extension
of entailment systems with categorical concepts capturing the notion of proof in a very abstract and
general way. In Meseguer’s words:

A reasonable objection to the above definition of logic1 is that it abstracts away the struc-
ture of proofs, since we know only that a set Γ of sentences entails another sentence ϕ,
but no information is given about the internal structure of such a Γ ` ϕ entailment. This
observation, while entirely correct, may be a virtue rather than a defect, because the en-
tailment relation is precisely what remains invariant under many equivalent proof calculi
that can be used for a logic.

Thus, Meseguer’s work concentrates on the introduction of proof-theoretical aspects of a logic, pro-
viding not only the definition of entailment system, but also complementing it with the notion of proof
calculus, obtaining what Meseguer calls a logical system. Intuitively, the notion of proof calculus in-
troduced by Meseguer provides an “implementation” of the entailment relation of a logic. Indeed, this
approach corrected, in our view, the inherent imbalance in favour of models in institutions, enhancing
syntactic aspects in the definition of logical systems.

It is interesting to note that the same lack of an operational view observed in the definition of
entailment systems is still present in the case of the satisfaction relation of any given institution. That
is, in the same way that an entailment system may be “implemented” in terms of different proof
calculi, a satisfaction relation could be “implemented” in terms of different satisfiability checking
procedures. Making these satisfiability checking procedures explicit in the characterization of logical
systems is highly relevant, since many successful software analysis tools are based on them. For
instance, many automated analysis tools rely on model construction, either for proving properties,
as with model checkers, or for finding counterexamples, as with tableaux techniques or SAT-solving
based tools. These techniques constitute an important stream of research in logic, in particular in
relation to (semi)automated software validation and verification.

The so-called semantic proof systems can be traced back to the works of Beth [17, 18], Herbrand
[19] and Gentzen [20]. Beth’s ideas were used by Smullyan to formulate the tableaux method for first-
order predicate logic [21]. Herbrand’s and Gentzen’s works inspired the formulation of resolution
systems presented by Robinson [22]. These methods have also been extended, for instance, to deal
with temporal logics [23, 24], which are widely used in computer science and software engineering, for
example, in program synthesis and requirements analysis [25, 26, 27]. Furthermore, note that methods

1Authors’ note: Meseguer refers to a logic as a structure that is composed of an entailment system together with an
institution, see Definition 2.7.
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like those based on resolution and tableaux are strongly related to the semantics of a logic, making
them useful to guide the construction of models, a use not easily associated with pure deductive
methods like natural deduction or Hilbert systems.

The main goal of this paper is to provide an abstract characterisation of this class of semantics-
based tools for logical systems. This is accomplished by introducing a categorical characterisation
of the notion of satisfiability calculus, which embraces logical tools such as tableaux, resolution,
Gentzen style sequents, and related formalisms. As mentioned above, this can be thought of as a se-
mantic counterpart of Meseguer’s formalisation of proof calculi. We explore the concept of mappings
between satisfiability calculi. While the basic definition of satisfiability calculus, together with some
examples, were introduced in [28], in this paper we provide detailed proofs for the theorems and show
additional examples. Furthermore, we introduce the notions of satisfiability subcalculus and effective
satisfiability subcalculus, and we present the category Sat (formed by satisfiability calculi and map-
pings between them) together with its theoretical properties (resp., Subsat formed by satisfiability
subcalculi and mappings between them, and EffSubsat formed by effective satisfiability subcalculi
and mappings between them).

The paper is organised as follows. In Section 2 we present the definitions and results we will use
throughout this paper. In Section 3 we present a categorical formalisation of satisfiability calculus, sat-
isfiability subcalculus and effective satisfiability calculus, and prove relevant results underpinning the
definitions. We also present examples to illustrate the main ideas. In Section 4 we present two differ-
ent types of mappings between satisfiability calculi, satisfiability subcalculi and effective satisfiability
subcalculi, prove that satisfiability calculi (resp., satisfiability subcalculi and effective satisfiability
subcalculi) form a category and study its structural properties. Finally, in Section 5, we draw some
conclusions and describe further lines of research.

2. Preliminaries

From now on, we assume the reader has a nodding acquaintance with basic concepts from category
theory [29, 30]. We mainly follow the notation introduced in [2].

An entailment system is defined by identifying a family of syntactic consequence relations indexed
by the elements in the corresponding category of signatures. As usual, the entailment relations are re-
quired to satisfy reflexivity, monotonicity2 and transitivity. In addition, a notion of translation between
signatures is considered.

Definition 2.1. (Entailment system [2])
An entailment system is a structure 〈Sign,Sen, {`Σ}Σ∈|Sign|〉 satisfying the following conditions:

• Sign is a category of signatures,

• Sen : Sign→ Set is a functor. Let Σ ∈ |Sign|; then Sen(Σ) returns the set of Σ-sentences, and

2The theory of institutions and general logics focus on monotonic logics. The interested reader is referred to [31] for
a presentation of entailment systems for default logic, a well-known non-monotonic logical system introduced by Reiter in
[32] aiming at the formalisation of defeasible logical reasoning.
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• {`Σ}Σ∈|Sign|, where `Σ⊆ 2Sen(Σ) × Sen(Σ), is a family of binary relations such that for any
Σ,Σ′ ∈ |Sign|, {φ} ∪ {φi}i∈I ⊆ Sen(Σ), Γ,Γ′ ⊆ Sen(Σ), the following conditions are
satisfied:

– reflexivity: {φ} `Σ φ,

– monotonicity: if Γ `Σ φ and Γ ⊆ Γ′, then Γ′ `Σ φ,

– transitivity: if Γ `Σ φi for all i ∈ I and {φi}i∈I `Σ φ, then Γ `Σ φ, and

– `-translation: if Γ `Σ φ, then for any morphism σ : Σ → Σ′ in Sign, Sen(σ)(Γ) `Σ′

Sen(σ)(φ).

Definition 2.2. (Theories [2])
Let 〈Sign,Sen, {`Σ}Σ∈|Sign|〉 be an entailment system. Its category of theories is Th = 〈O,A〉 such
that:

• O = { 〈Σ,Γ〉 |Σ ∈ |Sign| and Γ ⊆ Sen(Σ) }, and

• A =
{
σ : 〈Σ,Γ〉 → 〈Σ′,Γ′〉

∣∣∣ 〈Σ,Γ〉, 〈Σ′,Γ′〉 ∈ O, σ : Σ→ Σ′ ∈ ||Sign||, for all γ ∈ Γ,Γ′ `Σ′
Sen(σ)(γ)

}
.

In addition, if a morphism σ : 〈Σ,Γ〉 → 〈Σ′,Γ′〉 satisfies Sen(σ)(Γ) ⊆ Γ′, it is called axiom
preserving. By retaining those morphisms of Th that are axiom preserving, we obtain the subcategory
Th0.

Note that, in the previous definition, the objects of Th are defined to be a signature and a set of
axioms, which are not necessarily closed under entailment. Other authors (c.f. [7], [33] or [13]) refer
to such category as basic specifications, theory presentations or just presentations; then, the concept
of theory is reserved for those objects satisfying to be closed under entailment. Even though this
separation can be useful in many situations, we adopt the terminology introduced by Meseguer in
[2] where no such difference is needed, and noticing that the present work can be understood as an
extension of the categorical framework for defining logical systems presented in the aforementioned
article.

Definition 2.3. (Closure under entailment)
Let 〈Sign,Sen, {`Σ}Σ∈|Sign|〉 be an entailment system and 〈Σ,Γ〉 ∈ |Th|. We define • : 2Sen(Σ) →
2Sen(Σ) as follows: Γ• =

{
γ
∣∣Γ `Σ γ

}
. This function is extended to elements of Th, by defining it

as follows: 〈Σ,Γ〉• = 〈Σ,Γ•〉. Γ• is called the theory generated by Γ.

Definition 2.4. (Sensibility and simplicity [2])
Let 〈Sign,Sen, {`Σ}Σ∈|Sign|〉 and 〈Sign′,Sen′, {`′Σ}Σ∈|Sign′|〉 be entailment systems, Φ : Th0 →
Th′0 be a functor and α : Sen

�→ Sen′ ◦ Φ a natural transformation. Φ is said to be α-sensible if the
following conditions are satisfied:

1. there is a functor Φ� : Sign→ Sign′ such that sign′ ◦Φ = Φ� ◦ sign, where sign : Th→ Sign
and sign′ : Th′ → Sign′ are the forgetful functors from theory presentations to signatures, and
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2. if 〈Σ,Γ〉 ∈ |Th| and 〈Σ′,Γ′〉 ∈ |Th′| such that Φ(〈Σ,Γ〉) = 〈Σ′,Γ′〉, then (Γ′)• = (∅′ ∪
αΣ(Γ))•, where ∅′ = αΣ(∅)3.

Φ is said to be α-simple if, instead of satisfying (Γ′)• = (∅′ ∪ αΣ(Γ))• in Condition 2, the stronger
condition Γ′ = ∅′ ∪ αΣ(Γ) is satisfied.

It is straightforward to see, based on the monotonicity of •, that α-simplicity implies α-sensibility.
An α-sensible functor has the property that the associated natural transformation α depends only on
signatures. This is a consequence of the following lemma.

Lemma 2.5. (Lemma 22, [2])
Let 〈Sign,Sen, {`Σ}Σ∈|Sign|〉 and 〈Sign′,Sen′, {`′Σ}Σ∈|Sign′|〉 be entailment systems and Φ : Th0 →
Th′0 a functor satisfying Condition 1 of Definition 2.4. Then any natural transformation α : Sen

�→
Sen′ ◦ Φ can be obtained from a natural transformation α� : Sen(Σ)

�→ Sen′ ◦ Φ� by horizontally
composing with the functor sign : Th→ Sign.

Roughly speaking, an institution is an abstract formalisation of the model theory of a logic in
such a way that the existing relations between signatures, sentences over a signature and models for
a signature are made explicit. These aspects are reflected by introducing the category of signatures,
defining two functors capturing the sets of sentences and the classes of models, the first one going
from this category to the category Set and the second one going from this category to Cat, and by
requiring the satisfiability relation to remain invariant under signature change.

Definition 2.6. (Institution [1])
An institution is a structure of the form 〈Sign,Sen, Mod, {|=Σ}Σ∈|Sign|〉 satisfying the following
conditions:

• Sign is a category of signatures,

• Sen : Sign → Set is a functor. Let Σ ∈ |Sign|, then Sen(Σ) is its corresponding set of
Σ-sentences,

• Mod : Signop → Cat is a functor. Let Σ ∈ |Sign|, then Mod(Σ) is its corresponding category
of Σ-models,

• {|=Σ}Σ∈|Sign| is a family of binary relations |=Σ⊆ |Mod(Σ)| × Sen(Σ), for all Σ ∈ |Sign|

such that for all σ : Σ → Σ′ ∈ ||Sign||, φ ∈ Sen(Σ) and M′ ∈ |Mod(Σ′)|, the following |=-
invariance condition holds:

M′ |=Σ′ Sen(σ)(φ) iff Mod(σop)(M′) |=Σ φ .

Intuitively, the last condition above says that the notion of truth is invariant with respect to notation
change. Given 〈Σ,Γ〉 ∈ |Th|, Mod : Thop → Cat is the extension of the functor Mod : Signop →
Cat such that Mod(〈Σ,Γ〉) denotes the full subcategory of Mod(Σ) determined by those models

3∅′ is not necessarily the empty set of axioms. This fact will be clarified later on.
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M ∈ |Mod(Σ)| such thatM |=Σ γ, for all γ ∈ Γ. The relation |=Σ between sets of formulae and
formulae is defined in the following way: given Σ ∈ |Sign|, Γ ⊆ Sen(Σ) and α ∈ Sen(Σ),

Γ |=Σ α if and only if M |=Σ α, for allM∈ |Mod(〈Σ,Γ〉)|.

Now, from Definitions 2.1 and 2.6, it is possible to give a definition of logic by relating both its
model-theoretic and proof-theoretic characterisations. In this respect, coherence between the seman-
tic and syntactic entailment relations is required, reflecting the standard concepts of soundness and
completeness of logical systems.

Definition 2.7. (Logic [2])
A logic is a structure 〈Sign,Sen,Mod, {`Σ}Σ∈|Sign|, {|=Σ}Σ∈|Sign|〉 satisfying the following condi-
tions:

• 〈Sign,Sen, {`Σ}Σ∈|Sign|〉 is an entailment system,

• 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 is an institution, and

• the following soundness condition is satisfied: for any Σ ∈ |Sign|, φ ∈ Sen(Σ), Γ ⊆ Sen(Σ):

Γ `Σ φ implies Γ |=Σ φ .

In addition, a logic is complete if the following condition is satisfied: for any Σ ∈ |Sign|, φ ∈ Sen(Σ),
Γ ⊆ Sen(Σ):

Γ |=Σ φ implies Γ `Σ φ.

Definition 2.1 associates deductive relations to signatures. As already discussed, it is important to
analyse how these relations are obtained. The next definition formalises the notion of proof calculus
by associating a proof-theoretic structure to the deductive relations introduced by the definitions of
entailment systems. As an example, in [2, Ex. 11, pp. 15], Meseguer presents natural deduction as
one of the many proof calculi for first-order predicate logic by resorting to multicategories (see [2,
Def. 10]).

Definition 2.8. (Proof calculus [2])
A proof calculus is a structure 〈Sign,Sen, {`Σ}Σ∈|Sign|,P,Pr, π〉 satisfying the following condi-
tions:

• 〈Sign,Sen, {`Σ}Σ∈|Sign|〉 is an entailment system,

• P : Th0 → StructPC is a functor. Let T ∈ |Th0|, then P(T ) ∈ |StructPC | is the proof-
theoretical structure of T 4,

4The reader should note that StructPC strongly depends on the structure needed to formalise the concept of proof for a
specific proof calculus. For example, while in [2, Ex. 11] the formalisation of natural deduction for first-order logic requires
the use of multicategories [2, Def. 10], in [34, §3] the formalisation of the proof calculus for ω-closure fork algebras with
urelements [35, Def. 7] (a variant of fork algebras [36, 37] with a reflexive and transitive closure operator) requires the use
of strict monoidal categories [29, Ch. VII, §1] whose monoid of objects is given by the (not necessarily finite) subsets of the
corresponding class of equations.
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• Pr : StructPC → Set is a functor. Let T ∈ |Th0|, then Pr(P(T )) is the set of proofs of T ; the
composite functor Pr ◦P : Th0 → Set will be denoted by proofs, and

• π : proofs
�→ Sen is a natural transformation such that for each T = 〈Σ,Γ〉 ∈ |Th0| the

image of πT : proofs(T ) → Sen(T ) is the set Γ•. The map πT is called the projection from
proofs to theorems for the theory T .

The use of the category Th0 for indexing proof structures responds to a technical need. Whenever
we relate two theories with a morphism, say σ : 〈Σ,Γ〉 → 〈Σ′,Γ′〉, the previous definition imposes
a need for extending that relation to proofs of the form π : ∅ → α ∈ |proofs(〈Σ,Γ〉)|. If theories
are taken from Th, we know that there exists π′ : ∅ → Sen(σ)(α) ∈ |proofs′(〈Σ′,Γ′〉)|, but there is
no obvious way to obtain it from π. If theories are taken from Th0, this problem no longer exists as
the proof π′ is obtained by applying exactly the same proof rules, obtaining the same proof structure
(recall the inclusion Sen(σ)(Γ) ⊆ Γ′).

Finally, a logical system is defined as a logic plus a proof calculus for its proof theory.

Definition 2.9. (Logical system [2])
A structure〈Sign,Sen,Mod, {`Σ}Σ∈|Sign|, {|=Σ}Σ∈|Sign|,P,Pr, π〉 is said to be a logical system if
it satisfies the following conditions:

• 〈Sign,Sen,Mod, {`Σ}Σ∈|Sign|, {|=Σ}Σ∈|Sign|〉 is a logic, and

• 〈Sign,Sen, {`Σ}Σ∈|Sign|,P,Pr, π〉 is a proof calculus.

3. Satisfiability in General Logics

In this section, we provide a definition of satisfiability calculus as the means for providing a corre-
sponding operational formulation for the notion of satisfiability. A satisfiability calculus is the formal
characterisation of a method for constructing models of a given theory, thus providing the semantic
counterpart of a proof calculus. Roughly speaking, the semantic relation of satisfaction between a
model and a formula can also be “implemented” by means of some kind of structure that depends on
the model theory of the logic.

Definition 3.1. (Satisfiability calculus)
A structure 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|,M,Mods, µ〉 is a satisfiability calculus if the following
conditions are satisfied:

• 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 is an institution,

• M : Thop → StructSC is a functor. Let T ∈ |Thop|, then M(T ) ∈ |StructSC | is the model
structure of T ,

• Mods : StructSC → Cat is a functor. Let T ∈ |Thop|, then Mods(M(T )) is a category of
canonical (with respect to the structure formalised by StructSC) models of T ; the composite
functor Mods ◦M : Thop → Cat will be denoted by models, and
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• µ : models
�→P ◦Mod is a natural transformation such that, for each T = 〈Σ,Γ〉 ∈ |Th0

op|,
the image of µT : models(T ) → P ◦ Mod(T ) is the (small) subcategory of Mod(T )
corresponding to each canonical representation of a class of models in |models(T )|. The map
µT is called the projection of the category of models of the theory T .

The intuition behind the previous definition is as follows. For any theory T , the functor M assigns
a structure in the category StructSC representing the class of models for T . Notice that the target
of functor M, when applied to a theory T is not necessarily a model but a structure representing the
category of models of T . The reader may have already noticed that the functor M is contravariant with
respect to category Th, reflecting the existing opposite direction of morphisms between categories of
models with respect to those between signatures found in institutions (see Definition 2.6). The functor
Mods maps the structure representing the class of models of a theory T = 〈Σ,Γ〉 to a category whose
objects are canonical representations of models of Γ. Finally, for any theory T , the functor µT relates
each of these structures to the corresponding subcategory of Mod(T ), obtained via the composition
of the functor Mod with the powerset functor P .

Example 3.2. (Tableau Method for First-Order Predicate Logic)
Let us start by presenting the well-known tableaux method for first-order logic [21]. Let us denote by
IFOL = 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 the institution of first-order predicate logic. Let Σ ∈ |Sign|
and S ⊆ Sen(Σ); then a tableau for S is a tree such that:

1. the nodes are labeled with sets of formulae (over Σ) and the root node is labeled with S,

2. if u and v are two connected nodes in the tree (u being an ancestor of v), then the label of v is
obtained from the label of u by applying one of the following rules:

X ∪ {A ∧B}
[∧]

X ∪ {A ∧B,A,B}
X ∪ {A ∨B}

[∨]
X ∪ {A ∨B,A} X ∪ {A ∨B,B}

X ∪ {¬¬A}
[¬1]

X ∪ {¬¬A,A}
X ∪ {A}

[¬2]
X ∪ {A,¬¬A}

X ∪ {A,¬A}
[false]

Sen(Σ)

X ∪ {¬(A ∧B)}
[DM1]

X ∪ {¬(A ∧B),¬A ∨ ¬B}
X ∪ {¬(A ∨B)}

[DM2]
X ∪ {¬(A ∨B),¬A ∧ ¬B}

X ∪ {(∀x)P (x)}
[t is a ground term.] [∀]

X ∪ {(∀x)P (x), P (t)}
X ∪ {(∃x)P (x)}

[c is a new constant.] [∃]
X ∪ {(∃x)P (x), P (c)}

A sequence of nodes s0
τ
α0
0−−→ s1

τ
α1
1−−→ s2

τ
α2
2−−→ . . . is a branch if: a) s0 is the root node of the tree, and

b) for all i ≤ ω, si → si+1 occurs in the tree, ταii is an instance of one of the rules presented above,

and αi are the formulae of si to which the rule was applied. A branch s0
τ
α0
0−−→ s1

τ
α1
1−−→ s2

τ
α2
2−−→ . . . in

a tableau is saturated if there exists i ≤ ω such that si = si+1. A branch s0
τ
α0
0−−→ s1

τ
α1
1−−→ s2

τ
α2
2−−→ . . .

in a tableau is closed if there exists i ≤ ω and α ∈ Sen(Σ) such that {α,¬α} ⊆ si.
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Let s0
τ
α0
0−−→ s1

τ
α1
1−−→ s2

τ
α2
2−−→ . . . be a branch in a tableau. Examining the rules presented above,

it is straightforward to see that every si, with i < ω, is a set of formulae. In each step, we have either
the application of a rule decomposing one formula of the set into its constituent parts with respect to
its major connective, while preserving satisfiability, or the application of the rule [false] denoting the
fact that the corresponding set of formulae is unsatisfiable. Thus, the limit set of the branch is a set
of formulae containing subformulae (and “instances” in the case of quantifiers) of the original set of
formulae for which the tableau was built. As a result of this, every open branch represents, by means
of the set of formulae occurring in the leaf, the class of models satisfying them.

In order to define the tableau method as a satisfiability calculus, we have to provide formal def-
initions for the categories supporting tableaux structures, for the functors M and Mods and for the
natural transformation µ. First, given Σ ∈ |Sign| and Γ ⊆ Sen(Σ), we define StrΣ,Γ = 〈O,A〉
such that O = 2Sen(Σ) and A = {α : {Ai}i∈I → {Bj}j∈J | α = {αj}j∈J }, where for all j ∈ J ,
αj is a branch in a tableau for Γ ∪ {Bj} with leaves ∆ ⊆ {Ai}i∈I StrΣ,Γ can be proved to be
a category (see Lemma A.2 for a detailed proof). Then, we can prove that 〈StrΣ,Γ,∪, ∅〉, where
∪ : StrΣ,Γ × StrΣ,Γ → StrΣ,Γ is the typical bi-functor on sets and functions, and ∅ is the neutral
element for ∪, is a strict monoidal category (see Lemma A.3 for details).

Second, using the previous definition we can introduce the class of legal tableaux (denoted by
StructSC), together with a class of arrows, and prove it is a category. StructSC is defined as 〈O,A〉op
where O = {〈StrΣ,Γ,∪, ∅〉 | Σ ∈ |Sign| ∧ Γ ⊆ Sen(Σ)}, and A = {σ̂ : 〈StrΣ,Γ,∪, ∅〉 →
〈StrΣ′,Γ′ ,∪, ∅〉 | σ : 〈Σ,Γ〉 → 〈Σ′,Γ′〉 ∈ ||Th||}, the homomorphic extensions of the morphisms
in ||Th|| to sets of formulae preserving the application of rules (i.e., the structure of the tableaux) (see
Lemma A.5 for a detailed proof).

Third, the functor M must be understood as the relation between a theory in |Th| and its cor-
responding category of structures representing legal tableaux. So, for every theory 〈Σ,Γ〉, M as-
sociates to it the strict monoidal category [29, Sec. 1, pp. 157] 〈StrΣ,Γ,∪, ∅〉, and for every theory
morphism σ : 〈Σ,Γ〉 → 〈Σ′,Γ′〉 ∈ ||Th|| observed in the opposite direction, M associates to it
a morphism σ̂ : StrΣ,Γ → StrΣ′,Γ′ which is the homomorphic extension of σ to the structure of
the tableaux, also observed in the opposite direction. Then, M : Thop → StructSC is defined
as M(〈Σ,Γ〉) = 〈StrΣ,Γ,∪, ∅〉 and for any σ : 〈Σ,Γ〉 → 〈Σ′,Γ′〉 ∈ ||Th||, M(σop) = σ̂op,
where σ̂ : 〈StrΣ,Γ,∪, ∅〉 → 〈StrΣ′,Γ′ ,∪, ∅〉 is the homomorphic extension of σ to the structures
in 〈StrΣ,Γ,∪, ∅〉 (see Lemma A.7 for a detailed proof).

Fourth, the functor Mods provides the means for obtaining theory presentations characterising
classes of models from structures of the form StrΣ,Γ by identifying the sets of formulae in the leaves
of the open branches of a tableau. To this effect, Mods : StructSC → Cat is defined on objects as
Mods(〈StrΣ,Γ,∪, ∅〉) = 〈O,A〉 where:

•
O =

⋃
〈Σ,∆〉∈|Th|{〈Σ, ∆̃〉 ∈ |Th| | (∃α : ∆→ ∅ ∈ ||StrΣ,Γ||)(∀α′ : ∆′ → ∆ ∈ ||StrΣ,Γ||)

(∆′ = ∆) ∧ (∆̃→ ∅ ∈ α) ∧ ¬(∃ϕ)({¬ϕ,ϕ} ⊆ ∆̃)}
,

(i.e., 1. the existentially quantified α : ∆ → ∅ ∈ ||StrΣ,Γ|| is a tableau, 2. stating that for any
α′ : ∆′ → ∆ ∈ ||StrΣ,Γ||, the equation ∆′ = ∆ holds, expresses that α is saturated, and
3. requesting that ∆̃, where ∆̃ → ∅ is a branch of α, is not inconsistent, expresses that it is the
set of formulae at the leaf of an open branch), and
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• A = {idT : T → T | T ∈ O}, (i.e., only the identities);

and on morphisms as for all σ : 〈Σ,Γ〉 → 〈Σ′,Γ′〉 ∈ ||Th||, Mods(σ̂op)(〈Σ, δ〉) = 〈Σ′,Sen(σ)(δ)〉.
This is proved to be a functor (see Lemma A.9 for a detailed proof).

Finally, µ has to relate the structures representing saturated tableaux with the model satisfy-
ing the set of formulae denoted by the source of the morphism; then we can define µ〈Σ,∆〉 :
models(〈Σ,∆〉)→P ◦ModFOL(〈Σ,∆〉) as for all 〈Σ, δ〉 ∈ |models(〈Σ,∆〉)|, µ〈Σ,∆〉(〈Σ, δ〉) =
ModFOL(〈Σ, δ〉) and prove it to be a natural transformation (see Lemma A.12 for details).

From all this, we can conclude that 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|,M,Mods, µ〉 is a satisfi-
ability calculus. The reader interested in the details of the proofs is pointed to Section A.1 of Ap-
pendix A.

Another important kind of system used by automated theorem provers are the so-called resolu-
tion methods. Below, we show how any resolution system conforms to the definition of satisfiability
calculus.

Example 3.3. (Resolution Method for First-Order Predicate Logic)
As a second example we introduce resolution for first-order logic as described in [38]. We use the
following notation: [ ] denotes the empty list; [A] denotes the unitary list containing the formula A;
`0, `1, . . . are variables ranging over lists; and `i + `j denotes the concatenation of lists `i and `j .
Resolution builds a list of lists representing a disjunction of conjunctions. The rules for resolution are
the following:

`0 + [¬¬A] + `1
[¬¬]

`0 + [A] + `1

`0 + [¬A] + `1

`′0 + [A] + `′1
[¬]

`0 + `1 + `′0 + `′1

`0 + [A ∧A′] + `1
[∧]

`0 + [A,A′] + `1

`0 + [¬(A ∨A′)] + `1
[¬∨]

`0 + [¬A,¬A′] + `1

`0 + [A ∨A′] + `1
[∨]

`0 + [A] + `1

`0 + [A′] + `1

`0 + [¬(A ∧A′)] + `1
[¬∧]

`0 + [¬A] + `1

`0 + [¬A′] + `1

`0 + [∀x : A(x)] + `1
for any closed term t [∀]

`0 + [A[x/t]] + `1

`0 + [∃x : A(x)] + `1
for a new constant c [∃]

`0 + [A[x/c]] + `1

where A(x) denotes a formula with free variable x, and A[x/t] denotes the formula resulting from
replacing variable x by term t everywhere in A. For the sake of simplicity, we assume that lists
of formulae do not contain repeated elements. A resolution is a sequence of lists of formulae. If a
resolution contains an empty list, we say that the resolution is closed; otherwise it is an open resolution.

For every signature Σ ∈ |Sign| and each Γ ⊂ Sen(Σ), we denote by StrΣ,Γ the category whose
objects are lists of formulae, and where every morphism σ : [A0, . . . , An] → [A′0, . . . , A

′
m] repre-

sents a sequence of applications of resolution rules to [A′0, . . . , A
′
m] leading to [A0, . . . , An]. Then,

StructSC is a category whose objects are StrΣ,Γ, for each signature Σ ∈ |Sign| and set of formulae
Γ ∈ Sen(Σ), and whose morphisms are of the form σ̂ : StrΣ,Γ → StrΣ′,Γ′ , obtained by homomor-
phically extending σ : 〈Σ,Γ〉 → 〈Σ′,Γ′〉 in ||Th||.

As for the case of Example 3.2, the functor M : Thop → StructSC is defined as M(〈Σ,Γ〉) =
〈StrΣ,Γ,∪, ∅〉, and Mods : StructSC → Cat is defined as in the previous example. Adapting the
proofs given for Example 3.2 to this example is straightforward.
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A typical use for the methods described above is the search for counterexamples of a given logical
property (i.e., as a refutation procedure). For instance, if we are interested in knowing if a certain
property α follows from a set of formulae Γ, one can try to refute α by building a model for Γ∪{¬α}
resorting to a tableaux method. In this way, one starts by applying rules to Γ ∪ {¬α}, and once a
saturated tableau is reached, if all the branches are closed, then there is no model of Γ also satisfying
¬α, indicating that α follows from Γ. On the other hand, if there exists an open branch, the limit set
of that branch characterises a class of models satisfying both Γ and ¬α, exhibiting a counterexample
for the formula of interest. Note the contrast with Hilbert systems, where one starts from the axioms
by applying deduction rules until the desired formula is obtained.

As we mentioned in Section 1, Meseguer not only developed the idea of formalising the notion
of proof calculus as an “implementation” of the entailment relation of an entailment system, but he
also explored the possibility of restricting a proof calculus producing a subcalculus. The aim of this
definition is to formally characterise the existence of specialised proof calculi, enjoying specific prop-
erties, for specific fragments of the entailment relation. The next definition presents a restriction of
satisfiability calculus in a way analogous to that given by Meseguer in [2].

Definition 3.4. (Satisfiability subcalculus)
A structure of the form 〈Sign,Sen,Mod,Sign0,ax, {|=Σ}Σ∈|Sign|,M,Mods, µ〉 is satisfiability
subcalculus if it satisfies the following conditions:

• 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 is an institution,

• Sign0 is a subcategory of Sign called the subcategory of admissible signatures; the restriction of
the functor Sen to Sign0 will be denoted by Sen0,

• ax : Sign0 → Set is a subfunctor of the functor obtained by composing Sen0 with the powerset
functor, i.e., there is a natural inclusion ax(Σ) ⊆ P(Sen0(Σ)) for each Σ ∈ Sign0. Each
Γ ∈ ax(Σ) is called a set of admissible axioms. This defines a subcategory Thax of Th whose
objects are theory presentations T = 〈Σ,Γ〉 with Σ ∈ Sign0 and Γ ∈ ax(Σ), and whose
morphisms are axiom-preserving theory morphisms H such that H is in Sign0.

• M : Thax
op → StructSC is a functor. Let T ∈ |Thax|, then M(T ) ∈ |StructSC | is the model

structure of T ,

• Mods : StructSC → Cat is a functor. Let T ∈ |Thax|, then Mods(M(T )) is the set of
canonical models of T ; the composite functor Mods ◦M : Thax

op → Cat will be denoted by
models, and

• µ : models
�→P ◦Mod is a natural transformation such that, for each T = 〈Σ,Γ〉 ∈ |Th0

op|,
the image of µT : models(T )→P ◦Mod(T ) is the subcategory of Mod(T ) corresponding
to each canonical representation of a class of models in |models(T )|. The map µT is called
the projection of the category of models of the theory T .
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Note that, in the definition above, the components M, Mods and µmay change depending on ax,
thus we cannot define the notion of satisfiability subcalculus in terms of that of satisfiability calculus
(similarly for Definition 3.5 below).

There are no major differences with respect to [2, Def. 14], except for the lack of restrictions
on the possible conclusions that can be drawn with the subcalculus. Note that, in the case of proof-
theoretic approaches, the introduction of a functor restricting the conclusions as a subfunctor of Sen
is a key element of the definition, in contrast to satisfiability calculi where models being constructed
are not related to any particular formula besides the set of formulae the model has to satisfy. The main
addition in the definition of a satisfiability subcalculus with respect to a satisfiability calculus is the
appearance of the functor ax restricting the sets of formulae to which the satisfiability subcalculus can
be applied.

The following example illustrates Definition 3.4 by restricting a satisfiability calculus for first-
order modal logic to its term-free fragment.

Example 3.5. (Sat. Subcalculus for the Term-Free Fragment of First-Order Modal Logic)
Clarence Irving Lewis established the foundations of modal logics in 1910, in his PhD thesis [39], and
subsequent research material culminating in [40], where he introduced five logical systems. These
systems (named S1 to S5) assume different interpretations of modalities. First and second order ex-
tensions of Lewis’ S2, S4, and S5, together with their corresponding axiomatic systems, were later
developed by Barcan in [41, 42, 43]. The present era of modal logics started with the introduction of
relational semantics, commonly referred to as “possible worlds” semantics, by Saul Kripke in [44, 45].

We restrict the satisfiability calculus (based on tableaux) for first-order modal logic, presented by
Fitting in [46], to its term-free fragment. The presentation follows [47] with the sole exception of
the feature that, as we did in Example 3.2, nodes in the tableaux will be sets of formulae rather than
just singleton sets. As usual, when dealing with modal logics, we may assume a rigid or a flexible
interpretation of the domains. For the sake of simplicity, we will assume the rigid setting.

Let IFOML = 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 be the institution of first-order modal logic de-
fined as follows:

1. Sign is the category of first-order signatures whose objects are of shape 〈C,F ,P〉, where C, F
and P are denumerable sets of constant, function and predicate symbols, respectively. Function
and predicate symbols have an associated arity. The morphisms in Sign are 3-tuples of total
mappings between the corresponding sets of symbols, with the second and third components,
being arity-preserving.

2. Sen is a functor defined as follows: given Σ = 〈C,F ,P〉 ∈ |Sign| and X a set of variable
symbols, Sen(Σ) is the subset of the smallest set Form(Σ,X ) of formulae obtained by the
following grammar:

Term(Σ,X ) ::= c, c ∈ C
∣∣ x, x ∈ X ∣∣ f(t1, . . . , tarity(f)), f ∈ F , {t1, . . . , tarity(f)} ⊆ Term(Σ,X )

Form(Σ,X ) ::= P (t1, . . . , tarity(P )), P ∈ P, {t1, . . . , tarity(P )} ⊆ Term(Σ,X )
∣∣ ¬Form(Σ,X )

∣∣
Form(Σ,X ) ∨ Form(Σ,X )

∣∣ (∃x)Form(Σ,X ), x ∈ X
∣∣ ♦Form(Σ,X )

containing only all the sentences (i.e., formulae with no free variables). Given a morphism
σ : Σ → Σ′ ∈ ||Sign||, the function between the corresponding sets of sentences obtained
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as Sen(σ) is the homomorphic extension of σ to the structure of the fomulae as shown in the
previous grammar.

3. Mod is a functor defined as follows: given Σ = 〈C,F ,P〉 ∈ |Sign| and X a set of variable
symbols, Mod(Σ) is the category whose objects are structures consisting of: a) an augmented
frame [47, Def. 4.6.1] 〈∆,R, S〉 where ∆ is a set of worlds, R ⊆ ∆ × ∆ and S a domain;
and b) a function L such that for all w ∈ ∆, L(w) is a first-order interpretation of the non-
logical symbols in Σ of shape I = 〈S, {cI}c∈C , {fI}f∈F , {P I}P∈P〉 (see for instance [48]);
and morphisms are homomorphisms between these structures. Finally, given σ : Σ → Σ′ ∈
||Sign||, Mod(σ) denotes the usual (contravariant) reduct operation between the corresponding
categories of models.

4. Given Σ ∈ |Sign|, the satisfaction relation |=Σ⊆ |Mod(Σ)| × |Sen(Σ)| is defined in terms of
the internal satisfaction relation as follows: for all 〈∆,R, S,L〉 ∈ |Mod(Σ)|, α ∈ Sen(Σ)

〈∆,R, S,L〉 |=Σ α iff for all w ∈ ∆ and v : X → S, 〈∆,R, S,L〉, w, v |=Σ α

Internal satisfaction is then defined as follows: letM = 〈∆,R, S,L〉 be a model for signature
〈C,F ,P〉, w ∈ ∆ and v : X → S a valuation:

M, w, v |=Σ P (t1, . . . , tarity(P )) iff (mMw,v(t1), . . . ,mMw,v(tarity(P ))) ∈ PL(w), for all P ∈ P ,
{t1, . . . , tarity(P )} ⊆ Term(Σ,X ).

M, w, v |=Σ ¬α iff it does not holdM, w, v |=Σ α

M, w, v |=Σ α ∨ β iff M, w, v |=Σ α orM, w, v |=Σ β

M, w, v |=Σ (∃x)α iff there exists a ∈ S such thatM, w, v[x 7→ a] |=Σ α

M, w, v |=Σ ♦α iff there exists w′ ∈ ∆ such that (w,w′) ∈ R and
M, w′, v |=Σ α

the valuation function mMw,v : Term(Σ,X )→ S, extending v to terms, is defined as:

mMw,v(c) = cL(w), for all c ∈ C.
mMw,v(x) = v(x), for all x ∈ X .

mMw,v(f(t1, . . . , tarity(f))) = fL(w)(mMw,v(t1), . . . ,mMw,v(tarity(R))), for all f ∈ F and
{t1, . . . , tarity(f)} ⊆ Term(Σ,X ).

It is easy to prove that IFOML is an institution. Next, we present the tableau technique introduced
by Fitting in [47, Chapter 5]. Given Σ ∈ |Sign|, α, β ∈ Sen(Σ) we define the following dual operators
(∀x)α ≡ ¬(∃x)¬α and α ∧ β ≡ ¬(¬α ∨ ¬β). A prefix is a finite sequence of positive integers. A
prefixed formula is an expression of the form σ : S, where σ is a prefix and S is a set of formulae.

Let Σ ∈ |Sign| and Γ ⊆ Sen(Σ); then a tableau for Γ is a tree defined as in Example 3.2 but
considering that nodes in the tree are sets of prefixed formulae instead of just formulae. There are four
new rules, two for possibility and two for necessity:
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X ∪ {σ : ♦A}
[n is new] [Pos1]

X ∪ {σ : ♦A, σ.n : A}
X ∪ {σ : ¬�A}

[n is new] [Pos2]
X ∪ {σ : ¬�A, σ.n : ¬A}

X ∪ {σ : �A}
[Nec1]

X ∪ {σ : �A} ∪ {σ.n : A | σ.n : B ∈ X}
X ∪ {σ : ¬♦A}

[Nec2]
X ∪ {σ : ¬♦A} ∪ {σ.n : ¬A | σ.n : B ∈ X}

The notions of branch, saturated branch and closed branch are defined as in Example 3.2, but
taking into account that formulae are prefixed, so closeness requires contradictory formulae to be
named with the same prefix. Once again, given the way in which branches are defined, for a branch
in a tableau, either its limit set is the entire set of sentences over the signature as a consequence of
containing a contradiction named with the same prefix, or it exhibits, by means of a set of prefixed
formulae, a class of models satisfying them. Defining a satisfiability calculus based on the technique
presented before is analogous to Example 3.2, but considering the morphisms needed to represent the
additional derivations using rules Pos1, Pos2, Nec1 and Nec2.

In order to define the satisfiability subcalculus corresponding to the term-free fragment of IFOML,
we have to provide appropriate definitions for Sign0 and ax. We define Sign0 as the complete sub-
category of Sign whose sets of constant and function symbols are empty and whose set of predicate
symbols contain only predicates with arity 0. The reader should note that by choosing those signatures,
the restriction of the functor Sen to them results in the term-free fragment of the language. Therefore,
given Σ = 〈∅, ∅,P〉 ∈ |Sign0|, Sen0(Σ) is the subset of the smallest set Form(Σ, ∅) of the formulae
obtained by the following grammar:

Form(Σ, ∅) ::= P, P ∈ P
∣∣ ¬Form(Σ, ∅)

∣∣ Form(Σ, ∅) ∨ Form(Σ, ∅)
∣∣ ♦Form(Σ, ∅)

containing only all the sentences (i.e., formulae with no free variables).
Finally, we define ax = P ◦Sen0. Therefore, for any Σ ∈ |Sign0|, the application of the tableaux

technique presented above, defined as a satisfiability subcalculus, is capable of building tableaux for
any set of formulae over sentences of Sen0(Σ). This is a direct consequence of [47, Defs. 2.2.1–2.2.8].

The next definition introduces the notion of effectiveness of the procedure for constructing struc-
tures characterising models for sets of sentences over a logical (sub)language. To this end, we follow
Meseguer’s approach [2, Def. 16], which, in turn, adopts the axiomatic view of computability outlined
by Shoenfield in [49]. The elementary notions are those of a finite object, a space of finite objects, and
recursive functions. In Shoenfield’s own words, a finite object is an “object which can be specified by
a finite amount of information”, a space is “an infinite class X of finite objects such that, given a finite
object x, we can decide whether or not x belongs to X”. Now, given spaces X and Y , a recursive
function f : X → Y is then a total function that can be computed by an algorithm (i.e., by a terminat-
ing program, disregarding space and time limitations); spaces and recursive functions form a category
Space. Effectiveness is then obtained by restricting sentences and axioms over selected signatures to
be organised in a space.

Definition 3.6. (Effective satisfiability subcalculus)
A structure of the form Q = 〈Sign,Sen,Mod,Sign0, Sen0,ax, {|=Σ}Σ∈|Sign|,M,Mods, µ〉 is a
effective satisfiability subcalculus if it satisfies the following conditions:

• 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 is an institution.



16 C.L.Pombo et al. / Satisfiability Calculus: An Abstract Formulation of Semantic Proof Systems

• Sign0 is a subcategory of Sign called the subcategory of admissible signatures; let J : Sign0 ↪→
Sign be the inclusion functor.

• Sen0 : Sign0 → Space is a functor such that U ◦ Sen0 = Sen ◦ J , where U : Space→ Set is
the obvious forgetful functor.

• ax : Sign0 → Space is a subfunctor of the functor obtained by composing Sen0 with the
functor Pfin : Space → Space, that sends each space to the space of its finite subsets. This
defines a subcategory Thax of Th whose objects are theories T = 〈Σ,Γ〉 with Σ ∈ Sign0 and
Γ ∈ ax(Σ), and whose morphisms are axiom-preserving theory morphisms H such that H is
in Sign0.

• M : Thax
op → StructSC is a functor. Let T ∈ |Thax|, then M(T ) ∈ |StructSC | is the model

structure of T .

• Mods : StructSC → Space is a functor. Let T ∈ |Thax|, then Mods(M(T )) is the set of
canonical models of T ; the composite functor Mods ◦M : Thax

op → Space will be denoted
by models.

• µ : models
�→P ◦Mod is a natural transformation such that, for each T = 〈Σ,Γ〉 ∈ |Th0

op|,
the image of µT : models(T )→P ◦Mod(T ) is the subcategory of Mod(T ) corresponding
to each canonical representation of a class of models in |models(T )|. The map µT is called
the projection of the category of models of the theory T .

• U(Q) = 〈Sign,Sen,Mod, Sign0,U ◦ ax, {|=Σ}Σ∈|Sign|,M,U ◦ Mods, µ ◦ U〉 is a satis-
fiability subcalculus, where µ ◦ U denotes the natural transformation formed by {µT ◦ U :
U ◦models(T )→P ◦Mod(T )}T∈|Tax |.

Concisely speaking, a space is an infinite set of finite objects for which membership can be de-
cided. Resorting to this, the main differences between Definitions 3.4 and 3.6 are that:

1. the restriction Sen0 of the functor Sen must satisfy U ◦ Sen0 = Sen ◦ J , and

2. all occurrences of the category Set involved in the definition are replaced by Space (see for
example, the conditions imposed on functor ax).

Condition 1 above establishes that the restriction Sen0 : Sign0 → Space of the functor Sen :
Sign → Set is coherent with the inclusion functor J and the forgetful functor U , and Condition 2
ensures decidability.

The following example is formulated as an extension of Example 3.5 by proving the effectiveness
of the satisfiability subcalculus for finite sets of axioms over the term-free fragment of first-order
modal logic.

Example 3.7. (Effectiveness of the Sat. Subcalculus for Finite Presentations over the Term-Free
Restriction of First-Order Modal Logic)
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Consider Q = 〈Sign,Sen,Mod,Sign0, Sen0,ax, {|=Σ}Σ∈|Sign|,M,Mods, µ〉 the satisfiability
subcalculus determined by the restriction of first-order modal logic to its term-free fragment, pre-
sented in Example 3.5. Its effectiveness can be derived by setting the functor ax to be Pfin ◦Sen0 in
order to guarantee that any tableau will also be finite, and with the following observations:

• any tableau obtained by applying the technique presented in [47] for first-order modal logic
to any theory presentation over ax(Σ), for any Σ ∈ |Sign0|, is equivalent to one obtained by
applying the tableaux technique for modal logic [50];

• the definition of satisfiable set of prefixed formulae [47, Def. 2.5.1] and the fact that a closed
tableau is not satisfiable [47, Prop. 2.5.2];

• soundness of the rules: the definition of extension of a satisfiable branch and the fact that it
results in a satisfiable branch [47, Prop. 2.5.3]; and

• completeness of the procedure: the fact that every finite set of prefixed formulae has a bounded
height, finitely branching saturated tableau [50, Chap. 8].

As a way of illustration of the previous definition, we provide a proof of the effectiveness of Q by
instantiating the formal definition of effective satisfiability subcalculus given in Definition 3.6.

Sign0 is a complete subcategory of Sign so we assume J : Sign0 ↪→ Sign to be the identity
inclusion functor (i.e., for all Σ ∈ |Sign0|, J(Σ) = Σ and for all σ ∈ ||Sign0||, J(σ) = σ. Sen0 is
defined as the subfunctor of Sen resulting from restricting the latter to the objects and morphisms in
Sign0). It is easy to prove that the image of Sen0 : Sign→ Space is a space because:

• given Σ ∈ |Sign0|, the set Sen0(Σ) is a recursive infinite set of finite objects, and

• given σ ∈ ||Sign0||, Sen0(σ) is a total function mapping formulae to formulae of the corre-
sponding spaces in such a way that identities and composition are preserved (see Lemma A.15
for a detailed proof).

It is also easy to observe that U ◦ Sen0 = Sen ◦ J as a consequence of:

• J : Sign0 ↪→ Sign being the identity inclusion functor,

• the nature of the forgetful functor U : Space→ Set, and

• Sen0 being the subfunctor of Sen, when the latter is restricted to the objects and morphisms of
Sign0 (see Lemma A.16 for a detailed proof).

Next, we prove that ax : Sign0 → Space is a functor as a consequence of being the extension
of Sen0 to finite sets of formulae (see Lemma A.17 for a detailed proof). Finally, we note that
Mods : StructSC → Space is a functor; since Mods is the extension of ax to finite trees whose
nodes are sets of formulae (see Lemma A.18 for the details).
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4. Relating Satisfiability Calculi

Several notions of morphisms between institutions, and their properties, were investigated in [4, 2, 5].
More recently, in [6], all these notions of morphism were investigated in more detail by observing how
the direction of the arrows modify its interpretation. In this section we will concentrate only on ex-
tending the results presented by Tarlecki in [5], focussing on institution morphisms and comorphisms,
since these notions have been used to formalise several concepts arising in software engineering: they
are used as the main vehicle for borrowing proofs along logic translation in [5]; for defining heteroge-
neous development environments for software specifications and designs in [10, 51], which provides
the foundations of tools like HETS [14] and CafeOBJ [11]; for providing structured specifications in
general in [7], and for specific formal languages in [52, 53]; for defining proof systems for structured
specifications [54, 55, 56]; and for formalising data and specification refinements in [33, 57, 52], just
to give a few examples.

Let us recall the basic definitions regarding institution morphism and comorphism.

Definition 4.1. (Institution comorphism [5])
Let I = 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 and I′ = 〈Sign′, Sen′,Mod′, {|=′Σ}Σ∈|Sign′|〉 be institu-
tions. Then, 〈ρSign, ρSen, ρMod〉 : I→ I′ is an institution comorphism if and only if:

• ρSign : Sign→ Sign′ is a functor,

• ρSen : Sen
�→ Sen′ ◦ ρSign is a natural transformation, being a family of total functions

{ρSenΣ : Sen(Σ) → Sen′(ρSign(Σ))}Σ∈|Sign| such that for signatures Σ1,Σ2 ∈ |Sign| and
morphism σ : Σ1 → Σ2 ∈ ||Sign||,

Sen(Σ2)

6

Sen(σ)

Sen(Σ1)

-
ρSenΣ2

Sen′(ρSign(Σ2))

6

Sen′(ρSign(σ))

Sen′(ρSign(Σ1))-
ρSenΣ1

⊙
Σ2

6

σ

Σ1

• ρMod : Mod′ ◦ (ρSign)op
�→ Mod5 is a natural transformation; being a family of functors

{ρMod
Σ : Mod′((ρSign)op(Σ)) → Mod(Σ)}Σ∈|Sign|, such that for signatures Σ1,Σ2 ∈ |Sign|

and morphism σ : Σ1 → Σ2 ∈ ||Sign||,

Mod′((ρSign)op(Σ2))

?

Mod′((ρSign)op(σop))

Mod′((ρSign)op(Σ1))

-
ρMod

Σ2
Mod(Σ2)

?

Mod(σop)

Mod(Σ1)-
ρMod

Σ1

⊙
Σ2

6

σ

Σ1

5The functor (ρSign)op : Sign′
op → Signop is the same as ρSign : Sign′ → Sign but considered between the opposite

categories.
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such that for any Σ ∈ |Sign|, the function ρSenΣ : Sen(Σ) → Sen′(ρSign(Σ)) and the functor ρMod
Σ :

Mod′(ρSign(Σ)) → Mod(Σ) preserves the following satisfaction condition: for any α ∈ Sen(Σ)
andM′ ∈ |Mod(ρSign(Σ))|,

M′ |=ρSign(Σ) ρSenΣ (α) iff ρMod
Σ (M′) |=Σ α .

Intuitively, an institution comorphism ρ : I → I′ expresses how the “poorer” set of sentences
(respectively, category of models) associated with I is encoded into the “richer” one associated with
I′. This is done by providing: 1. a mapping from I signatures to I′ signatures, 2. a translation of
I-sentences on signature Σ to I′-sentences on the signature to which Σ is mapped, 3. a reduction of
I′-models for the signature to which Σ is mapped to I-models for signature Σ. The direction of the
arrows shows how the whole of I is represented by some parts of I′. Institution comorphisms enjoy
some interesting properties, for instance, the preservation of logical consequence [5, Prop. 13], and,
under some conditions, its reflection [5, Thm. 14]. The interested reader is referred to [5] for further
details about these properties, and to [58, 59] for some structural properties of the category formed by
institutions and institution comorphisms.

In many cases, in particular those in which the class of models of a signature in the source in-
stitution is completely axiomatisable in the language of the target one, Definition 4.1 can easily be
extended to map signatures of one institution to theories of another. This is done in such a way that
the class of models of the richer logical language can be constrained, by means of the addition of ax-
ioms (therefore, there is a need for theories in the image of the functor γSign), to represent exactly the
same class of models of the signature in the poorer logical language. Many examples of this relation
between logics have been developed, one of the most prominent examples being the translation from
modal logic to first-order logic with equality [60]. Many other examples are worth mentioning, such
as algebraisations of different logics, like those relating fork algebras [61, 62], an extension of relation
algebras [63, 64], with several other logics (c.f. [37, 65]).

In some cases institution comorphisms can be extended to what Meseguer introduced under the
name map of institutions [2, Def. 27], and recently renamed as theoroidal comorphism [6, Def. 5.3],
by reformulating the definition so that the functor mapping signatures to theory presentations maps
theory presentation to theory presentations (i.e. γTh : Th → Th′). This extension can be done in
many ways, one of them being when γTh is γSen-sensible (see Definition 2.4) with respect to the
entailment systems induced by the institutions I and I′.

The notion of a theoroidal comorphism of satisfiability calculi is the natural extension of a theo-
roidal comorphism of institutions in order to consider the more concrete version of the satisfiability
relation. In some sense, if a theoroidal comorphism of institutions provides a means for representing
one satisfiability relation in terms of another, in a semantics preserving way, the theoroidal comor-
phism of satisfiability calculi provides a means for understanding one particular model construction
technique, for a (potentially) poorer logical system, in terms of the structures produced by another,
designed for a (potentially) richer logical language.

Definition 4.2. (Theoroidal comorphism of satisfiability calculi)
Let S be the satisfiability calculus 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|,M,Mods, µ〉 and S′ the satisfia-
bility calculus 〈Sign′,Sen′,Mod′, {|=′Σ}Σ∈|Sign′|,M′,Mods′, µ′〉.
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Then, 〈ρSign, ρSen, ρMod, γ〉 : S → S′ is a theoroidal comorphism of satisfiability calculi if and
only if:

• 〈ρTh, ρSen, ρMod〉 : I → I′ is an institution theoroidal comorphism, where ρTh : Th → Th′ is
the ρSen-sensible extension of ρSign defined as ρTh(〈Σ,Γ〉) = 〈ρSign(Σ), ∅′ ∪ ρSenΣ (Γ)〉, and

• γ : models′ ◦ ρTh �→ models is a natural transformation such that the following equality
holds:

Thop

Mod

##

models

55

ρTh

&&

�
−→µ Cat = Thop

Mod

%%

ρTh

##
�
−→ρMod Cat

�
−→γ

� −→µ′

Th′
op

models′

LL

Th′
op models′

KK
Mod′

,,

Roughly speaking, the 2-cell equality in the definition says that, if we obtain counterexamples by
resorting to the machinery of S′ and then applying ρ to extract models of S, the resulting structures are
those that can be obtained by employing the machinery of S. The following example illustrates these
ideas.

Example 4.3. (Relating Modal Logic to First-Order Logic)
A simple example of a theoroidal comorphism between satisfiability calculi is the relation between
the tableau method for propositional logic and the one for first-order logic. Let us introduce a more
interesting example. We will map the tableau method for modal logic (as presented by Fitting [38]) to
the first-order predicate logic tableau method. The theoroidal comorphism relating the institutions is
given by the standard translation from modal logic to first-order logic [60, Def. 2.45] (recalled below).
Let us recast here the tableau method for the system K of modal logic. Recall that formulae of standard
modal logic are built from boolean operators and the “diamond operator” ♦. The “box operator” �
is defined as the dual to ♦, i.e., as �ϕ = ¬♦¬ϕ. Intuitively, formula ♦ϕ states that ϕ holds in
some state accessible from the current state, while �ϕ states that ϕ holds in all states accessible from
the current state. The semantics for modal logic is given by means of Kripke structures. A Kripke
structure is a tuple 〈W,R,L〉, whereW is a set of states,R ⊆W ×W is a relation between states, and
L : W → 2AP is a labelling function (AP is a set of atomic propositions). Note that a signature in
modal logic is given by a set of propositional letters: 〈{pi}i∈I〉; the interested reader is referred to [60].
In [38] modal formulae are prefixed by labels denoting semantic states. Labelled formulae are then
terms of the form ` : ϕ, where ϕ is a modal formula and ` is a sequence of natural numbers n0, . . . , nk.
The relation R between these labels is then defined in the following way: `R`′ ≡ ∃n : `, n = `′. The
new rules are the following:

X ∪ {` : �ϕ}
For all `′ s.t. `R`′ and s.t. `′ appears in X [�]

X ∪ {` : �ϕ, `′ : ϕ}
X ∪ {` : ♦ϕ}

For `′ such that `R`′ [♦]
X ∪ {` : ♦ϕ, `′ : ϕ}

The rules for the propositional connectives are the usual ones, obtained by labelling the formulae.
Note that labels denote states of a Kripke structure. Branches, saturated branches and closed branches
are defined in the same way as in Example 3.2, but considering the relations between sets to be also
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indexed by the relation used at that point. Thus, si
ταi−−→
Ri

si+1 must be understood as follows: the set

si+1 is obtained from si by applying rule ταi to formula αi ∈ si under the accessibility relation Ri.
Let SCFOL = 〈SignFOL,SenFOL,ModFOL, {|=Σ

FOL}Σ∈|SignFOL|,MFOL,ModsFOL, µFOL〉
and SCK = 〈SignK ,SenK ,ModK , {|=Σ

K}Σ∈|SignK |,MK ,ModsK , µK〉, be the classic tableau
methods for first-order predicate logic and modal logic, respectively, formalised as satisfiability cal-
culi. First we define a comorphism 〈ρSign, ρSen, ρMod〉 : IK → IFOL as follows:

• ρSign : SignK → SignFOL is defined as ρSign(〈{pi}i∈I〉) = 〈R, {pi}i∈I〉 by mapping each
propositional variable pi to a first-order unary logic predicate pi, for all i ∈ I, and adding
a binary predicate R, and ρSign(σ : 〈{pi}i∈I〉 → 〈{p′i′}i′∈I′〉) = σ′ : 〈R, {pi}i∈I〉 →
〈R′, {p′i′}i′∈I′〉 mapping R to R′, and pi to σ(pi) for all i ∈ I, and we prove it is a functor
(see Lemma A.20 for a detailed proof),

• Let Σ ∈ |SignK |. Then ρSenΣ : SenK(Σ) → SenFOL(ρSign(Σ)) is defined recursively as
ρSenΣ (α) = TΣ,x(α) where:

TΣ,x(p) = p(x), for all p ∈ Σ.

TΣ,x(¬α) = ¬TΣ,x(α)

TΣ,x(α ∨ β) = TΣ,x(α) ∨ TΣ,x(β)

TΣ,x(♦α) = (∃y)(R(x, y) ∧ TΣ,y(α))

and considering that for every Σ ∈ |SignK |, ρSenΣ is a function, we prove that ρSen is a natural
family of functions (see Lemma A.23 for a detailed proof), and

• Let Σ = 〈{pi}i∈I〉 ∈ |SignK |, ρMod
Σ : ModFOL(ρSign(Σ)) → ModK(Σ) be defined as

follows:

– for allM = 〈S,R, {pi}i∈I〉 ∈ |ModFOL(〈R, {pi}i∈I〉)|, ρMod
Σ (M) = 〈S,R,L〉, with

L(pi) = {s ∈ S|pi(s)}.6

– let Σ = 〈{pi}i∈I〉 ∈ |SignK |; then for all h : 〈S1, R1, {p1i}i∈I〉 → 〈S2, R2, {p2i}i∈I〉 ∈
||ModFOL(〈R, {pi}i∈I〉)||, we define ρMod

Σ (h) to be ĥ, where ĥ(s1) = s2 if and only if
h(s1) = s2 for all s1 ∈ S1.

and then prove that: 1. for every Σ ∈ |SignK |, ρMod
Σ is a functor (see Lemma A.26), and 2. ρMod

is a natural family of functors (see Lemma A.27).

As a corollary of the previous observations, we obtain that 〈ρTh, ρSen, ρMod〉, where ρTh is the ρSen-
sensible extension of ρSign given in Definition 4.2, is a theoroidal comorphism of institutions. The
proof of this corollary ultimately relies on the correctness of the translation presented in [60]. Using
this map we can define a theoroidal comorphism between the corresponding satisfiability calculi. Now,
we have to prove that structures, representing the tableaux for first-order predicate logic, for formulae

6Recall that given Σ = 〈{pi}i∈I〉 ∈ |SignK |, ρSign(Σ) = 〈R, {pi}i∈I〉.
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resulting from the ρSen-translation of modal logic formulae, can indeed be translated to modal logic
tableaux for the original modal logic formulae.

Second, it is important to recall that, whenever we consider sets of formulae resulting from the
application of function ρSen〈{pi}i∈I〉, the first-order predicate logic tableau will have a particular shape,
mainly because the application of rule [∀] (resp., [∃]) is restricted to the formulae resulting from the
application of the translation. Thus, if 〈{pi}i∈I〉 ∈ |SignK |, then for all α ∈ |SenK(〈{pi}i∈I〉)|, when
ρSen〈{pi}i∈I〉(α) = β, any quantified subformulae in β is either of the form: a) (∀x)(R(y, x) =⇒ ϕ(x)),
or b) (∃x)(R(y, x) ∧ ϕ(x)).

Then, we can obtain modal logic tableaux from first-order predicate logic tableaux by defining a
function T in the following way7,8:

•
X ∪ {(∃x)(R(y, x) ∧ P (x))}

x is a new constant [∃]
X ∪ {(∃x)(R(y, x) ∧ P (x)), R(y, x) ∧ P (x)}

[∧]
X ∪ {(∃x)(R(y, x) ∧ P (x)), R(y, x) ∧ P (x), R(y, x), P (x)}

↓ T

X ∪ {` : ♦P}
x is a new label such that R(y, x) [♦]

X ∪ {` : ♦P, x : P}

•

X ∪ {(∀x)(¬R(y, x) ∨ P (x))}
x is a ground term [∀]

X ∪ {(∀x)(¬R(y, x) ∨ P (x)),¬R(y, x) ∨ P (x)}
[∨]

X ∪ {(∀x)(¬R(y, x) ∨ P (x)),

¬R(y, x) ∨ P (x),

¬R(y, x)}

∣∣∣∣∣∣∣
X ∪ {(∀x)(¬R(y, x) ∨ P (x)),

¬R(y, x) ∨ P (x),

P (x)}

↓ T

X ∪ {` : �P}
x is a label occurring in X ∪ {`} such that R(`, x) [�]

X ∪ {` : �P, x : P}

Third, we define the components of γ : modelsFOL ◦ ρTh
�→ modelsK . Let 〈〈{pi}i∈I〉,Γ〉 ∈

|ThK |, then we define:

γ〈〈{pi}i∈I〉,Γ〉(〈〈R, {pi}i∈I〉,∆〉) = 〈〈{pi}i∈I〉, {ϕ ∈ |SenK(〈{pi}i∈I〉)| | ρSen〈{pi}i∈I〉(ϕ) ∈ ∆}〉

Observe that it is a functor and then prove that γ : modelsFOL ◦ ρTh
�→ modelsK is a natural

transformation (see Lemma A.33).
Fourth, we prove that µK 〈〈{pi}i∈I〉,Γ〉 ◦γ〈〈{pi}i∈I〉,Γ〉 = ρMod

ρSign(〈{pi}i∈I〉)
◦µFOLρTh(〈〈{pi}i∈I〉,Γ〉) as

required by Definition 4.2 (see Lemma A.34).
Finally, we obtain as a corollary that 〈ρTh, ρSen, ρMod, γ〉 is a theoroidal comorphism of satisfia-

bility calculi.
7In order to simplify the following definition, we will restrict ourselves to those first-order predicate logic tableaux in

which, when the rule [∀] (resp., [∃]) is applied, the rules [∨] and [¬] (resp., [∧]) are applied. Notice that this assumption
does not limit the definitions and results in any way because any other legal tableau for the same set of formulae that does
not satisfy this property can be reordered to satisfy it.

8Notice that the translation of the rules for the propositional operators act on the labellings by just preserving them.
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This means that building a tableau using the first-order rules for the translation of a modal theory,
then obtaining structures representing models in modal logic using γ, and therefore obtaining the
class of models by using µ, is exactly the same as obtaining the first-order models by µ′ and then the
corresponding modal models by using ρMod. Roughly speaking, this implies that the translation of
saturated tableaux is coherent with respect to the mapping of institutions.

Theoroidal comorphisms of satisfiability calculi can be extended to theoroidal comorphisms of
satisfiability subcalculi and theoroidal comorphisms of effective satistfiability subcalculi in a way
analogous to [2, Def. 35], where the relation is established only between the restrictions performed
over the calculus by the newly introduced elements.

Definition 4.4. (Theoroidal comorphism of (effective) satisfiability subcalculi)
Let S be the satisfiability calculus 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|,M,Mods, µ〉 and S′ the satisfia-
bility calculus 〈Sign′,Sen′,Mod′, {|=′Σ}Σ∈|Sign′|,M′,Mods′, µ′〉.

Then, 〈ρSign, ρSen, ρMod, γ〉 : S → S′ is a theoroidal comorphism of satisfiability subcalculi if
and only if:

• 〈ρTh, ρSen, ρMod〉 : I→ I′ is an institution theoroidal comorphism, where ρTh : Th→ Th′ is a
ρSen-sensible extension of ρSign,

• ρTh : Th→ Th′ restricts to a functor ρThax : Thax → Th′ax
9, and

• γ : models′ ◦ ρTh �→ models is a natural transformation such that the following equality
holds:

Thop
ax

Mod

$$

models

55

ρTh

%%

�
−→µ Cat = Thop
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Mod

%%

ρTh

##
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−→γ
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LL
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op
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KK
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,,

Theoroidal comorphisms of effective satisfiability subcalculi are defined exactly in the same way as
theoroidal comorphisms of satisfiability subcalculi, but assuming that sets are spaces and not modify-
ing the conditions required for the map. The restriction of the admissible formulae given by subfunctor
Sen0 ⊆ Sen remains hidden in the use of categories of theories restricted to the particular spaces of
formulae determined by functor ax.

The intuition behind the previous definition is that theoroidal comorphisms between (effective)
satisfiability subcalculi only care about appropriately mapping the restriction of interest, introduced

9This means that functor ρTh transforms theories (resp., axiom-preserving morphisms) from Thax to theories (resp.,
axiom-preserving theory morphisms) from Th′ax.
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by the components Sign0 and ax (and Sen0 in the case of theoroidal comorphisms between effec-
tive satisfiability subcalculi) of the underlying satisfiability calculi, disregarding the signatures and
sentences outside that restriction.

In the same way we extended the notion of theoroidal comorphisms between institutions to satisfi-
ability calculi (resp., satisfiability subcalculi / effective satisfiability subcalculi), we recall the notion of
morphism between institutions and then extend it to satisfiability calculi which, in turn, can be anal-
ogously extended to morphisms of satisfiability subcalculi and morphisms of effective satisfiability
subcalculi in a straightforward manner.

Definition 4.5. (Institution morphism [5])
Let I = 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉 and I′ = 〈Sign′, Sen′,Mod′, {|=′Σ}Σ∈|Sign′|〉 be institu-
tions. Then, 〈νSign, νSen, νMod〉 : I′ → I is an institution morphism if and only if:

• νSign : Sign′ → Sign is a functor,

• νSen : Sen ◦ νSign �→ Sen′, is a natural transformation (i.e. a natural family of functions
νSenΣ′ : Sen(νSign(Σ′)) → Sen′(Σ′)), such that for each Σ′1,Σ

′
2 ∈ |Sign′| and σ′ : Σ′1 → Σ′2

morphism in Sign′,

Sen(νSign(Σ′2))

6

Sen(νSign(σ′))

Sen(νSign(Σ′1))

-
νSen
Σ′

2
Sen′(Σ′2)

6

Sen′(σ′)

Sen′(Σ′1)-
νSen
Σ′

1

⊙
Σ′2

6

σ′

Σ′1

• νMod : Mod′
�→ Mod ◦ (νSign)op is a natural transformation (i.e. the family of functors

νMod
Σ′ : Mod′(Σ′)→Mod((νSign)op(Σ′)) is natural), such that for each Σ′1,Σ

′
2 ∈ |Sign′| and

σ′ : Σ′1 → Σ′2 morphism in Sign′,

Mod′(Σ′2)

?

Mod′(σ′op)

Mod′(Σ′1)

-
νMod
Σ′

2
Mod((νSign)op(Σ′2))

?

Mod((νSign)op(σ′op))

Mod((νSign)op(Σ′1))-
νMod
Σ′

1

⊙
Σ′2

6

σ′

Σ′1

such that for any Σ′ ∈ |Sign′|, the function γSenΣ′ : Sen(νSign(Σ′)) → Sen′(Σ′) and the functor
νMod

Σ′ : Mod′(Σ′) → Mod((νSign)op(Σ′)) preserves the following satisfaction condition: for any
α ∈ Sen(νSign(Σ′)) andM∈ |Mod(Σ′)|,

M |=Σ′ ν
Sen
Σ′ (α) iff νMod

Σ′ (M) |=νSign(Σ′) α .



C.L.Pombo et al. / Satisfiability Calculus: An Abstract Formulation of Semantic Proof Systems 25

The extension of institution morphisms to theoroidal morphisms of institutions is obtained analogously
to that of theoroidal comorphism. In [5], Tarlecki calls our attention to how, in contrast to institution
comorphisms, institution morphisms capture how a “richer” institution (richer in terms of its model
theory) is built on top of “poorer” ones and also shows in [5, Def. 7] that institutions together with
institution morphisms form a category, named Ins, and in [5, Thm. 8] proves its completeness.

Institution morphisms also extend naturally to theoroidal morphisms between institutions by anal-
ogously considering νSen-sensible extensions of the functor mapping signatures. The following defini-
tion extends the notion of theoroidal morphisms of institutions to theoroidal morphisms of satisfiability
calculi.

Definition 4.6. (Theoroidal morphism of satisfiability calculi)
Let S be the satisfiability calculus 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|,M,Mods, µ〉 and S′ the satisfia-
bility calculus 〈Sign′,Sen′,Mod′, {|=′Σ}Σ∈|Sign′|,M′,Mods′, µ′〉.

Then, 〈νTh, νSen, νMod, γ〉 : S′ → S is a theoroidal morphism of satisfiability calculi if and only
if:

• 〈νTh, νSen, νMod〉 : I′ → I is an theoroidal morphism of institutions, where νTh : Th→ Th′ is
a νSen-sensible extension of νSign, and

• γ : models′
�→ models ◦ νTh is a natural transformation such that the following equality

holds:

Thop

Mod

##

models

55

�
−→µ Cat = Thop

Mod

%%

�
−→νMod Cat

�
−→γ

� −→µ′

Th′
op

models′

LL

νTh

SS

Th′
op models′

KK
Mod′

,,

νTh

QQ

The reader should note that the sole change with respect to the definition of theoroidal institution
comorphism is the direction of the arrow νTh. This is a consequence of the change in the direction of
the functor νSign mapping signatures in the “richer” institution to signatures in the “poorer” one. As
we mentioned before, the extension of this definition to morphisms between satisfiability subcalculi
and effective satisfiability subcalculi provide results analogous to that in Definition 4.4 by taking into
account the direction of the functor between signatures.

4.1. Categories of satisfiability calculi, satisfiability subcalculi and effective satisfiabil-
ity subcalculi

The two functorial relations between satisfiability calculi presented above are relations between imple-
mentations of two (not necessarily different) satisfaction relations. The intuition behind them results
analogous to that behind morphisms and comorphisms of institutions, where, in the first case, it corre-
sponds to the observation of how an implementation of a richer satisfaction relation is built on top of
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a poorer one, and, in the second case, corresponds to how an implementation of a poorer satisfaction
relation is represented in a richer one. In either case, it seems natural to investigate the structural
properties of the class of satisfiability calculi together with these relations.

The following definitions and lemmas demonstrate that satisfiability calculi together with theo-
roidal morphisms between them form a category.

Definition 4.7. (Identity theoroidal morphism of satisfiability calculi)
Let the structure S = 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|,M,Mods, µ〉 be a satisfiability calculus and
I its underlying institution. Then, the identity theoroidal morphism of satisfiability calculi idS : S→ S
is formed by:

• The identity theoroidal morphism of institutions: idI : I→ I [2].

• The identity natural transformation γid : models
�→models◦ idThI , where idThI : ThI → ThI

maps every theory to itself.

On the other hand, the composition of two theoroidal morphisms of satisfiability calculi is con-
structed by composing their corresponding components, as detailed in the following definition.

Definition 4.8. (Composition of theoroidal morphisms of satisfiability calculi)
Given 〈ν, γ〉 : S′ → S and 〈ν ′, γ′〉 : S′′ → S′ two theoroidal morphisms of satisfiability calculi. Their
composition is defined componentwise as 〈ν ◦ ν ′, γ̂〉 : S′′ → S such that:

• ν ◦ ν ′ : I′′ → I is the composition of the theoroidal morphisms between the underlying institu-
tions (see [5, Def. 7])10, and

• the natural transformation γ̂ : models′′
�→models◦(νTh◦ν ′Th) is formed by the components

γ̂T ′′ = γν′Th(T ′′) ◦ γ
′
T ′′ , for any T ′′ ∈ |ThI′′ |.

The following lemma shows the correctness of the definition above.

Lemma 4.9. Given two theoroidal morphisms of satisfiability calculi 〈ν, γ〉 : S′ → S and 〈ν ′, γ′〉 :
S′′ → S′, then its composition 〈ν, γ〉 ◦ 〈ν ′, γ′〉 : S′′ → S is a theoroidal morphism of satisfiability
calculi.

Proof:
The proof centres on proving the equality of the following 2-cells.

ThI

Mod

##

models

55

�
−→µ Cat = ThI

Mod

''�
−→νMod ◦ ν ′Mod Cat

�
−→γ̂

� −→µ′′

ThI′′

models′′

LL

νTh◦ν′Th

RR

ThI′′ models′′

HH
Mod′′

++

νTh◦ν′Th

TT

10Naturally, defining the composition of natural transformation does not only require a horizontal composition, denoted
as “◦”, but also a vertical one acting as a multiplication of a natural transformation by a functor, which from now on will be
denoted as “·”.
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This follows from the following equalities (by a direct application of the definition of the composition):
let T ′′ ∈ |ThI′′ |

µνTh◦ν′Th(T ′′) ◦ γ̂T ′′ = µνTh◦ν′Th(T ′′) ◦ (γν′Th(T ′′) ◦ γ
′
T ′′)

= (µνTh◦ν′Th(T ′′) ◦ γν′Th(T ′′)) ◦ γ
′
T ′′

= (µνTh(ν′Th(T ′′)) ◦ γν′Th(T ′′)) ◦ γ
′
T ′′

= (νMod
ν′Th(T ′′)

◦ µ′ν′Th(T ′′)) ◦ γ
′
T ′′ [ by 2-cell equality of 〈ν, γ〉]

= νMod
ν′Th(T ′′)

◦ (µ′
ν′Th(T ′′)

◦ γ′T ′′)

= νMod
ν′Th(T ′′)

◦ (ν ′
Mod
T ′′ ◦ µ′′T ′′) [ by 2-cell equality of 〈ν ′, γ′〉 ]

= (νMod
ν′Th(T ′′)

◦ ν ′Mod
T ′′ ) ◦ µ′′T ′′

ut

Theorem 4.10. The collection of satisfiability calculi together with the collection of theoroidal mor-
phisms of satisfiability calculi form a category.

Proof:
First, consider two satisfiability calculi S = 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|,M,Mods, µ〉 and S′ =
〈Sign′,Sen′,Mod′, {|=′Σ}Σ∈|Sign′|,M′,Mods′, µ′〉, and their respective underlying institutions I
and I′. Consider any theoroidal morphism between the satisfiability calculi 〈νTh, νSen, νMod, γ〉 :
S′ → S; then: idS ◦ 〈νTh, νSen, νMod, γ〉 is defined as:

• 〈idThI′ , idSenI′ , idMod
I′ 〉 ◦ 〈νTh, νSen, νMod〉 which, by definition of composition of theoroidal

morphisms between institutions, is 〈νTh, νSen, νMod〉,

• let T ′ ∈ |ThI′ | and m ∈ |models′(T ′)|, (γid ◦ γ)T ′(m) = γidνTh(T ′)(γT ′(m)) = γT ′(m).

The proof for 〈νTh, νSen, νMod, γ〉 ◦ idS is analogous to the previous one.

Now, let us prove that the composition of satisfiability calculi is associative. Consider satisfi-
ability calculi S, S′, S′′ and S′′′ together with theoroidal morphisms between satisfiability calculi
〈νTh, νSen, νMod, γ〉 : S → S′, 〈ν ′Th, ν ′Sen, ν ′Mod, γ′〉 : S′ → S′′ and 〈ν ′′Th, ν ′′Sen, ν ′′Mod, γ′′〉 :
S′′ → S′′′. See [5, Def. 7] for a proof of the associativity of theoroidal morphisms of institutions. The
remaining part the proof is as follows: let T ′′′ ∈ |ThI′′′ |

((γ ◦ γ′) ◦ γ′′)T ′′′ = (γ ◦ γ′)ν′′Th(T ′′′) ◦ γ
′′
T ′′′

= (γν′Th(ν′′Th(T ′′′)) ◦ γ
′
ν′′Th(T ′′′)

) ◦ γ′′T ′′′

= γν′Th(ν′′Th(T ′′′)) ◦ (γ′
ν′′Th(T ′′′)

◦ γ′′T ′′′)

= γν′Th◦ν′′Th(T ′′′) ◦ (γ′
ν′′Th(T ′′′)

◦ γ′′T ′′′)

= γν′Th◦ν′′Th(T ′′′) ◦ (γ′ ◦ γ′′)T ′′′

= (γ ◦ (γ′ ◦ γ′′)T ′′′
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ut

We can consider extending the notion of identity theoroidal morphism of satisfiability calculi and
composition of theoroidal morphisms between satisfiability calculi in order to consider the additional
elements in the structure of a satisfiability subcalculi (resp., effective satisfiability subcalculi). The
following two corollaries extend the previous result to the structure of satisfiability subcalculi (resp.,
effective satisfiability subcalculi) and morphisms between satisfiability subcalculi (resp., morphisms
between effective satisfiability). They are straightforward extensions of Theorem 4.10.

Corollary 4.11. The collection of satisfiability subcalculi together with the collection of theoroidal
morphisms between satisfiability subcalculi form a category.

Corollary 4.12. The collection of effective satisfiability subcalculi together with the collection of
theoroidal morphisms between effective satisfiability subcalculi form a category.

The category formed by the collection of satisfiability calculi (resp., satisfiability subcalculi /
effective satisfiability subcalculi) together with the collection of theoroidal morphisms between satis-
fiability calculi (resp., theoroidal morphisms between satisfiability subcalculi / theoroidal morphisms
between effective satisfiability subcalculi) will be denoted as Sat (resp. Subsat / EffSubsat).

In [5, Sec. 5.2], Tarlecki points out the fact that limits in the category of institutions, with theo-
roidal morphisms between institutions, provide rudimentary mechanisms to combine different logical
languages. Let us prove that completeness is preserved by the extension to category Sat.

Theorem 4.13. Sat is complete.

Proof:
Let D : 〈I, E〉 → Sat be a diagram such that: 1) for all i ∈ I , D(i) is the satisfiability calculus
〈Signi,Seni,Modi, {�Σ

i }Σ∈|Signi|,Mi,Modsi, µi〉 is a satisfiability calculus, and 2) for all e ∈ E,
D(e) : D(src(e)) → D(trg(e)) is a theoroidal morphism between satisfiability calculi of the form
〈D(e)Th, D(e)Sen, D(e)Mod, D(e)Sat〉11.

First, we construct the limit object as follows:

• Since the category Ins is complete [33], we construct I = 〈Sign,Sen,Mod, {�Σ}Σ∈|Sign|〉 as
the limit object of the diagram that has as objects institutions Ii = 〈Signi,Seni,Modi, {�Σ

i

}Σ∈Sign〉 and as arrows the institution morphisms {D(e) : Isrc(e) → Itrg(e)}e∈E .

• Let StructiSC be the category used to capture the structure of canonical models for institution
D(i), for all i ∈ I . Then we define Structi as the product si × StructiSC , where si is the
category that contains a unique object (si) and a unique arrow (the identity). Now, StructSC is
the product in Cat of the Structi.

• Functor M is defined for each object as follows: M(t)i = 〈si,Mi(ti)〉 for each projection
i ∈ I , and for each arrow f : t → t′, M(f)i = 〈si,Mi(fi)〉 for each i ∈ I , which is well
defined.

11D(e)Sat plays the role of the natural transformation γ of Definition 4.6.
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• Functor Mods is defined by using a limit in Cat. For each object c ∈ |StructSC |, we define
Mods(c) as the limit of the diagram in Cat whose objects are Modsi(Mi(ti)) and arrows
D(e)Sattsrc(e)

: modelstrg(e)(D(e)Th(tsrc(e))) → modelssrc(e)(tsrc(e)) in Cat. The naturality
condition is guaranteed by the properties of limits.

• µ : models
�→ P ◦Mod is defined as follows. For each t ∈ Th0, µt : models(t) →

P ◦Mod(t) is constructed as a limit. Note that models(t) is a limit in Cat and similarly
Mod(t) (see [59]); furthermore, we have a cone in Cat composed of arrows D(e)Mod

i ti
◦ µiti :

modelsi(ti) → P ◦Mod(t), and noting that we have another cone composed of arrows
D(e)Sati ti

: modelsi(ti) → P ◦models(t), by the universality of limits we should have a
unique arrow (in Cat) ut : models(t) → P ◦Mod(t), so we define µt = ut; the naturality
condition follows from the commutativity of the cones.

On the other hand, the arrows D(e)Sati : modelsi ◦ D(e)Th
�→ models from the objects in the

diagram to the limit object are defined by the injectionsD(e)it : modelsi◦D(e)Th(t)→models(t)
in Cat. The equality of the 2-cells shown in the second condition of Definition 4.6 follows from the
pointwise use of the validity of the equality of the 2-cells of each component. Finally, let us prove
the universality of the given construction. Suppose that there exists another limit cone whose appex
is I′ = 〈Sign′,Sen′,Mod′, {�′Σ}Σ∈|Sign′|,M′,Mods′, µ′〉; since 〈Sign,Sen,Mod, {�Σ}Σ∈|Sign|〉
is a limit in Ins we have a unique institution morphism u : I′ → I, now this can be extended to a
satisfiability mapping by considering the natural transformation γ′ : models ◦ uTh �→models′ that
has as components functors γ′t : models ◦ uTh(t)→models′(t) obtained by the universal property
of products in Cat (as done in the definition of µ above), which are unique up to isomorphism. ut

The following corollaries follow from extending Theorem 4.13 to the categories Subsat and
EffSubsat in order to cope with the functors connecting the categories of admissible signatures and
the natural transformations connecting the functors identifying the admissible sentences of those sig-
natures.

Corollary 4.14. Subsat is complete.

Corollary 4.15. EffSubsat is complete.

Analogous to the way in which we proved that satisfiability calculi together with theoroidal mor-
phisms between them form a category, we can provide the definitions of identity theoroidal comor-
phism (analogous to Definition 4.7), composition of theoroidal comorphisms between satisfiability
calculi (analogous to Definition 4.8) and prove that satisfiability calculi together with theoroidal co-
morphisms between them also form a category (from now on denoted as coSat).

Theorem 4.16. The collection of satisfiability calculi together with the collection of theoroidal co-
morphisms between satisfiability calculi form a category.

As in previous sections, the following two corollaries extend the previous result to satisfiability
subcalculi together with theoroidal comorphisms between them and effective satisfiability subcalculi
together with theoroidal comorphisms between them.
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Corollary 4.17. The collection of satisfiability subcalculi together with the collection of theoroidal
comorphisms between satisfiability subcalculi form a category.

Corollary 4.18. The collection of effective satisfiability subcalculi together with the collection of
theoroidal comorphisms between effective satisfiability subcalculi form a category.

Then again, we can prove the completeness of coSat (resp., coSubsat and coEffSubsat).

Theorem 4.19. coSat is complete.

Proof:
The proof is straightforward by extending the proof of [58, Thm. 5.3]12 and considering limits con-
structed dually to those appearing in the proof of Theorem 4.13. ut

Corollary 4.20. coSubsat is complete.

Corollary 4.21. coEffSubsat is complete.

4.2. On cocompleteness and the representation of limits in Sat, Subsat and EffSub-
sat

Having proved the completeness of Sat (resp., Subsat and EffSubsat) and coSat (resp., coSubsat
and coEffSubsat), its cocompleteness arises as a natural question. The fundamental importance of
cocompleteness resides in the fact that it enables the modular construction of satisfiability calculi
(resp., satisfiability subcalculi / effective satisfiability subcalculi) out of a diagram of satisfiability
calculi (resp., satisfiability subcalculi / effective satisfiability subcalculi) and theoroidal morphisms
(resp., comorphisms) between them, usually done by constructing colimits of those diagrams.

Cocompleteness of the categories Ins and coIns have been more elusive and, in general, they
do not hold. In [6, Ex. 4.10], Goguen and Roşu provide an example where the colimit cannot be
constructed; providing also a negative answer to our previous questions. On the other hand, in [66,
Thm. 25], Roşu proves that both the category of institutions over small signature categories together
with institution morphisms, and institution comorphisms (denoted as SIns and coSIns, respectively)
are cocomplete. We do not extend definitions and results to obtain a cocompleteness theorem for cate-
gories of satisfiability calculi over small signatures but we do not see any technical obstacle preventing
the construction of proofs following the ideas used in Theorem 4.13.

In [5, Sec. 5.2] a relative answer to the general cocompleteness of Ins (resp., coIns) was given in
terms of the representation of institutions into a “universal” institution UI by means of comorphisms,
provided that the category of signatures of UI is cocomplete (see [59, Sec. 5.3] for details). Represen-
tation of theoroidal comorphisms were introduced by Tarlecki in [5], under the name representation
map (of institutions representations)13, with the aim of establishing how, given an institution I′ built on

12A different proof of completeness of the category coIns can be found in [66, Coro. 21].
13The reader should recall that in Tarlecki’s work [5, 58, 59], comorphisms of institutions where referred to by the name

institution representations.
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top of an institution I, witnessed by a morphism γ : I′ → I ∈ |Ins|, a comorphism ρ′ : I′ → UI ∈ ||UI||
is built on top of a comorphism ρ : I → UI ∈ ||UI||. From now on we assume a fixed but arbitrary
“universal” institution UI = 〈USign,USen,UMod, {|=Σ}Σ∈|USign|〉 and a corresponding satisfia-
bility calculus for UI, SatUI = 〈USign,USen,UMod, {|=Σ}Σ∈|USign|,UM,UMods,Uµ〉.

The following definition extends the notion of representations between comorphisms of institu-
tions, presented in [5, Def. 16] to theoroidal comorphisms of institutions. It is obtained by considering
that ρ, ρ′ and γ are now two theoroidal comorphisms and a theoroidal morphism, respectively. Thus,
the second component of the representation is a natural transformation θ : γTh ◦ ρTh → ρ′Th and the
properties it has to satisfy have to be extended to theories accordingly.

Definition 4.22. (Representation of theoroidal comorphisms of institutions [5])
Let I = 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉, I′ = 〈Sign′, Sen′,Mod′, {|=′Σ}Σ∈|Sign′|〉 be institutions
and, ρ : I → UI and ρ′ : I′ → UI their institution comorphisms to UI. Then, 〈ν, θ〉 : ρ → ρ′ is a
representation of theoroidal comorphisms of institution if and only if:

• ν : I′ → I is an theoroidal morphism of institutions, and

• θ : ρTh ◦ νTh �→ ρ′Th is a natural transformation (i.e., a natural family of morphisms {θT ′ :
ρTh(νTh(T ′))→ ρ′Th(T ′)}T ′∈|Th′| ⊆ ||UTh||)

such that:

• (ρ′Sen ·Sign)◦(νSen ·Sign) = ((Sign◦νTh) ·ρSen)◦(θ ·USen), i.e. that for each T ′ ∈ |Th′|
the following diagram commutes:

Sen(Sign(νTh(T ′)))

?

νSen
Sign(T ′)

Sen′(Sign(T ′))

-
ρSen
Sign(νTh(T ′))

USen(Sign(ρTh(νTh(T ′))))

?

USen(θT ′ )

USen(Sign(ρ′Th(T ′)))-
ρ′Sen
Sign(T ′)

• (νMod ·Sign) ◦ (ρ′Mod ·Sign) = (θop ·UMod) ◦ ((Sign ◦ νThop) ·ρMod)14, i.e. that for each
T ′ ∈ |Th′| the following diagram commutes:

Mod(νTh(T ′))

6

νMod
Sign(T ′)

Mod′(T ′)

�
ρMod
Sign(νThop(T ′))

UMod(ρTh(νTh(T ′)))

6

UMod(θop
T ′ )

UMod(ρ′Th(T ′))�
ρ′Mod
Sign(T ′)

14θop : ρ′
Thop → (νTh ◦ ρTh)op is the same natural transformation as θ : νTh ◦ ρTh → ρ′

Th but considering its
components to be the same functors between the opposite categories.
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As suggested by Tarlecki in his work, in the absence of a cocompleteness result for the category
coIns, a related result can be proved for a restriction of coIns to those institutions representable in a
given “universal” institution, witnessed by a family of theoroidal comorphisms between institutions.
Let UI be an institution, then we denote by InsRepr

UI the category whose objects are theoroidal co-
morphisms whose target institution is UI and whose morphisms are representations between these
theoroidal comorphisms. Then, [5, Thm. 18] proves InsRepr

UI cocompleteness providing the means for
systematically representing combinations of logics of choice, taken from those representable in the
“universal” institution.

Intuitively, a powerful logic with easy-to-understand and clear semantics, formal methods to as-
sist the process of software specification and design, strongly based on rigorous definitions such as
that of proof calculus (see Definition 2.8), and its variations of proof subcalculus and effective proof
subcalculus (see [2, Defs. 14 and 16]) and/or satisfiability calculi, satisfiability subcalculi and effec-
tive satisfiability subcalculi (see Definitions 3.1, 3.4 and 3.6 respectively), may serve as a universal
language into which the logical systems of interest can be interpreted and in which they can be put
together. The next definition extends the notion of representation of theoroidal comorphisms of insti-
tutions to representations of theoroidal comorphisms of satisfiability calculi.

Definition 4.23. (Representations of theoroidal comorphisms of satisfiability calculi)
Let S be the satisfiability calculus 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|,M,Mods, µ〉 and S′ the satis-
fiability calculus 〈Sign′,Sen′,Mod′, {|=′Σ}Σ∈|Sign′|,M′,Mods′, µ′〉, I and I′ their underlying in-
stitutions respectively, 〈ν, θ〉 : S′ → S a theoroidal morphism between satisfiability calculi and
〈ρ, γ〉 : S → SatUI and 〈ρ′, γ′〉 : S′ → SatUI be theoroidal comorphisms of satisfiability calculi.
Then, 〈〈ν, γ〉, θ〉 : 〈ρ, γ〉 → 〈ρ′, γ′〉 is a representation of theoroidal comorphisms of satisfiability
calculi if and only if:

• 〈ν, θ〉 : ρ→ ρ′ is a representation of theoroidal comorphisms of institutions,

such that:

• γ ◦ γ′ = (γ · νTh) ◦ (Umodels · θop), i.e. that for each T ′ ∈ |Th′| the following diagram
commutes:

models(νTh(T ′))

6

γT ′

models′(T ′)

�
γνTh(T ′)

Umodels(ρTh(νTh(T ′)))

6

Umodels(θop
T ′ )

Umodels(ρ′Th(T ′))�
γ′
T ′

The notion of representations of theoroidal comorphisms of satisfiability calculi can be easily ex-
tended to define an analogous relation between theoroidal comorphisms between satisfiability subcal-
culi and effective satisfiability subcalculi by appropriately preserving the second condition of Defini-
ton 4.4.
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Definition 4.24. (Identity representation of a theoroidal comorphism of sat. calculi)
Let S = 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|,M,Mods, µ〉 be a satisfiability calculus, I its underlying
institution and 〈ρ, γ〉 : S→ SatUI a theoroidal comorphism of satisfiability calculi, where ρ : I→ UI
is a theoroidal comorphism of institutions. Then, the identity representation of a theoroidal comor-
phism of satisfiability calculi 〈〈id I, γid 〉, θid 〉 : 〈ρ, γ〉 → 〈ρ, γ〉 is formed by:

• The identity theoroidal morphism of satisfiability calculi: 〈id I, γid 〉 : S′ → S and

• The natural family of identity morphisms θid : id I
Th ◦ ρTh �→ ρTh.

Definition 4.25. (Composition of representations of theoroidal comorphisms of sat. calculi)
Let S, S′ and S′′ be satisfiability calculi, consider 〈ρ, γ〉 : S → SatUI, 〈ρ′, γ′〉 : S′ → SatUI′
and 〈ρ′′, γ′′〉 : S′′ → SatUI be theoroidal comorphisms of satisfiability calculi and finally con-
sider 〈〈ν, γ〉, θ〉 : 〈ρ, γ〉 → 〈ρ′, γ′〉 and 〈〈ν ′, γ′〉, θ′〉 : 〈ρ′, γ′〉 → 〈ρ′′, γ′′〉 be representations of
theoroidal comorphisms of satisfiability calculi. Their composition is defined componentwise as
〈〈ν, γ〉 ◦ 〈ν ′, γ′〉, θ̂〉 : 〈ρ, γ〉 → 〈ρ′′, γ′′〉 such that:

• 〈ν, γ〉 ◦ 〈ν ′, γ′〉 : S→ S′′ is the composition of theoroidal morphisms between the satisfiability
calculi (see Def. 4.8), and

• the natural transformation θ̂ : ρ ◦ (νTh ◦ ν ′Th)
�→ ρ′′ is formed by the components θ̂T ′′ =

θν′Th(T ′′) ◦ θ
′
T ′′ , for any T ′′ ∈ |ThI′′ |.

The reader should note that the composition of representations of theoroidal comorphisms of sat-
isfiability calculi is defined analogously to the composition of representations of theoroidal comor-
phisms of institutions [5, Def. 17] as the only difference in the definition of the former, with respect
to the latter, is the addition of conditions that the components have to satisfy.

Lemma 4.26. Let 〈〈ν, γ〉, θ〉 : 〈ρ, γ〉 → 〈ρ′, γ′〉 and 〈〈ν ′, γ′, θ′〉 : 〈ρ′, γ′〉 → 〈ρ′′, γ′′〉 be two rep-
resentations of theoroidal comorphisms of satisfiability calculi. Then, their composition 〈〈ν, γ〉, θ〉 ◦
〈〈ν ′, γ′〉, θ′〉 : 〈ρ, γ〉 → 〈ρ′′, γ′′〉 is a representation of theoroidal comorphisms of satisfiability calculi.

Proof:
The proof follows by composing the diagrams derived from the hypothesis γ ◦ γ′ = (γ · νTh) ◦
(Umodels · θop) and γ′ ◦ γ′′ = (γ′ · ν ′Th) ◦ (Umodels · θ′op).

models(νTh(ν ′Th(T ′′))) Umodels(ρTh(νTh(ν ′Th(T ′′))))γ
νTh(ν′Th(T ′′))

oo

models′(ν ′Th(T ′′))

γ
ν′Th(T ′′)

OO

Umodels(ρ′Th(ν ′Th(T ′′)))
γ′
ν′Th(T ′′)

oo

Umodels(θop
ν′Th(T ′′)

)

OO

models′′(T ′′)

γ′T ′′

OO

Umodels(ρ′′Th(T ′′))
γ′′
T ′′

oo

Umodels(θ′op
T ′′ )

OO
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Then, (γν′Th(T ′′) ◦ γ
′
T ′′) ◦ γ′′ = (γ · (νTh ◦ ν ′Th(T ′′))) ◦ (Umodels(θ′opT ′′) ◦Umodels(θop

ν′Th(T ′′)
)),

which is equivalent to (γν′Th(T ′′)◦γ
′
T ′′)◦γ′′ = (γ ·((ν ◦ ν ′)Th(T ′′)))◦(Umodels(θ′opT ′′◦θ

op

ν′Th(T ′′)
)).

Finally, by Definition 4.8, γ̂T ′′ = γν′Th(T ′′) ◦ γ
′
T ′′ , for any T ′′ ∈ |ThI′′ |, by Definition 4.25, θ̂T ′′ =

θν′Th(T ′′) ◦ θ
′
T ′′ , for any T ′′ ∈ |ThI′′ |. Thus, we obtain that γ̂ ◦ γ′ = (Umodels · (θ̂op) ◦ (γ · (ν ′Th ◦

νTh)). ut

Theorem 4.27. Let SatUI be a satisfiability calculus for the “universal” institution UI then, the col-
lection of theoroidal comorphisms of satisfiability calculi to SatUI together with the class of repre-
sentations of theoroidal comorphisms between satisfiability calculi is a category.

Proof:
The first part of the proof follows trivially by observing that the identity representation of theoroidal
comorphisms is formed by an identity morphism, and two natural transformations whose components
are all identity morphisms.

The proof of the associativity of the composition of representations of theoroidal comorphisms
follows from the associativity of the composition of theoroidal morphisms of institutions, and of the
components of both natural transformations. ut

From now on, given a satisfiability calculus SatUI for some “universal” institution UI, the cat-
egory of theoroidal comorphisms from satisfiability calculi to SatUI, as it was described in Theo-
rem 4.27, will be denoted as SatReprSatUI. The previous definitions and results can easily be extended to
prove that representations of theoroidal comorphisms of satisfiability subcalculi and effective satisfia-
bility subcalculi also form categories, denoted as SubsatReprSatUI and EffSubsatReprSatUI, respectively.

The next theorem proves the relative cocompleteness of the SatReprSatUI by extending Tarlecki’s proof
of [5, Thm. 18] in order to consider the part of the theoroidal comorphisms relevant to satisfiability
calculi.

Theorem 4.28. Let SatUI be a satisfiability calculus for the institution UI. Then, if SignUI is co-
complete, SatReprSatUI is cocomplete.

Proof:
Let G = 〈N,E〉 be a graph and D : G → SatReprSatUI be a diagram such that for all i ∈ N , Si =
〈Signi,Seni,Modi, {�Σ

i }Σ∈|Signi|,Mi,Modsi, µi〉 is a satisfiability calculus and D(i) = 〈ρi, γi〉 :
Si → SatUI is a theoroidal comorphism between satisfiability calculi, and for all e ∈ E, 〈νe, γe〉 :
Ssrc(e) → Strg(e) is a theoroidal morphism between satisfiability calculi and D(e) = 〈〈νe, γe〉, θe〉 :
D(src(e))→ D(trg(e)) is a representation of theoroidal comorphisms between satisfiability calculi.

By Theorem 4.13, since Sat is complete, there exists S ∈ |Sat| and {〈νi, γi〉 : S → Si}i∈N ⊆
||Sat|| forming a limit for DSat : 〈N,E〉 → Sat (i.e., the diagram formed by the satisfiability calculi
in the source of the representations of comorphisms and the morphisms of satisfiability calculus of
the representations of comorphisms of satisfiability calculi). By [5, Thm. 18], InsRepr

UI is cocomplete
so there exists ρ : I → UI ∈ |InsRepr

UI | and {〈v′i, θ′i〉 : ρi → ρ}i∈N forming a colimit for diagram
DRepr

Ins : G → InsReprUI (i.e., the diagram formed by the institutions, morphisms and comorphisms
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between institutions and representations of comorphisms between institutions underlying diagramD).
These hypotheses can be seen in a more comprehensive way in the diagram shown below (solid arrows
show a commutative triangle of diagram D in SatReprSatUI, dashed arrows show the limit for DSat in Sat

and dotted arrows show the colimit for DRepr
Ins in InsReprUI ).

SatUI

θ′i

��

θ′j

��

θ(i,j)

YY

Si

〈ρi,γi〉

GG

〈ν(i,j),γ(i,j)〉
// Sj

〈ρj ,γj〉

WW

S

〈νj ,γj〉

__

〈νi,γi〉

]]

ν′j

UU

ν′i

XX

ρ

ll

As S is the limit object for the diagram DSat, and by the way it is constructed (see Theorem 4.13
for details), for all T ∈ |ThS|, modelsS(T ) constitute the limit object in Cat for the diagram
formed by the corresponding categories of model structures modelsSi ◦ νThi (T ) and functors γi :
modelsS(T ) → modelsSi ◦ νThi (T ); then γT : Umodels ◦ ρTh(T ) → modelsS(T ) is de-
fined as the unique functor mapping each object M ∈ |Umodels ◦ ρTh(T )| to the unique object
γT (M) ∈ |modelsS(T )| such that for all i ∈ N ,

(γi)T ◦ γT (M) = γiνThi (T ) ◦Umodels((θ′i)T
op

)(M)

This is well defined by the construction of S. The definition for morphisms between canonical models
is analogous. To prove that 〈ρ, γ〉 : S → SatUI is a theoroidal comorphism of satisfiability calculim
it remains to check the equivalence of Definition 4.2.

Let us prove that 〈ρ, γ〉 : S → SatUI is a theoroidal comorphism of satisfiability calculi. That is,
we have to prove:

µT ◦ γT = ρMod
T ◦ µSatUI

ρTh(T )

for any T ∈ ThI. First, note that since each 〈ρi, γi〉 : Si → SatUI is a theoroidal morphism between
satisfiability calculi, we have that:

µiTi ◦ γiTi = ρMod
i Ti

◦ µSatUI
ρThi (Ti)

Again, since µ and ρ are defined by means of limits and colimits, respectively, and the definition of γ
is in terms of γi, by universality of limits we get the result.
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Also, note that, since {〈νi, γi〉 : S → Si}i∈N is a limit for DRepr
Sat in Sat, and {〈ν ′i, θ′i〉 : ρi →

ρ}i∈N is a colimit for DRepr
Ins in InsReprUI . Thus, by uniqueness of both limit and colimit, νi = ν ′i for all

i ∈ N .
Now, let us prove that 〈〈ν ′i, γ′i〉, θ′i〉 : 〈ρi, γi〉 → 〈ρ, γ〉 are representation maps of theoroidal

comorphisms between satisfiability calculi. That is, for each i we must prove:

γi ◦ γ = (γi · νTh) ◦ (Umodels · θ′i
op

)

This straightforwardly follows from the definition of γ given above. ut

Once again, given a “universal” institution UI and a satisfiability calculus SatUI for UI, it is
possible to extend Theorem 4.28 to the categories SubsatReprSatUI and EffSubsatReprSatUI as shown in the
following two corollaries.

Corollary 4.29. Let SatUI be a satisfiability subcalculus for the institution UI. Then, if SignUI is
cocomplete, SubsatReprSatUI is cocomplete.

Corollary 4.30. Let SatUI be an effective satisfiability subcalculus for the institution UI. Then, if
SignUI is cocomplete, EffSubsatReprSatUI is cocomplete.

5. Conclusions and Further work

Some decades ago, Meseguer [2] introduced the notion of proof calculus with the main aim of en-
riching institution theory. Broadly speaking, a proof calculus implements the deduction relation of
an entailment system, a syntax driven definition of a logical system, in opposition to institutions [4],
regarded as its abstract model theory. In this paper we introduced the notion of Satisfiability Calcu-
lus that might be thought of as the semantical counterpart of Meseguer’s notion of proof calculus,
providing the formal foundations for those proof systems resorting to model construction techniques
to prove or disprove a given formula, serving as an implementation of the satisfiability relation of an
institution. These techniques constitute an important stream of research in logic, in particular, in the
areas of automatic software validation and verification. The abstract formalisation of these techniques
provides a starting point for investigating their abstract and general properties. Furthermore, we be-
lieve that satisfiability calculus may provide the theoretical basis for the construction of heterogeneous
semantic proof systems.

Several extensions of the framework presented here seem worth investigating. On the one hand,
revisiting the definitions of proof calculus and satisfiability calculus, it is possible to note that the con-
straints imposed over some elements (e.g., the natural family of functors π〈Σ,Γ〉 : proofs(〈Σ,Γ〉) →
Sen(〈Σ,Γ〉) and µ〈Σ,Γ〉 : models(〈Σ,Γ〉) → Mod(〈Σ,Γ〉)) are, in some sense, too restrictive;
working on generalisations of these concepts is part of our further work. In particular, it is worth
noting that partial implementations of both the entailment relation and the satisfiability relation are
gaining visibility in the software engineering community. On the other hand, there are many logical
frameworks that have enjoyed increasing popularity in logic and software engineering which could be
captured by weakening the relationship between entailment and the satisfiability relation. Examples,
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on the syntactic side, are the implementation of less expressive calculi with respect to an entailment,
either for the sake of simplicity, as in the case of the finitary definition of the reflexive and transitive
closure in Kleene algebras with tests [67] or, in the case of the implementation of rewriting tools like
Maude [68], as a partial implementation of equational logic. Some examples on the semantic side are
bounded model checkers and model finders for undecidable languages, usually available as software
tools, such as Alloy [69] for relational logic, or the growing family of SMT-solvers [70] for lan-
guages including arithmetic. Clearly, allowing for partial implementations of entailment/satisfiability
relations would enable us to capture the behaviours of some of the above mentioned logical tools. Re-
moving this “restriction” implies allowing these partial implementations, in so far as they comply with
behaving as a natural family of methods, which in this case implies that the monotonicity of deduction
(respectively satisfaction) under change of notation has to be preserved. In addition, functorial rela-
tions between partial proof calculi (resp., satisfiability calculi) may provide a measure for how good
the method is as an approximation of the ideal entailment relation (resp., satisfaction relation). We
plan to explore these possibilities as future work.
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A. Selected proofs

In this section we will present detailed explanations, definitions and proofs of the results supporting
the examples we presented in Sections 3 and 4.
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A.1. Example 3.2: Tableau method for first-order predicate logic

In Example 3.2 we presented the tableau method for first-order predicate logic and the intuitions for
how it fits into the definition of a satisfiability calculus. In this section we will provide the formal
definitions and the results proving it. Let IFOL = 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|〉, the institution of
first-order predicate logic.

Definition A.1. Let Σ ∈ |Sign| and Γ ⊆ Sen(Σ), we define StrΣ,Γ = 〈O,A〉 such thatO = 2Sen(Σ)

andA = {α : {Ai}i∈I → {Bj}j∈J | α = {αj}j∈J }, where for all j ∈ J , αj is a branch in a tableau
for Γ ∪ {Bj} with leaves ∆ ⊆ {Ai}i∈I ; ∆ |=Σ Γ ∪ {Bj} follows as a direct consequence of the
definition.

Lemma A.2. Let Σ ∈ |Sign| and Γ ⊆ Sen(Σ), then StrΣ,Γ defined as in Definition A.1 is a category.

Proof:
Let us prove that StrΣ,Γ = 〈O,A〉 is a category. For any set {Ai}i∈I ∈ O, the identity is given by the
collection of branches αi : {Ai} (of length 1), i.e., no rule is applied.

Now, given α : {Ai}i∈I → {Bj}j∈J , β : {Bj}j∈J → {Cq}q∈Q ∈ A, their composition β ◦ α =
γ is defined as follows: let {αj : {Bj} → · · · → S ∪ {Ai}i∈I}j∈J and {βq : {Cq} → · · · → S′ ∪
{Bj}j∈J }q∈Q be branches; then, {γq : {Cq} → · · · → {Bj}j∈J ∪S′ → · · · → {Ai}i∈I∪S∪S′}q∈Q
is the branch obtained by extending each branch in β with the corresponding branches in α.

It remains to prove that ◦ has identities and is associative. Both proofs are straightforward by
observing that ◦ is defined to be the concatenation of sequences of sets of formulae. ut

Lemma A.3. Let Σ ∈ |Sign| and Γ ⊆ Sen(Σ); then 〈StrΣ,Γ,∪, ∅〉, where ∪ : StrΣ,Γ × StrΣ,Γ →
StrΣ,Γ is the typical bi-functor on sets and functions, and ∅ is the neutral element for ∪, is a strict
monoidal category.

Proof:
Consider the bifunctor ∪ : StrΣ,Γ × StrΣ,Γ → StrΣ,Γ which behaves as follows: Given sets A and B
A ∪ B is their union. Given a pair of arrows α : A → B and β : C → D, where α = {αi}i∈I and
β = {βj}j∈J , their union is α ∪ β = {αi}i∈I ∪ {βj}j∈J . Note that this functor is well defined: the
union of the identities id{Ai}i∈I ∪ id{Bj}j∈J is a set of branches of length 1 and so is an identity too;
and the composition is preserved, since it is built point wise. On the other hand, the identity object
of the monoidal category is ∅ and the natural isomorphisms are given by the identity which trivially
makes the associativity and identity diagrams commute. ut

Definition A.4. StructSC is defined as 〈O,A〉op where O = {〈StrΣ,Γ,∪, ∅〉 | Σ ∈ |Sign| ∧ Γ ⊆
Sen(Σ)}, and A = {σ̂ : 〈StrΣ,Γ,∪, ∅〉 → 〈StrΣ′,Γ′ ,∪, ∅〉 | σ : 〈Σ,Γ〉 → 〈Σ′,Γ′〉 ∈ ||Th||}, the
homomorphic extensions of the morphisms in ||Th|| to sets of formulae preserving the application of
rules (i.e., the structure of the tableaux).

Lemma A.5. Let StructSC be defined as in Def. A.4. Then, StructSC is a category.
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Proof:
First we prove that 〈O,A〉 where O = {〈StrΣ,Γ,∪, ∅〉 | Σ ∈ |Sign| ∧ Γ ⊆ Sen(Σ)}, and A = {σ̂ :
〈StrΣ,Γ,∪, ∅〉 → 〈StrΣ′,Γ′ ,∪, ∅〉 | σ : 〈Σ,Γ〉 → 〈Σ′,Γ′〉 ∈ ||Th||} is a category.

Morphisms σ̂ ∈ A are the homomorphic extension of the morphisms σ ∈ ||Th|| to the structure of
the tableaux, translating sets of formulae and preserving the application of the rules. Following this,
the composition of σ̂1, σ̂2 ∈ A, the homomorphic extension of σ1, σ2 ∈ ||Th||, not only exists, but it
is the homomorphic extension of the morphism σ1 ◦ σ2 ∈ ||Th||. The associativity of the composition
is also trivial to prove by considering that the morphisms are homomorphic extensions, and by the
associativity of the composition of morphisms in Th. The identity morphism is the homomorphic
extension of the identity morphism for the corresponding signature.

Then, as a direct consequence we obtain that StructSC is a category. ut

Definition A.6. M : Thop → StructSC is defined as M(〈Σ,Γ〉) = 〈StrΣ,Γ,∪, ∅〉 and for any σ :
〈Σ,Γ〉 → 〈Σ′,Γ′〉 ∈ ||Th||, M(σop) = σ̂op where σ̂ : 〈StrΣ,Γ,∪, ∅〉 → 〈StrΣ′,Γ′ ,∪, ∅〉 is the
homomorphic extension of σ to the structures in 〈StrΣ,Γ,∪, ∅〉.

Lemma A.7. Let M : Thop → StructSC be defined as in Definition A.6. Then M is a functor.

Proof:
Let id〈Σ,Γ〉 : 〈Σ,Γ〉 → 〈Σ,Γ〉 ∈ ||Th|| be the identity morphism for 〈Σ,Γ〉 ∈ |Th|. M(id 〈Σ,Γ〉

op) =
id〈StrΣ,Γ,∪,∅〉

op because, by Def. A.4, id 〈StrΣ,Γ,∪,∅〉 is the homomorphic extension of id〈Σ,Γ〉 to the
structures in StrΣ,Γ.

Let σ1 : 〈Σ1,Γ1〉 → 〈Σ2,Γ2〉, σ2 : 〈Σ2,Γ2〉 → 〈Σ3,Γ3〉 ∈ ||Th||; now, as composition of ho-
momorphisms is a homomorphism, then M((σ1 ◦ σ2)op) = M(σ2

op ◦ σ1
op) by definition of opposite

category. Thus, it is the composition M(σ2
op) ◦M(σ1

op). ut

Definition A.8. Mods : StructSC → Cat is defined as:

• Mods(〈StrΣ,Γ,∪, ∅〉) = 〈O,A〉 where:

O =
⋃
{〈Σ, ∆̃〉 | (∃α : ∆→ ∅ ∈ |StrΣ,Γ|)(∆̃→ ∅ ∈ α∧

(∀α′ : ∆′ → ∆ ∈ ||StrΣ,Γ||)(∆′ = ∆) ∧ ¬(∃ϕ)({¬ϕ,ϕ} ⊆ ∆̃))}
A = {idT : T → T | T ∈ O}, and

• Mods(σ̂op)(〈Σ, δ〉) = 〈Σ′,Sen(σ)(δ)〉, for all σ : 〈Σ,Γ〉 → 〈Σ′,Γ′〉 ∈ ||Th||.

Lemma A.9. Let Mods : StructSC → Cat defined as in Definition A.8. Then, Mods is a functor.

Proof:
As for each theory 〈StrΣ,Γ,∪, ∅〉 ∈ |StructSC |, Mods(〈StrΣ,Γ,∪, ∅〉) is a discrete category con-
taining theories whose models are also models of 〈Σ,Γ〉, thus the only property that must be proved
is that for all σ̂ : 〈StrΣ,Γ,∪, ∅〉 → 〈StrΣ′,Γ′ ,∪, ∅〉 ∈ ||StructSC ||, o ∈ |Mods(〈StrΣ,Γ,∪, ∅〉)|,
Mods(σ̂)(o) ∈ |Mods(〈StrΣ′,Γ′ ,∪, ∅〉)|. By definition, Mods(σ̂)(〈Σ, ∆̃〉) = 〈Σ′,Sen(σ)(∆̃)〉.
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Observe that, as a consequence of the fact that σ̂ is the homomorphic extension of Sen(σ) to the
tree-like structure of tableaux, the theory presentation obtained by applying Mods(σ̂) to a particular
element of Mods(〈StrΣ,Γ,∪, ∅〉) is a theory presentation whose set of axioms is a leaf of a branch of
a tableau in 〈StrΣ′,Γ′ ,∪, ∅〉. ut

Definition A.10. Let 〈Σ,∆〉 ∈ |Th|, we define µ〈Σ,∆〉 : models(〈Σ,∆〉) → ModFOL(〈Σ,∆〉) as
for all 〈Σ, δ〉 ∈ |models(〈Σ,∆〉)|, µ〈Σ,∆〉(〈Σ, δ〉) = ModFOL(〈Σ, δ〉).

Fact A.11. Let 〈Σ,Γ〉 ∈ |Th| and µ〈Σ,∆〉 : models(〈Σ,∆〉) → ModFOL(〈Σ,∆〉) defined as in
Def. A.10. Let Σ ∈ |SignFOL| and Γ ⊆ SenFOL(Σ), then µ〈Σ,Γ〉 is a functor.

Lemma A.12. Let 〈Σ,Γ〉 ∈ |Th| and µ〈Σ,∆〉 : models(〈Σ,∆〉)→ModFOL(〈Σ,∆〉) defined as in
Definition A.10. Then, µ is a natural family of functors.

Proof:
Let 〈Σ,Γ〉, 〈Σ′,Γ′〉 ∈ |Th| and σ : 〈Σ,Γ〉 → 〈Σ′,Γ′〉 ∈ |Th0|. Then, the naturality condition for µ
can be expressed in the following way:

〈Σ′,∆′〉

µ〈Σ′,∆′〉

��

models(σ) // 〈Σ,∆〉

µ〈Σ,∆〉

��
ModFOL(〈Σ′,∆′〉)

ModFOL(σ) //ModFOL(〈Σ,∆〉)

It is trivial to check that this condition holds by observing that canonical models are closed theories,
thus behaving as theory presentations in Th. ut

Now, from Lemmas A.7, A.9, and A.12, and considering the hypothesis that IFOL is an institution,
the following corollary follows.

Corollary A.13. 〈Sign,Sen,Mod, {|=Σ}Σ∈|Sign|,M,Mods, µ〉 is a satisfiability calculus.

A.2. Example 3.7: Effectiveness of the satisfiability subcalculus for finite presentations
over the term-free restriction of first-order modal logic

In Example 3.7 we presented an argument of how the satisfiability subcalculus of the term-free frag-
ment of first-order modal logic of Example 3.5 fits the definition of an effective satisfiability subcal-
culus. In this section we will provide the formal definitions and the results proving it. Let us denote
by Q = 〈Sign,Sen,Mod,Sign0,Sen0,ax, {|=Σ}Σ∈|Sign|,M,Mods, µ〉 a satisfiability subcalculus
for first-order modal logic.

Sign0 is a complete subcategory of Sign so we assume J : Sign0 → Sign to be the functor that for
all Σ ∈ |Sign0|, J(Σ) = Σ and for all σ ∈ ||Sign0||, J(σ) = σ.
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Definition A.14. Sen0 is defined as the subfunctor of Sen resulting from restricting the latter to the
objects and morphisms in Sign0.

Lemma A.15. Sen0 : Sign0 → Space is a functor.

Proof:
To prove that Sen0 : Sign0 → Space is a functor, we need to prove that: 1. given Σ ∈ |Sign0|,
Sen0(Σ) is a space, 2. given σ : Σ → Σ′ ∈ ||Sign0||, Sen0(σ) is a total function between Sen0(Σ)
and Sen0(Σ′), and 3. Sen0 preserves identities and composition.

The first condition is trivial Σ ∈ |Sign0|, Sen0(Σ) = Sen(Σ) which is the infinite set of finite
formulae recognised by the regular grammar presented in Example 3.5 for first-order modal logic.
Thus, Sen0(Σ) is a space. The second condition also results trivial because Sen0(σ) is the homo-
morphic extension of σ along the grammar mentioned before, so it is a function mapping formulae
in space Sen0(Σ) to formulae in space Sen0(Σ′). Finally, it is easy to observe that whenever Sen0

is applied to an identity morphism, the result is an identity function between formulae of the corre-
sponding space. The preservation of composition also follows easily by checking that the composition
of the homomorphic extensions of two morphisms results in the same function that the homomorphic
extension of the composition of the morphisms. ut

Lemma A.16. Let U : Space→ Set be the obvious forgetful functor projecting the underlying set of
objects of the space and the total functions between them as morphisms; then U ◦ Sen0 = Sen ◦ J .

Proof:
The proof follows by observing that: 1. J : Sign0 ↪→ Sign is the identity inclusion functor, 2. the
nature of U : Space → Set, and 3. Sen0 is the subfunctor of Sen restricted to the objects and
morphisms of Sign0

Let Σ ∈ |Sign0|, then, as J is the identity inclusion functor, J(Σ) = Σ. Then, as Σ ∈ |Sign0|,
Sen(Σ) = U(Sen0(Σ)) because Sen0 is the subfunctor of Sen. The case of morphisms is analogous
but considering sets, instead of functions. ut

Lemma A.17. ax : Sign→ Space is a functor

Proof:
The proof is analogous to the one of Lemma A.15 but considering the extension of the functor Sen0,
which operates on formulae, to finite sets of formulae. ut

Lemma A.18. Mods : StructSC → Space is a functor.

Proof:
The proof is analogous to the one of Lemma A.17 but considering the extension of the functor ax,
which operates on finite sets formulae, to finite tree-like structures whose nodes are finite sets of
formulae. ut
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A.3. Example 4.3: Mapping modal logic to first-order logic

In Example 4.3 we presented the intuition behind the mapping from the tableau method for modal
logic to the tableau method for first-order predicate logic. In this section we will provide the formal
definitions and detailed proofs of the lemmas.

Let SFOL be 〈SignFOL,SenFOL,ModFOL, {|=Σ
FOL}Σ∈|SignFOL|,MFOL,ModsFOL, µFOL〉

and SK be 〈SignK ,SenK ,ModK , {|=Σ
K}Σ∈|SignK |,MK ,ModsK , µK〉 be the classic tableau meth-

ods for first-order predicate logic and modal logic, respectively, formalised as a satisfiability calculus.
Consider now the standard translation from modal logic to first-order logic presented in [60].

Therefore, the tuple 〈ρSign, ρSen, ρMod〉 is defined as follows:

Definition A.19. ρSign : SignK → SignFOL is defined as ρSign(〈{pi}i∈I〉) = 〈R, {pi}i∈I〉 by map-
ping each propositional variable pi, for all i ∈ I, to a first-order unary logic predicate pi, and adding a
binary predicate R, and ρSign(σ : 〈{pi}i∈I〉 → 〈{p′i′}i′∈I′〉) = σ′ : 〈R, {pi}i∈I〉 → 〈R′, {p′i′}i′∈I′〉
mapping R to R′, and pi to p′i for all i ∈ I.

Lemma A.20. ρSign is a functor.

Proof:
To show that ρSign is a functor we have to prove that it preserves identity and composition. Consider
a signature Σ = 〈{pi}i∈I〉; the identity is just the mapping {pi 7→ pi}i∈I . By Definition A.19 we
obtain that ρΣ({pi 7→ pi}i∈I) = {R 7→ R} ∪ {pi 7→ pi}i∈I〉, thus yielding the identity for signature
〈R, {pi}i∈I〉.

Let Σ,Σ′,Σ′′ ∈ |Sign| and assume there are two morphisms σ : Σ→ Σ′, σ′ : Σ′ → Σ′′ ∈ ||Th0||.
Then ρSign(σ ◦ σ′) = ρSign({pi 7→ p′′i }), and therefore ρSign(σ ◦ σ′) = {R 7→ R′′}∪ {pi 7→ p′′i }. By
definition of composition of functions {R 7→ R′′} ∪ {pi 7→ p′′i } = {R 7→ R′} ∪ {pi 7→ p′i} ◦ {R′ 7→
R′′} ∪ {p′i 7→ p′′i }, and consequently {R 7→ R′′} ∪ {pi 7→ p′′i } = ρSign(σ) ◦ ρSign(σ′). ut

Definition A.21.
Let 〈{pi}i∈I〉 ∈ |SignK |. Then ρSen〈{pi}i∈I〉 : SenK(〈{pi}i∈I〉) → ρSign ◦ SenFOL(〈{pi}i∈I〉) is
defined recursively as ρSen〈{pi}i∈I〉(α) = T〈{pi}i∈I〉,x(α) where:

T〈{pi}i∈I〉,x(pi) = p′i(x), for all i ∈ I.

T〈{pi}i∈I〉,x(¬α) = ¬T〈{pi}i∈I〉,x(α)

T〈{pi}i∈I〉,x(α ∨ β) = T〈{pi}i∈I〉,x(α) ∨ T〈{pi}i∈I〉,x(β)

T〈{pi}i∈I〉,x(♦α) = (∃y)(R(x, y) ∧ T〈{pi}i∈I〉,y(α))

Fact A.22. Let 〈{pi}i∈I〉 ∈ |SignK |, ρSen〈{pi}i∈I〉 is a function.

Lemma A.23. ρSen is a natural family of functions.

Proof:
To prove this lemma we must prove that the equality SenK(σ) ◦ ρSenΣ′ = ρSenΣ ◦ SenFOL(ρSign(σ))
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holds for every formula α ∈ |ThK |. Notice that SenK(σ) and SenFOL(ρSign(σ)) only translate
extra-logical symbols preserving the logical structure of the formulae because they are homomorphic
extensions of the morphisms to the structure of the formulae induced by SenK and SenFOL. On
the other hand, the reader can see that two formulae that are α-convertible yield, after the application
of ρSenΣ and ρSenΣ′ , α-convertible formulae in the target category of sentences such that, by Defini-
tion A.19, preserving the mapping of extra-logical symbols. ut

Fact A.24. ρTh, the extension of ρSign defined as in Section 4, is ρSen-sensible.

Definition A.25. Let 〈{pi}i∈I〉 ∈ |SignK |, we define ρMod
〈{pi}i∈I〉 : ρSign ◦ModFOL(〈{pi}i∈I〉) →

ModK(〈{pi}i∈I〉) as follows:

• for all M = 〈S,R, {pi}i∈I〉 ∈ |ModFOL(〈R, {pi}i∈I〉)|, ρMod
〈{pi}i∈I〉(M) = 〈S,R,L〉, with

L(pi) = {s ∈ S|pi(s)}.15

• consider 〈{pi}i∈I〉 ∈ |SignK |; then for all h : 〈S1, R1, {p1i}i∈I〉 → 〈S2, R2, {p2i}i∈I〉 ∈
||ModFOL(〈R, {pi}i∈I〉)||, we define ρMod

〈{pi}i∈I〉(h) to be ĥ, where ĥ(s1) = s2 if and only if
h(s1) = s2 for all s1 ∈ S1.

Lemma A.26. Let 〈{pi}i∈I〉 ∈ |SignK |, then ρMod
〈{pi}i∈I〉 is a functor.

Proof:
It is trivial to prove that ρMod

〈{pi}i∈I〉 preserves identities by noting the definition of ĥ in terms of h.
The preservation of compositions follows by observing that, as predicates are mapped positionally,

if we consider a pair of homomorphisms h1, h2 ∈ ||ModFOL(〈R, {pi}i∈I〉)||, the resulting homo-
morphism ρMod

〈{pi}i∈I〉(h1 ◦ h2) ∈ ||ModK(〈{pi}i∈I〉)|| is exactly the homomorphism ρMod
〈{pi}i∈I〉(h1) ◦

ρMod
〈{pi}i∈I〉(h2) ∈ ||ModK(〈{pi}i∈I〉)||. ut

Lemma A.27. ρMod is a natural family of functors (i.e., a natural transformation).

Proof:
Predicate symbols are mapped by resorting to the injective function σ : 〈{pi}i∈I〉 → 〈{p′i}i∈I′〉 ∈
||SignK || and, as ρMod

〈{pi}i∈I〉 and ρMod
〈{p′i}i∈I′ 〉

maps predicates interpreting the symbols in the ρSign-

translation of the signature positionally, the reduct operations ModK(σ) and ModFOL(ρSign(σ))
commute with ρMod

〈{pi}i∈I〉 and ρMod
〈{p′i}i∈I′ 〉

, thus proving the naturality condition. ut

The next corollary follows from Lemmas A.20, A.23, and A.27.

Corollary A.28. 〈ρSign, ρSen, ρMod〉 is a comorphism of institutions.

15Notice that ρSign(〈{pi}i∈I〉) = 〈R, {pi}i∈I〉, where 〈{pi}i∈I〉 ∈ |SignK |.
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The proof of this corollary ultimately relies on the correctness of the translation presented in [60].
Using this map we can define a mapping between the corresponding satisfiability calculi. Now, we
have to prove that structures representing the tableaux for first-order predicate logic for properties re-
sulting from the translation of modal logic properties can indeed be translated to modal logic tableaux
for the original modal logic properties.

To continue with this example, it is important to recall that, whenever we consider set of formulae
resulting from the application of function ρSen〈{pi}i∈I〉, the first-order predicate logic tableaux will have
a particular shape because the application of rule [∀] (respectively [∃]) is restricted to the formulae
resulting from the application of the translation.

Fact A.29. Let 〈{pi}i∈I〉 ∈ |SignK |; for all α ∈ |SenK(〈{pi}i∈I〉)|, if ρSen〈{pi}i∈I〉(α) = β, then any
quantified sub-formula in β is either of the form: a) (∀x)(R(y, x) =⇒ ϕ(x)), or b) (∃x)(R(y, x) ∧
ϕ(x)).

The next definition provides the means for obtaining modal logic tableaux from first-order pred-
icate logic tableaux. In order to simplify the following definition, we will restrict ourselves to those
first-order predicate logic tableaux in which, when the rule [∀] (respectively [∃]) is applied, the rules
[∨] and [¬] (respectively [∧]) are applied. Notice that this assumption does not limit the definitions
and results in any way because any other legal tableau for the same set of formulae that does not satisfy
this property can be reordered to satisfy it.

Definition A.30. We define T , a function translating first-order logic tableaux to modal logic tableaux,
as follows16:

•
X ∪ {(∃x)(R(y, x) ∧ P (x))}

x is a new constant [∃]
X ∪ {(∃x)(R(y, x) ∧ P (x)), R(y, x) ∧ P (x)}

[∧]
X ∪ {(∃x)(R(y, x) ∧ P (x)), R(y, x) ∧ P (x), R(y, x), P (x)}

↓ T

X ∪ {` : ♦P}
x is a new label such that R(y, x) [♦]

X ∪ {` : ♦P, x : P}

•

X ∪ {(∀x)(¬R(y, x) ∨ P (x))}
x is a ground term [∀]

X ∪ {(∀x)(¬R(y, x) ∨ P (x)),¬R(y, x) ∨ P (x)}
[∨]

X ∪ {(∀x)(¬R(y, x) ∨ P (x)),

¬R(y, x) ∨ P (x),

¬R(y, x)}

∣∣∣∣∣∣∣
X ∪ {(∀x)(¬R(y, x) ∨ P (x)),

¬R(y, x) ∨ P (x),

P (x)}

↓ T

X ∪ {` : �P}
x is a label ocurring in X ∪ {`} such that R(`, x) [�]

X ∪ {` : �P, x : P}

Then, the natural transformation γ : models′ ◦ ρTh �→models is defined as follows.

16Notice that the translation of the rules for the propositional operators take care of the labelling by just preserving them.
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Definition A.31. Let 〈〈{pi}i∈I〉,Γ〉 ∈ |ThK |; then

γ〈〈{pi}i∈I〉,Γ〉 : modelsFOL ◦ ρTh(〈〈{pi}i∈I〉,Γ〉)→modelsK(〈〈{pi}i∈I〉,Γ〉)

is defined as:

γ〈〈{pi}i∈I〉,Γ〉(〈〈R, {pi}i∈I〉,∆〉) = 〈〈{pi}i∈I〉, {ϕ ∈ |SenK(〈{pi}i∈I〉)| | ρSen〈{pi}i∈I〉(ϕ) ∈ ∆}〉

where ρTh(〈〈{pi}i∈I〉,Γ〉) = 〈〈R, {pi}i∈I〉,∆〉.

Lemma A.32. Let 〈〈{pi}i∈I〉,Γ〉 ∈ |ThK |, then γ〈〈{pi}i∈I〉,Γ〉 is a functor.

Proof:
This lemma follows trivially by observing that the categories obtained by applying modelsFOL
and modelsK are discrete, and that given 〈〈R, {pi}i∈I〉,∆〉 ∈ |ThFOL|, the theory presentation
〈〈{pi}i∈I〉, {α ∈ |SenK(〈{pi}i∈I〉)| | ρSen〈{pi}i∈I〉(α) ∈ ∆}〉 is the canonical model obtained from
a branch of the modal logic tableau resulting from the application of T to the tableau from which
〈〈R, {pi}i∈I〉,∆〉 was obtained. ut

Lemma A.33. {γT : modelsFOL◦ρTh(T )→modelsK(T )}T∈|ThK | is a natural family of functors
(i.e., a natural transformation).

Proof:
Let σ : 〈{pi}i∈I〉 → 〈{p′i}i∈I′〉 ∈ ||SignK || and ϕ : 〈R, {pi}i∈I〉 → 〈R′, {p′i}i∈I′〉 ∈ ||SignFOL||
such that ρSign(σ) = ϕ then, the naturality condition for γ can be drawn as follows:

modelsFOL ◦ ρTh(〈〈{p′i}i∈I′〉,Γ′〉)

modelsFOL◦ρTh(σop)

��

γ〈〈{p′
i
}i∈I′ 〉,Γ

′〉
//modelsK(〈〈{p′i}i∈I′〉,Γ′〉)

modelsK(σop)

��
modelsFOL ◦ ρTh(〈〈{pi}i∈I〉,Γ〉)

γ〈〈{pi}i∈I〉,Γ〉 //modelsK(〈〈{pi}i∈I〉,Γ〉)

Let 〈〈R′, {p′i}i∈I′〉,∆〉 ∈ |modelsFOL ◦ ρTh(〈〈{p′i}i∈I′〉,Γ〉)|, then, by resorting to Defini-
tion A.31, we get that

γ〈〈{p′i}i∈I′ 〉,Γ′〉(〈〈R
′, {p′i}i∈I′〉,∆〉) = 〈〈{p′i}i∈I′〉, {α ∈ |SenK(〈{p′i}i∈I′〉)| | ρSen〈{p′i}i∈I′ 〉(α) ∈ ∆}〉

holds. Thus,

modelsK(σop)(〈〈R′, {p′i}i∈I′〉, {α ∈ SenK(〈{p′i}i∈I′〉) | ρSen〈{p′i}i∈I′ 〉(α) ∈ ∆}〉)
= 〈〈{pi}i∈I〉, {β ∈ SenK(〈{pi}i∈I〉) | SenK(σ)(β) ∈ {α ∈ SenK(〈{p′i}i∈I′〉) | ρSen〈{p′i}i∈I′ 〉(α) ∈ ∆}}〉
= 〈〈{pi}i∈I〉, {β ∈ SenK(〈{pi}i∈I〉) | ρSen〈{p′i}i∈I′ 〉(SenK(σ)(β)) ∈ ∆}〉
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On the other hand,

modelsFOL ◦ ρTh(σop)(〈〈R′, {p′i}i∈I′〉,∆〉)
= modelsopFOL(ρTh(σ)op)(〈〈R′, {p′i}i∈I′〉,∆〉)
= modelsopFOL(ϕop)(〈〈R′, {p′i}i∈I′〉,∆〉)
= 〈〈R, {pi}i∈I〉, {α ∈ SenFOL(〈R, {pi}i∈I〉) | Sen(ϕ)(α) ∈ ∆}〉

Then,
γ〈〈{pi}i∈I〉,Γ〉(〈〈R, {pi}i∈I〉, {α ∈ SenFOL(〈R, {pi}i∈I〉) | Sen(ϕ)(α) ∈ ∆}〉)

= 〈〈R, {pi}i∈I〉, {β ∈ SenK(〈{pi}i∈I〉) | ρSen〈{pi}i∈I〉(β) ∈
{α ∈ SenFOL(〈R, {pi}i∈I〉) | SenFOL(ϕ)(α) ∈ ∆}}〉

= 〈〈R, {pi}i∈I〉, {β ∈ SenK(〈{pi}i∈I〉) | SenFOL(ϕ)(ρSen〈{pi}i∈I〉(β)) ∈ ∆}〉

Then, by definition of ρTh, ρSen, SenK and SenFOL, we can get ρSen〈{p′i}i∈I′ 〉(SenK(σ)(β)) =

SenFOL(ρTh(σ)(ρSen〈{pi}i∈I〉(β)). ut

Finally, the following lemma proves the equivalence of the two cells shown in Definition 4.2.

Lemma A.34. Let 〈〈{pi}i∈I〉,Γ〉 ∈ |ThK |, then µK 〈〈{pi}i∈I〉,Γ〉 ◦ γ〈〈{pi}i∈I〉,Γ〉 = ρMod
ρSign(〈{pi}i∈I〉)

◦
µFOLρTh(〈〈{pi}i∈I〉,Γ〉).

Proof:
We start by proving that µK 〈〈{pi}i∈I〉,Γ〉 ◦ γ〈〈{pi}i∈I〉,Γ〉 and ρMod

ρSign(〈{pi}i∈I〉)
◦ µFOLρTh(〈〈{pi}i∈I〉,Γ〉),

are the same functors. Let 〈{pi}i∈I〉 ∈ |SignK |, Γ ⊆ Sen(〈{pi}i∈I〉) and 〈〈R, {pi}i∈I〉,∆〉 ∈
|modelsFOL(ρTh(〈〈{pi}i∈I Γ〉))|; then, γ〈〈{pi}i∈I〉,Γ〉(〈〈R, {pi}i∈I〉,∆〉) =

〈〈{pi}i∈I〉, {α ∈ SenK(〈{pi}i∈I〉) | ρSen〈{pi}i∈I〉(α) ∈ ∆}〉. Thus, we obtain that:

µK 〈〈{pi}i∈I〉,Γ〉 ◦ γ〈〈{pi}i∈I〉,Γ〉(〈〈R, {pi}i∈I〉,∆〉) =

ModK(〈〈{pi}i∈I〉, {α ∈ SenK(〈{pi}i∈I〉) | ρSen〈{pi}i∈I〉(α) ∈ ∆}〉).

Then, as µFOLρTh(〈〈{pi}i∈I〉,Γ〉)(〈〈R, {pi}i∈I〉,∆〉) = ModFOL(〈〈R, {pi}i∈I〉,∆〉), the following
needs to be proved:

ρMod
〈{pi}i∈I〉(ModFOL(〈〈R, {pi}i∈I〉,∆〉)) =

ModK(〈〈{pi}i∈I〉, {α ∈ SenK(〈{pi}i∈I〉) | ρSen〈{pi}i∈I〉(α) ∈ ∆}〉).

The equality holds because, on the one hand, we have the modal logic reducts of the first-order
predicate logic models of the formulae in ∆ and, on the other hand, we have the modal logic models
of the reverse translation of the formulae in ∆. Notice that by the way in which tableaux are related
through T , the formulae in ∆ can be reverse translated. ut

The next corollary follows from Corollary A.28, and Lemmas A.33 and A.34.

Corollary A.35. 〈ρSign, ρSen, ρMod, γ〉 is a comorphism of satisfiability calculi.


