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Abstract  

Skin wound healing presents a unique challenge because of its complex healing process. 

Herein, we developed a hydrophobic wound dressing to incorporate simvastatin, which has 

potential application in the treatment of ulcers and prevention of wound infection. For that 

matter, collagen hydrogels were grafted with dodecenylsuccinic anhydride (DDSA). The 

chemical modification was confirmed by FTIR and solid state 13C-NMR spectroscopies 

while the ultrastructure was observed by SEM images. In contact angle measurements, a 

higher water droplet angle in DDSA-collagen gels was observed. This was consistent with 

the swelling assay, in which water absorption was 5.2 g/g for collagen and 1.9 g/g for 

DDSA-collagen. Additionally, viability and adhesion studies were performed. Cell 

adhesion decreased ˜11% in DDSA-collagen and the number of viable cells showed a 

tendency to decrease as DDSA concentration increased but it was only significantly lower 

above concentrations of 12%.  Modified gels were loaded with simvastatin showing higher 

adsorption capacity and lower release. Lastly, the antimicrobial and anti-inflammatory 

activity of DDSA-collagen materials were assessed. DDSA-collagen hydrogels, either 

unloaded or loaded with simvastatin showed sustained antimicrobial activity against 

Pseudomonas aeruginosa and Staphylococcus aureus for 72 h probably due to the 

hydrophobic interaction of DDSA chains with bacterial cell walls. The antimicrobial 

activity was stronger against S. aureus. Collagen hydrogels also presented a prolonged 

antibacterial activity when they were loaded with simvastatin, confirming the antimicrobial 
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properties of statins. Finally, it was observed that these materials can stimulate resident 

macrophages and promote an M2 profile which is desirable in wound healing processes.  
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1. Introduction 

 

The drug simvastatin has been commonly used for its hypolipemiant properties acting as a 

3-hidroxi-3-metil-glutaril-CoA (HMG-CoA) reductase inhibitor. However, recent studies 

have shown that it has a wide range of applications unrelated to cholesterol reduction  

including antioxidant, anti-inflammatory (1), and antifibrotic effects (2) as well as angiogenic 

activity (3),(4). Topical application of simvastatin has shown an anti-inflammatory action in 

acute irritant contact dermatitis induced by croton oil in animal models and at the same 

time statins have been used topically for the treatment of skin disorders such as acne, 

seborrhea and rosacea (5).  

The local application of simvastatin has also been reported in periodontal regenerative 

therapy (6) and in the stimulation of bone tissue regeneration  (7) while other authors have 

investigated the effect of simvastatin in diabetes-related healing defects in a skin wound 

model indicating that simvastatin administration restored the impaired wound healing 
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process in diabetic mice (8). Similar results were observed for topically administered 

simvastatin resulting in a significant acceleration of wound recovery due to an increase in 

both angiogenesis and lymphangiogenesis. (9) However, other investigators compared the 

effect of collagen sponges loaded with simvastatin and unloaded for the topical treatment of 

human ulcers and did not found statistically significant differences between the two groups 

regarding absolute changes in wound areas and healing areas per day, while the percentages 

of changes in healing rates were even better for unloaded sponges (10). 

Finally, another important effect reported for statins includes its antimicrobial activity 

against important Gram-positive pathogens, in particular methicillin-resistant S. aureus and 

against Gram-negative pathogens as well, once the barrier imposed by the outer membrane 

is permeabilized. In this case, the mechanism of action proposed may involve inhibition of 

multiple biosynthetic pathways and cellular processes, including selective interference with 

bacterial protein synthesis (11). Simvastatin was the only statin with activity against clinical 

isolates and reference strains of methicillin-sensitive S. aureus (MSSA) and methicillin-

resistant S. aureus (MRSA). It exhibited a Minimal Inhibitory Concentration (MIC) of 

15.65 µg/mL for S. aureus (ATCC 29213) and 31.25 µg/mL for the other strains of S. 

aureus tested. In addition, simvastatin inhibits adhesion and biofilm formation at 

concentrations from 1/16 x MIC to 4 x MIC and was also able to act against mature 

biofilms, reducing cell viability and extra-polysaccharide production (12). Moreover, topical 

application of simvastatin at its MIC against S. aureus accelerated the healing and bacterial 

clearance of bacteria contaminated wounds in an excisional mice wound model (13). 
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On the other hand, collagen dressings have been extensively used for wound healing as 

they restore the barrier function lost during injury, while stimulating cell migration and 

supporting the growth of new cells in the affected area (14),(15). Collagen is the most 

abundant structural protein of connective tissues in mammals and shows good 

biocompatibility and biodegradability (16),(17). It has been obtained from different sources 

including rat tail, fish, bovine, ovine or porcine (18),(19). Additionally, it has been used with 

the intention to deliver certain drugs or biomolecules (20),(21)  that contribute to the healing 

process or limit and prevent microbial colonization of the wound using mainly antibiotics 

(22),(23) or natural products (24),(25). However, collagen scaffolds often present poor 

mechanical properties, high susceptibility to degradation and low capacity to incorporate 

hydrophobic drugs making necessary physical and chemical modifications to improve their 

properties (26),(27).  Regarding collagen mechanical properties some strategies have been 

used to improved them including its concentration through evaporation procedures until 

concentrations of 40 mg.ml-1 (28), compression, cross-linking with reticulant agents or by 

the association of collagen with mineral phases to produce composites (29). With respect to 

the administration of drugs from collagen hydrogels many efforts have been made in order 

to achieve a controlled delivery as they are poor drug delivery systems releasing the drug 

content in short times (30). Some of them include the preparation of collagen 

nanocomposites using silica nanoparticles (22)(31), the formation of inclusion complexes with 

cyclodextrins (32) or covalent interactions between drugs and wound dressing substrates (33). 
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Several strategies have been investigated for the oral delivery of statins in order to increase 

their in vitro dissolution and bioavailability due to their hydrophobic nature (34) but less 

information can be found in the field of topical application (35) where this kind of lipophilic 

drugs are typically included in vehicles such as solid lipid nanoparticles(36) o liposomes (37). 

For its part, dodecenylsuccinic anhydride (DDSA) is a cyclic anhydride which can react 

with the functional groups OH and NH2 which are present in the chemical structure of 

collagen. It has been used to introduce an hydrophobic moiety in predominantly 

hydrophilic structures like proteins and polysaccharides in order to alter their properties in 

terms of dispersibility, water interaction, film forming capacity, homogeneity and to 

develop drug delivery systems of poorly soluble active pharmaceutical ingredients (38).  In 

this aspect, an amphiphilic gelatin macromolecule capable of self-assembling to form 

micelle-like nanospheres was developed for the entrapment of hydrophobic therapeutic 

molecules by grafting hydrophobic hexanoyl anhydrides to the amino groups of gelatin (39). 

In the same way, hyaluronic acid was modified with octenyl succinic anhydride to obtain a 

local/controlled delivery platform of an hydrophobic anti-inflammatory drug (40).  

In this work, type I collagen was derivatized with dodecenylsuccinic anhydride with the 

intention to obtain more hydrophobic wound dressings, which could potentially incorporate 

higher amounts of the drug simvastatin for their application in the treatment of ulcers and 

prevention of wound infection. In order to confirm that DDSA was covalently bound to 

hydroxyl or amine groups of collagen amino acids, infrared and solid NMR were used. The 

material obtained was further characterized by rheology measurements, electron 
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microscopy, enzymatic degradation with collagenase and its water uptake capability. 

Simvastatin incorporation in pure collagen hydrogels and DDSA- modified collagen gels 

was evaluated and compared together with the drug release profile from both materials. 

Moreover, cell adhesion and proliferation on this material was assayed, as well as its 

antimicrobial activity against common pathogens involved in wound infection. Finally, a 

monocyte cell line was exposed to the materials and pro-inflammatory and anti-inflammatory 

cytokines were measured to evaluate macrophage activation. 

 

2. Materials and Methods 

 

2.1 Reagents and Materials 

(2- Dodecen- 1-yl) succinic anhydride and thiazolyl blue tetrazolium bromide reagent were 

purchased from Sigma–Aldrich (St Louis, USA).  Dulbecco´s modified Eagle´s medium, 

penicillin, streptomycin and collagenase Type I (340 U/mg) were supplied by Gibco/ Life 

technologies. All other reagents were of analytical grade.  

2.2 Synthesis of collagen hydrogels 

Collagen was obtained from rat tails. Internal fibers were isolated and washed three times 

using buffer phosphate saline (PBS). Then, the washed fibers were placed into a 0.5 M 

sterile acetic acid solution, and stirred for 48 hours at 4°C. After that, the resultant colloid 

was centrifuged and the supernatant was collected into an empty bottle, whereas a 4 M 
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NaCl solution was added until the colloid reached a final concentration of 1 M NaCl and 

stored overnight at 4°C. Subsequently, the supernatant was discarded, and the pellet was 

dialyzed against a 0.5 M acetic acid solution through a 12000–14,000 molecular weight 

cut-off dialysis tubing for 72 h. 

Finally, a 5 mg/mL collagen colloid was placed into a 24- multiwell plate, and exposed to 

ammonia vapor in order to neutralize the acid and form the corresponding hydrogel. 

2.3 Hydrogel chemical modification with DDSA 

Collagen hydrogels of approximately 5 mg obtained in the previous step were incubated 

with 1 mL alcoholic DDSA solutions ranging from 3% to 12% w/v under ammonia vapors 

to keep the pH alkaline in order to favor the reaction (41) and to prevent collagen hydrolysis 

caused by DDSA acid by-products. The reaction was performed a 37 °C and left for 12 hrs. 

Once the reaction was finished, the gels were exhaustively washed until a pH of 7.0 was 

reached. In parallel, the same reaction was performed with 1 mL of a collagen solution (5 

mg/mL) mixed with alcoholic DDSA solutions to give a final concentration ranging from 

3% to 12% w/v. The reaction conditions were the same that in the case of collagen 

hydrogels but the reaction took place at the same time than collagen polymerization. These 

gels will be called hybrids in the rest of the text.  

 

2.4 Electron microscopy characterization 
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The morphology of the developed structures was observed with a Zeiss Supra 40 scanning 

electron microscope (SEM). Samples were washed with PBS, fixed with a 2.5 % 

glutaraldehyde in PBS solution for 1 h at 4ºC, freeze dried and subjected to gold sputtering 

prior to analysis. 

2.5 Rheological measurements 

The elastic or storage modulus, G’(w),  and the viscous or loss modulus, G’’ (w), of the 

materials under study were obtained in small-amplitude oscillatory shear flow experiments 

using a rotational rheometer from Anton Paar (MCR-301) provided with a CTD 600 thermo 

chamber. The tests were performed using parallel plates of 25 mm diameter, a frequency 

range of 0.1– 10 s-1, at room temperature (22° C). All the tests were performed using small 

strains to ensure the linearity of the dynamic responses. All the samples were tested in 

triplicate using different samples. The gap width used was 1300 mm.  

2.6 FT-IR spectroscopy assay and solid- state NMR characterization 

FT-IR spectroscopy assay was performed on the different lyophilized hydrogel films using 

a Nicolet is 50 FT-IR spectrophotometer, with a KBr beamsplitter. Spectra were obtained 

with a resolution of 2 cm-1 using a DTGS detector. The samples were measured using the 

Attenuated total reflectance (ATR) technique.  

All solid-state 13C NMR experiments were performed at room temperature in a 300 MHz 

Bruker Avance II spectrometer equipped with a 4-mm magic angle spinning (MAS) probe. 
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High-resolution 13C solid-state spectra were recorded using the ramp {1 H}-{13C} CP-

MAS. The acquisition time was 2 ms. The spinning rate was 10 kHz for all the samples and 

experiments. The characterization by means of spectroscopy techniques was applied to 6% 

DDSA- modified hydrogels. 

2.7 Collagenase assay 

Resistance of 6% DDSA-modified hydrogels to enzymatic digestion was evaluated using a 

collagenase assay. Hydrogels with a volume of 500 μL were incubated for 24 h in 1 mL of 

PBS at room temperature until neutral pH was reached. Subsequently, the PBS 1X solution 

was substituted for 1 mL of bacterial collagenase solution (15 units/mL of collagenase type 

I in PBS Buffer). After incubation at 37 °C at different time points, the enzymatic reaction 

was halted by centrifugation, posterior discarding of the supernatant and freezing at -18°C, 

following vacuum dehydration. The remaining mass of the hydrogels was measured and 

normalized to the remaining mass of non-digested hydrogels. 

 

2.8 Water Uptake Rate and Capacity  

Pure collagen and 6% DDSA-modified hydrogels were freeze-dried. Afterwards, they were 

weighted (Wo) and soaked in PBS at 37°C to allow water uptake. Hydrogels were removed 

from PBS and weighted (W) at different time points (t) after removing the excess of water. 

The degree of swelling was calculated using the following equation:  
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W% = [(W – W0) W0] × 100 

 

2.9 Contact angle measurements. 

Contact angles were determined on dried films by averaging measurements on three 

distilled water droplets using a Ramé-Hart 190 contact-angle apparatus. 

 

2.10 Cell adhesion and viability studies on scaffolds 

Pure collagen and DDSA-modified hydrogels in different concentrations ranging from 1.6 

to 12 % were exposed to the fibroblastic cell line L929 of mouse origin. For this purpose, 5 

x 104 cells were added on top of each gel along with 1 mL of cell culture medium.  For 

proliferation experiments, the medium was removed, replaced with 0.45 mL of fresh media 

and 0.05 mL of a 5 mg/mL MTT solution and incubated in a humidified 5% carbon dioxide 

chamber for 4 h. Following incubation, MTT solution was removed, gels were washed 

three times with PBS and 1 mL of absolute ethanol was added before leaving to stand for 

30 minutes. The absorbance was recorded at 570 nm and readings were converted to cell 

number with a standard curve. 

For adhesion studies, the cells were seeded onto prepared scaffolds at a density of 50,000 

cells per gel, they were left until they could adhere for 4 h at 37°C and after the time 

elapsed, non-adherent cells were removed by washing with PBS. The MTT assay was 

performed over adhered cells. 
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2.11 Simvastatin incorporation and release studies 

Simvastatin incorporation in collagen and 6% DDSA-modified hydrogels was analysed. In 

this sense, both hydrogels were incubated with different concentrations of alcoholic 

simvastatin solutions in air-tight tubes. After 24h, the remaining solution was employed to 

quantify simvastatin by an HPLC method using a 5µm C8 column of 150mm x 4.6 mm and 

with an UV-detector working at a wavelength of 238nm. The mobile phase was a 

methanol/acetonitrile/water mixture (70:10:30) adjusted to pH 2.5 with phosphoric acid and 

the flow rate was 1.0 ml/min  (42). 

For the release studies, collagen and DDSA collagen materials (45 mg) loaded with 

simvastatin were placed with 10 mL of PBS at 37 °C for 1, 2, 4, 6, 24, 48 and 72 h. The 

amount of drug released was measured at the different periods employing the HPLC 

method described before. During each collection time, the solution was completely 

replaced with fresh PBS. The remaining amount of simvastatin in the gels after 72 h was 

eluted with ethanol and also quantified. 

 

2.12 Antimicrobial activity evaluation 

Staphylococcus aureus (ATCC 29213) and Pseudomonas aeruginosa (ATCC 27853) were 

incubated overnight at 37°C in Luria-Bertani (LB) broth (yeast extract, 5 g/L; NaCl, 10 g/L 

and triptone, 10 g/L). A bacterial suspension of 1.106 CFU/mL in PBS was added to each 

pure collagen or 6% modified hydrogel preloaded with simvastatin solutions in 

concentrations of 10 and 100 µM prepared from a concentrated simvastatin solution of 
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1mM   in dimethyl sulfoxide. The hydrogels were then incubated overnight at 37 °C with 

0.2 ml of a bacterial suspension. After 24 h, the bacterial suspension on the top of the 

hydrogels was withdrawn and serial dilutions were made in physiologic solution. Finally, 

20 μL of each dilution were spread in agar plates and the number of colony forming units 

was counted. This methodology was repeated two more times, to evaluate the sustained 

antimicrobial effect of the synthesized materials after 24 h, 48 h and 72 h.  

Moreover, the minimum inhibitory concentration was determined by broth dilutions assay 

with S. aureus bacterial suspensions of 1.0 106 CFU/ml. Serial simvastatin dilutions were 

prepared from 30 to 0.5 µg/ml.  

 

2.13 Anti-inflammatory activity of simvastatin loaded materials 

The monocyte cell line THP-1 (ATCC® TIB-202™) derived from human peripheral blood 

from a one-year-old male was used to obtain macrophages for the essays. THP-1 cells were 

expanded in RPMI medium with 10% heat-inactivated fetal bovine serum (FBS), and 100 

U/ml penicillin and 100 µg/ml streptomycin sulphate. Monocytes were seeded at 6 x105 

cell/ml on collagen and DDSA-collagen gels loaded or not with simvastatin in a 

concentration of 100 µM and incubated for 6 h. After that, THP-1cells were differentiated 

to macrophages through incubation with 100ng/ml of lipopolysaccharide (LPS) for 24 h. 

Nitric Oxide (NO) production was determined in the supernatant of cultures by using 

Griess reaction assay (43). In addition, the secretion of interleukin-1β (IL-1), interleukin-6 

(IL-6), interferon gamma (IFN-γ) and transforming growth factor beta (TGF-β) were 

measured by ELISA from the supernatant (SN) of cultures with different treatments to 

evaluate the M2 effect of simvastatin. Concentrations of cytokines were determined using 

ELISA kits according to the manufacturer’s instructions (BD, OptEIATM). 
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2.14 Statistical analysis 

All experiments were performed at least in triplicate and statistically analysed by one-way 

ANOVA. Data are represented as means ± SD. The differences were analysed using one-

way ANOVA, followed by Bonferroni's Multiple Comparison Test, when p < 0.05 

difference was considered significant. 

 

3. Results  

3.1 Electron microscopy characterization 

DDSA-modified collagen gels were obtained in two different ways, through esterification 

after the gelation step or through the formation of a mixed gel (hybrid) during 

fibrillogenesis by exposure to ammonia vapors.  SEM microscopy was used to determine if 

collagen fibers and hydrogel porosity were significantly altered after the reaction with 

DDSA and to evaluate the morphology and overall structure of hybrid materials. It was 

possible to observe by SEM photographs a marked difference in the morphology of both 

types of gels obtained by the different procedures. In the first case, the formation of typical 

collagen fibers with their characteristic striated appearance was conserved in DDSA-

modified hydrogels under all the tested conditions. No significant differences between 

morphologies of the treated and common collagen scaffolds were noted. In the second case, 

when hybrid materials were analysed, collagen fibers were not formed and a material with 
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lower porosity and a honeycomb-like shape similar to that observed for gelatin scaffolds 

was obtained instead (44). Therefore, it can be presumed that addition of DDSA during the 

gelation process hinders the self-assembly of collagen molecules into fibrils and this effect 

could be due to protein denaturalization because of reaction conditions like temperature and 

the presence of ethanol (45) (Figure 1 a-d). 

 

3.2 Rheological measurements 

Mechanical properties of the materials were studied by rheological measurements and 

compared to collagen hydrogels. Figure 2 displays the linear viscoelastic behavior of 

storage modulus (G’) and loss modulus (G’’) of hybrid and DDSA-collagen hydrogels in 

different concentrations. 

 For all materials, the storage modulus G’ was much higher than the loss modulus G”, as 

expected for hydrogels with significant elastic properties. The values of G’ increased 

almost three times for DDSA- modified hydrogels in comparison to pure collagen matrices. 

This value slightly increased with the increase in DDSA concentration from 3 to 6% 

indicating that they were more stable to deformation by external forces probably because of 

the cross-linking of collagen molecules (46),(47) which suggests that both carboxylic groups 

of the anhydride and not only one were involved in the reaction. In the case of hybrid 

scaffolds, a 2-fold increment was observed for 3% DDSA treated materials but at higher 

concentrations the G’ values were below those observed for pure collagen. This observation 

probably indicates that at 3% concentration of DDSA in hybrid materials the denaturation 
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of collagen due to reaction conditions may not be complete, coexisting with the cross-

linking of remaining collagen fibrils.     

Modified collagen gels with concentrations above 6 % DDSA were also assayed but with 

difficulty due to the fragility of the material. Therefore, the 6% DDSA concentration was 

chosen for the rest of the experiments performed. 

Hybrid DDSA-collagen materials did not conserve the structure of typical collagen 

scaffolds as observed by SEM microscopy. Moreover, this arrangement of collagen 

molecules in the scaffold played a critical role on its strength and mechanical properties. It 

has been reported that collagen´s triple helix structure has to be preserved in order to keep 

its properties during the wound healing process (48). For this reason, hybrid materials were 

discarded and no further examined for the rest of the assays. 

3.3 FT-IR spectroscopy assay and solid- state NMR characterization  
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The signal differences between a 6% DDSA-modified gel and a pure collagen hydrogel can 

be observed in the IR spectrum (Figure 3), identifying new signals in the 2880 cm-1 region 

corresponding to the characteristic vibration of the C-H stretch of the carbon chain 

incorporated with the reaction and an increment in the signal at 1662 cm -1 (Amide I) which 

is attributed to the stretching of the C = O groups formed by the amidation reaction in the 

modified gels. It is also possible to observed, in both situations, the amide II signal at 

1560 cm−1 for N-H bending vibrations coupled with C-N stretching. The amide III vibration 

band at  ̴1220 cm-1 and the band at 1450 cm−1 associated to the pyrrolidine ring vibration of 

proline and hydroxyproline are slightly diminished in DDSA cross-linked collagen gels.  

Furthermore, solid-NMR spectroscopy was used to confirm the covalent bonding of DDSA 

to collagen amino acids and to elucidate which of them were involved in the linking. As it 

can be observed in Figure 4, the signal at 160 ppm is assigned to the CƐ of the arginine 

residues which is present in the pure collagen spectra and hardly observed in the DDSA-

modified gel. In the same way, the peak assigned to the C4 Hyp at 70 ppm and C5 Lys at 30 

ppm are clearly affected after treatment with DDSA (49),(50). These carbons are located in a 

position adjacent or near a hydroxyl (Hyp) or amine group (Arg and Lys) where the DDSA 

might have reacted to form a covalent union altering or shifting the signal observed in the 

NMR spectra. The peaks around 15 ppm can be attributed to the methyl carbons of the 

hydro carbonated tail of DDSA incorporated to the structure. 

It is also possible to evidence a marked sharpening of some signals, especially those at 175 

ppm which correspond to amide carbon signals, esters and carboxylate carbons. 
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Considering that in solid NMR a cause of signal broadening is molecular disorder and 

environmental heterogeneity, the signal sharpening observed could be attributed to the 

covalent bonding of DDSA residues which create a more ordered polymer (51).  

 

3.4 Collagenase assay 

The susceptibility of collagen hydrogels to accelerated digestion by collagenases at 37°C 

can be seen in Figure 5. Both pure and DDSA-collagen gels were incubated with 

collagenase solutions for a period of 24 h. DDSA-modified gels presented a more limited 

degradation, losing only 40 percent of their initial weight after 3 h and remaining in 50% 

after 24h while pure collagen gels lost 80% of their weight after 3h and were completely 

degraded after 24h.  This effect could be attributed to the blockage of functional groups by 

DDSA that may disfavor enzyme recognition and interaction with its substrate.  

 

3.5 Water Uptake Rate and Capacity  

 

Collagen hydrogels can absorb a small amount of fluids by swelling in the wound, but they 

can donate moisture to a dry wound and maintain a moist wound environment which is 

favorable for the healing process. In the case of collagen sponges or films, they are not 

useful to absorb exudates in wounds with heavy drainage like polyurethane foams, for 

instance, but they can be applied to wounds with low to moderate exudates (52). 
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The water uptake of these materials was also evaluated as demonstrated in Figure 6. The 

swelling capacity of pure collagen was double than that of chemically modified materials 

indicating the hydrophobic nature of the synthetized dressings. The incorporation of water 

was 5.2 g water/g dried scaffold in the case of collagen and 1.9 g water/g dried for DDSA-

modified collagen scaffolds. Even though the incorporation of water capacity was reduced 

after the modification of collagen, these values were still in the same range than 

commercial hydrocolloid products used as wound dressings like DuoDERM, Hydro Coll or 

Tegaderm which were reported to incorporate water in the range of 0.9 for HydroColl to 

1.9 g water/g dried for Tegaderm (53). 

 

3.6 Contact angle measurements 

Water contact angle was used to quantify the surface wettability of the scaffolds (Figure 7) 

giving values of 18.6° for pure collagen and 35.3° for DDSA-modified gels. As it is natural 

to expect, the surface of collagen films showed a rather low contact angle of water which 

indicates their hydrophilicity due to the presence of a greater content of acidic, basic, and 

hydroxylated amino acid residues rather than lipophilic ones. In the case of DDSA-

modified films, the increment in the contact angle observed is a good evidence of the 

chemical modification proposed and the incorporation of hydrophobic domains in the 

collagen structure, although the material still conserved an overall hydrophilic nature with 

low contact angle values. 
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3.7 Cell adhesion and viability studies on scaffolds 

Collagen hydrogels were grafted with different concentrations of DDSA ranging from 1.6 

to 12 %. Then a fibroblastic cell line was seeded on top of the different scaffolds obtained 

and finally subjected to a viability assay for 72 h period. As it can be observed in Figure 8a, 

the number of viable cells showed a tendency to decrease as the reagent concentration 

increased but it was only significantly lower (c.a. 40%) when the DDSA concentration 

employed was higher than 12%.   

Therefore, in the second study (Figure 8b), the DDSA concentration was fixed in 6% to 

evaluate if the lower number of cells detected in modified-gels was due to an initial inferior 

cell adhesion or to limited proliferation of fibroblasts in the scaffolds. The cell adhesion to 

the modified gels was slightly lower, around 11%, than that of pure collagen gels. The 

proliferation studies after 72 h showed similar results to those observed in the first assay, 

with approximately 27% less viable cells in 6 % DDSA-modified gels. These results 

suggest that the increment in superficial hydrophobicity due to the chemical modification 

on collagen scaffolds can affect cell adhesion as expected by previous studies (54),(55) and 

also DDSA incorporation may altered cell viability. However, it is still possible for cells to 

colonize, grow and spread in this new material.  

 

3.8 Simvastatin incorporation and release studies 
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Drug incorporation into collagen and DDSA-collagen gels was evaluated to determine if 

the chemical modification could be useful for the delivery of hydrophobic therapeutic 

agents (Figure 9A).  

The results are shown as the amount of adsorbed drug (in µg/g dried gel) expressed as a 

function of equilibrium concentration in the solution (in µmol/L). It was seen that these 

isotherms fitted the Freundlich adsorption model which reflects the surface heterogeneity of 

the material, leading to different adsorption forces and different affinities toward drug 

molecules. The values of the constants were K=0.09553, N= 0.9473 for collagen gels and 

K=0.2498, N=0.8818 for DDSA-collagen gels with R2 of 0.9685 and 0.9800, respectively. 

Although the two gels could adsorb simvastatin, DDSA-collagen materials possess a higher 

adsorption capacity due to a superior K value. 

Based on the data found in literature about the effect of simvastatin on cell viability it was 

decided to pre-incubate collagen scaffolds with simvastatin concentrations of 10 μM and 

100 μM. Simvastatin is commonly used in cell culture in concentrations ranging from 50 to 

0.01  μM as higher amounts of this drug can affect cell viability (56),(57).  

In this situation, it was observed that simvastatin incorporation after incubating with 10 μM 

solutions was approximately 0.7 µg/g dried gel and 1.5 µg/g for collagen and DDSA-

collagen matrices. When the incubation was performed with 100 μM solutions, the amounts 

obtained were 6.1 µg/g and 16.9 µg/g, respectively.  

Simvastatin release profiles were obtained for both types of hydrogels, collagen and 

DDSA-collagen, and they are presented in Figure 9B. As it is possible to observe after 6 h, 
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near 33 and 37 % of the drug was released from collagen and DDSA-collagen dressings, 

respectively. Following that initial burst release, a constant value was registered for the two 

matrices in the 72 h period of the assay indicating a controlled release with similar kinetics 

for the two materials. At this time point, 51% of the drug was released from collagen while 

45 % was registered for DDSA-collagen gels due to the higher affinity of the hydrophobic 

drug for the hydro carbonated tails introduce to the proteinaceous polymer.   

.   

3.9 Antimicrobial activity evaluation 

 

Antibacterial properties were analysed using Pseudomonas aeruginosa and Staphylococcus 

aureus ATCC strains, comparing the activities between the DDSA- modified hydrogels and 

non-modified hydrogels unloaded or loaded with either 10 μM or 100 μM simvastatin 

solutions.  As shown in Figure 10, in the case of S. aureus, pure collagen hydrogels 

presented a different behavior when they were loaded or not with simvastatin. In this case, 

a significant difference was obtained for both concentrations tested (10 and 100 μM) 

reducing around 1 or 2 logarithmic orders of magnitude. On the third day, only gels 

containing higher amounts of simvastatin (100 μM) exhibited antimicrobial effects. This 

confirms the antimicrobial effects of simvastatin reported by other authors (12),(13) and it is 

supported by the determination of the minimum inhibitory concentration (MIC) calculated 

against S. aureus which was 5.6 µg/ml.  Furthermore, these results are in agreement with 

the prolonged release of simvastatin observed for over 3 days from collagen gels. 
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The antimicrobial effect of DDSA-modified gels was superior to that observed for pure 

collagen hydrogels both for unloaded and simvastatin loaded materials but there was no 

significant difference when DDSA gels were carrying the drug simvastatin or not. It has 

been reported that DDSA-gum Karaya in concentrations from 1 to 10% and DDSA-gum 

Kondagogu presented antibacterial effects for both gram negative and gram positive 

bacteria (58). In the same way, DDSA-chitosan gels exhibited greater growth inhibition of 

Gram-positive bacteria as compared to Gram-negative by the hydrophobic interaction of 

dodecenyl succinyl chains with bacterial cell wall proteins (59). Therefore, DDSA could be 

masking simvastatin antimicrobial properties as they probably do not behave in a 

synergistic way. On the third day, even though not significantly different, a higher 

antibacterial effect can be observed for simvastatin loaded gels in comparison to unloaded 

DDSA-modified gels.  

On the other hand, for P. aeruginosa exposed to pure collagen gels loaded with simvastatin, 

it was only possible to observe a growth inhibition effect during the first day with a 

decrease of more than 6 log units. In agreement with previous authors, Gram negative 

bacteria are less susceptible to simvastatin antimicrobial effect and need higher 

concentrations to be affected.  DDSA-modified gels had a similar effect during the first 

day, in the unloaded or loaded condition. During the third day, it was also possible to detect 

a significantly different antibacterial activity for 100 μM simvastatin carrying DDSA-

collagen gels. 
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3.10 Collagen materials loaded with simvastatin modulate anti-inflammatory activity of 

macrophages 

Pro and anti-inflammatory cytokine production as well as nitric oxide (NO) levels were 

measured in undifferentiated and differentiated THP-1 cells, named as THP-1 monocytes 

and THP-1 macrophages (after LPS stimulation) when they were in contact with collagen 

and DDSA-collagen hydrogels loaded or not with simvastatin. As it can be observed in 

Figure 11 A and B, NO levels were higher when monocytes were exposed to DDSA-

collagen gels loaded with simvastatin but after stimulation with LPS no significant 

difference was found in the different conditions. This is in concordance with literature 

where statins effect on the upregulation of nitric oxide synthase was described (60). 

Considering that cells produce NO in response to various pathogens and that it is a 

molecule implicated in host defense, no increment in NO levels was observed after LPS 

stimulation of cells. The levels of pro-inflammatory cytokine IL-6 were significantly lower 

in the case of collagen gels loaded with simvastatin and DDSA-collagen gels either with or 

without simvastatin (Figure 11 C). In the case of IL-1 β no differences were observed with 

respect to the control (Figure 11 D). Furthermore, the presence of IFN-γ in the cell medium 

was measured (data not shown) and the levels were below the detection limit of the 

technique. LPS normally causes a significant increase in the levels of IL-6, IL-1ß and 

TNF-γ (M1 phenotype) which was not observed for collagen hydrogels. In the case of 

TGF-ß1 (Figure 11 E) which levels also increase after exposure to LPS, the amounts 

detected were lower than the control, especially in the case of DDSA-collagen gels loaded 
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with simvastatin. M1 macrophages are differentially expressed after the administration of 

LPS which produce pro-inflammatory cytokines, however, the administration of collagen 

gels loaded with simvastatin might be able to polarize this response preferentially to M2 

macrophages.  

 

4. Discussion 

 

Collagen hydrogels were successfully modified by treatment with DDSA in alkaline 

conditions leading to a new material which preserved its fibrillar and porous structure with 

enhanced mechanical properties, better resistance to enzymatic degradation, increased 

hydrophobicity and antibacterial and anti-inflammatory activities. The chemical 

modification was corroborated by means of IR spectroscopy and solid state-NMR where it 

was possible to predict that DDSA interaction sites were mainly amine groups of lysine and 

arginine residues and the hydroxyl group of hydroxyproline. The increment in the scaffold 

hydrophobicity was observed by contact angle measurements and was responsible for the 

higher incorporation of simvastatin, a hydrophobic drug, inside DDSA-modified gels. 

These evidence together with the slightly slower release profiles suggest that DDSA-

collagen gels could be used as delivery systems for water insoluble drugs.  

The higher mechanical resistance observed after DDSA modification together with the 

slower enzymatic degradation are clear advantages for the design of wound dressings that 

can resist the attack of physiological enzymes present in the patient and last longer without 
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substitution (61). Although cell attachment and proliferation in the scaffolds were diminished 

after DDSA-modification, they still exhibited good cytocompatibility and the possibility of 

cell spreading. Cytotoxicity can be rated based on cell viability relative to controls, where 

values of <30% are considered severe cytotoxicity, between 30 and 60% is moderate 

cytotoxicity, between 60 and 90% is slight cytotoxicity, and >90% is no cytotoxicity (62). 

For DDSA-collagen materials the viability observed was above 70% with respect to 

collagen gels which is considered a slightly cytotoxic material that can be used for 

biomedical applications. 

Additionally, DDSA-collagen gels showed antibacterial properties mainly against Gram positive 

bacteria due to the increased hydrophobicity which is believed to be favorable in preventing 

water and bacteria intrusion for collagen-based biomaterials (63). It has also been demonstrated 

that pathogenic bacteria and fungi have hydrophobic characteristics that make them irreversibly 

bind  strongly to hydrophobic wound dressings by a physical principle (64). Moreover, when 

bacteria come into contact with the hydrocarbonated tails exposed in the gel, death may occur as 

a consequence of wall disruption.  It has also been reported that bacterial cellulose wound 

dressings carrying long-chain unsaturated fatty acids are promising antimicrobial agents of 

natural origin with a broad spectrum of activity (65). 

On the other hand, collagen hydrogels loaded with simvastatin were also effective in 

reducing the number of bacteria in contaminated media for as long as 3 days. It has been 

proved that topical application of statins may be useful in the wound healing process not 

only because of their antibacterial effect but also due to their angiogenic, antioxidant and 
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anti-inflammatory properties. In this sense, it has been observed that especially DDSA-

collagen gels carrying simvastatin can modulate an M2 profile for THP-1 cells which are 

involved in anti-inflammation and tissue repair.  

The physical and chemical properties of biomaterials can alter or modulate the response by 

macrophages. For example, it has been reported that calcium and strontium ions on a 

nanostructure titanium surface can increase M2 macrophage phenotype (66) or 

hydroxyapatite granules activate some M1, but more M2 activation of THP-1 cells (67). 

Another study reported that carbonated hydroxyapatite in the form of a coating rather than 

in granules was a potent M1 stimulator for THP-1 cells, and then transitioned to M2 via 

simvastatin delivery (68). In the present studies, we demonstrated that DDSA-collagen gels 

and materials carrying simvastatin were modulators of an M2 profile for THP-1 cells. 

Moreover, the presence of simvastatin in the biomaterial reduces pro-inflammatory 

cytokines that drive the M1 phenotype. Others authors have previously shown that anti-

inflammatory actions of simvastatin result in better repair of the wounds (69). 

The purpose of collagen wound dressings would not be their application in an infected 

wound. In fact, they are not recommended in those cases (52). However, they are useful in 

maintaining a moist environment for the wound, facilitating autolytic debridement and 

promoting granulation and epithelialization. Furthermore, when they are used as drug 

delivery vehicles they can prevent wound contamination. In this situation, it is advisable to 

polarize the macrophages towards the M2 phenotype that contributes to reduce wound 

inflammation and promotes wound healing (70).  
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Although, M2 phenotype would not contribute to the elimination of bacteria, it is important 

in the regeneration of the wound. In this sense, one of the main problems of wounds, 

besides the settlement of bacterial pathogens, is the exacerbated immune response in the 

site of the injury. The administration of simvastatin, with its pleiotropic effects, not only 

prevents the establishment of infections, but also displays anti-inflammatory properties that 

prevent a major tissue damage. 

 

Conclusion 

Collagen hydrogels used as wound dressings have shown to be permeable to gas and water 

and have proven to be a less effective bacterial barrier than occlusive dressings (52). For this 

reason, strategies to decrease bacterial contamination of the wound and to promote wound 

healing are desired. In conclusion, both materials, DDSA-collagen gels and collagen 

hydrogels loaded with simvastatin showed antimicrobial and anti-inflammatory properties 

which make them promising for cutaneous wound healing. DDSA-collagen hydrogels also 

exhibited better mechanical properties and lower degradation rates and the possibility to 

function as drug carriers for water insoluble drugs. 
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       Figure captions 

 

Graphical abstract. DDSA modification of collagen hydrogel to achieve an increment in 

wound dressing hydrophobicity for the delivery of non-water soluble drugs with 

antimicrobial and anti-inflammatory activity. 

 

Figure 1 

SEM image of DDSA-collagen hydrogels obtained with DDSA concentrations of a) 3% 

and c) 12 % and hybrid scaffolds with a final DDSA concentration of b) 3% and d) 12 %. 

 

Figure 2  

Viscoelastic response of collagen, DDSA-collagen and hybrid hydrogels against frequency 

(G´ and G´´).  G´represented in full symbols and G´´ in open symbols. -♦- Collagen 

hydrogel -▲-3% hybrid hydrogel -●- 6% hybrid hydrogel - - 3% DDSA-collagen hydrogel 

-■- 6% DDSA-collagen hydrogel. 

 

Figure 3 

Comparison of ATR-FTIR spectra for 6% collagen-DDSA hydrogel (A) and a collagen 

hydrogel (B). 
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Figure 4 

Comparison of solid 13C NMR of A.) Collagen hydrogel and B.) DDSA-collagen gel 

 

Figure 5 

Comparison of enzymatic degradation using collagenase type I of a collagen hydrogel (-●-) 

and a DDSA-collagen gel (-▲-). 

 

Figure 6 

Degree of swelling of collagen (-●-) and DDSA-collagen (-▲-) hydrogels over a period of 

24h in PBS. 

 

Figure 7 

Optical images used for contact angle measurements. A.) Collagen hydrogel B.) DDSA-

collagen gel 

 

Figure 8 

A.)[3T3] Mouse fibroblast cytocompatibility in collagen hydrogels and DDSA-modified 

gels with DDSA concentrations in the range of 1.6 to 12 %. B.) Fibroblast adhesion after 4 

h and viability after 72h in collagen (blue) and 6% DDSA-collagen (green) gels in 
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comparison to a control (100%). * p<0.05 was considered significant using one-way 

ANOVA, followed by Bonferroni multiple comparisons test or student t test. 

 

Figure 9 

A.) Freundlich adsorption isotherms for simvastatin incorporation on collagen (-●-) and 

DDSA-collagen (-▲-) gels. B.) In vitro cumulative percent of drug release versus time 

profile for collagen (-●-) and DDSA-collagen (-▲-) gels. 

 

Figure 10 

Antimicrobial activity against A.) Staphylococcus aureus and B.) Pseudomonas aeruginosa 

of collagen and DDSA-collagen hydrogels unloaded or loaded with 10 and 100 µM 

simvastatin. 

The differences were analyzed using one-way ANOVA, followed by Bonferroni multiple 

comparisons test, p < 0.05 was considered significant. 

 

Figure 11 

A) Nitric oxide production of THP-1 cells exposed to collagen gels (Col), simvastatin 

loaded collagen gels (Col-Simv), DDSA-collagen (Col-DDSA) and DDSA-collagen loaded 

with simvastatin (Col-DDSA-Simv). B) Nitric oxide production after stimulation with LPS. 

C-E) Cytokine secretion of THP-1 cells exposed to collagen gels after stimulation with 

LPS. 
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	The signal differences between a 6% DDSA-modified gel and a pure collagen hydrogel can be observed in the IR spectrum (Figure 3), identifying new signals in the 2880 cm-1 region corresponding to the characteristic vibration of the C-H stretch of the c...



