
Author’s Accepted Manuscript

OXIDATIVE STRESS DAMAGE
CIRCUMSCRIBED TO THE CENTRAL
TEMPORAL RETINAL PIGMENT
EPITHELIUM IN EARLY EXPERIMENTAL
NON-EXUDATIVE AGE-RELATED
MACULAR DEGENERATION

Hernán H. Dieguez, Horacio E. Romeo, Agustina
Alaimo, María F. González Fleitas, Marcos L.
Aranda, Ruth E. Rosenstein, Damián Dorfman

PII: S0891-5849(18)31760-X
DOI: https://doi.org/10.1016/j.freeradbiomed.2018.11.035
Reference: FRB14057

To appear in: Free Radical Biology and Medicine

Received date: 3 October 2018
Revised date: 27 November 2018
Accepted date: 27 November 2018

Cite this article as: Hernán H. Dieguez, Horacio E. Romeo, Agustina Alaimo,
María F. González Fleitas, Marcos L. Aranda, Ruth E. Rosenstein and Damián
Dorfman, OXIDATIVE STRESS DAMAGE CIRCUMSCRIBED TO THE
CENTRAL TEMPORAL RETINAL PIGMENT EPITHELIUM IN EARLY
EXPERIMENTAL NON-EXUDATIVE AGE-RELATED MACULAR
D E GE N E R AT I O N , Free Radical Biology and Medicine,
https://doi.org/10.1016/j.freeradbiomed.2018.11.035

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com

http://www.elsevier.com
https://doi.org/10.1016/j.freeradbiomed.2018.11.035
https://doi.org/10.1016/j.freeradbiomed.2018.11.035


 1 

OXIDATIVE STRESS DAMAGE CIRCUMSCRIBED TO THE CENTRAL TEMPORAL 

RETINAL PIGMENT EPITHELIUM IN EARLY EXPERIMENTAL NON-EXUDATIVE 

AGE-RELATED MACULAR DEGENERATION 

 

Hernán H. Dieguez
a
, Horacio E. Romeo

b
, Agustina Alaimo

c
, María F. González Fleitas

a
, Marcos 

L. Aranda
a
, Ruth E. Rosenstein

a1
, Damián Dorfman

a1*
 

 

a
Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of 

Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, 

Buenos Aires, Argentina 

b
School of Engineering and Agrarian Sciences, Pontifical Catholic University of Argentina, 

BIOMED/UCA/CONICET, Buenos Aires, Argentina 

c
Interdisciplinary Laboratory of Cellular Dynamics and Nanotools, Department of Biological 

Chemistry, Faculty of Exact and Natural Sciences/IQUIBICEN, University of Buenos 

Aires/CONICET, Buenos Aires 

 

*
Corresponding author: Dr. Damián Dorfman, Departamento de Bioquímica Humana, Facultad 

de Medicina/CEFyBO, UBA/CONICET, Paraguay 2155, 5º P, (1121), Buenos Aires, 

ARGENTINA, Phone n°: 54-11-4508-3672 (ext. 37), FAX n°: 54-11-4508-3672 (ext. 31), 

ddorfman@fmed.uba.ar 

 

ABSTRACT: 

Non-exudative age-related macular degeneration (NE-AMD) represents the leading cause of 

blindness in the elderly. The macular retinal pigment epithelium (RPE) lies in a high oxidative 

environment because its high metabolic demand, mitochondria concentration, reactive oxygen 

species levels, and macular blood flow. It has been suggested that oxidative stress-induced 

damage to the RPE plays a key role in NE-AMD pathogenesis. The fact that the disease limits to 

the macular region raises the question as to why this area is particularly susceptible. We have 

developed a NE-AMD model induced by superior cervical ganglionectomy (SCGx) in C57BL/6J 

mice, which reproduces the disease hallmarks exclusively circumscribed to the temporal region 

of the RPE/outer retina. The aim of this work was analyzing RPE regional differences that could 

                                                        
1 Both authors contributed equally to this work. 
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explain AMD localized susceptibility. Lower melanin content, thicker basal infoldings, higher 

mitochondrial mass, and higher levels of antioxidant enzymes, were found in the temporal RPE 

compared with the nasal region. Moreover, SCGx induced a decrease in the antioxidant system, 

and in mitochondria mass, as well as an increase in mitochondria superoxide, lipid peroxidation 

products, nuclear Nrf2 and heme oxygenase-1 levels, and in the occurrence of damaged 

mitochondria exclusively at the temporal RPE. These findings suggest that despite the well-

known differences between the human and mouse retina, it might not be NE-AMD 

pathophysiology which conditions the localization of the disease, but the macular RPE histologic 

and metabolic specific attributes that make it more susceptible to choroid alterations leading 

initially to a localized RPE dysfunction/damage, and secondarily to macular degeneration.  

 

 

Keywords: 



 3 

non-exudative age-related macular degeneration, superior cervical ganglion, retinal pigment 

epithelium, oxidative stress, mitochondria, antioxidant system. 

 

 

STATEMENT 

Non-exudative age-related macular degeneration (NE-AMD) is a leading and presently 

untreatable cause of blindness in the elderly. One of the most striking characteristics of the 

disease is that, even at final stages, only the central retina (i.e., the macula) is damaged, while the 

rest of the retina remains unaltered, which raises the question as to why this area is particularly 

susceptible to the disease. Using a mouse experimental model induced by choroid vascular 

alterations, we found that there are structural, biochemical, and mitochondrial differences 

between the central and non-central retinal pigment epithelium (RPE), which support that it 

might not be NE-AMD etiopathogenesis, but the macular RPE histologic and metabolic specific 

attributes that make it more susceptible to NE-AMD induced damage 

 

 

INTRODUCTION 

Age-related macular degeneration (AMD), a leading cause of irreversible blindness in elders, is a 

chronic progressive disease affecting central vision, with an estimate prevalence of  9% of the 

global population (Datta et al., 2017, Wong et al., 2014). AMD can be classified in two forms: 

exudative, and non-exudative. Non-exudative AMD (NE-AMD) is characterized by the 

progressive atrophy of the macular retinal pigment epithelium (RPE) and photoreceptors, and 

accounts for ~ 80% of all intermediate and advanced forms of the disease (Buschini et al., 2015). 

The advanced form of NE-AMD is termed geographic atrophy (GA) due to its precise atrophic 

limit, and is characterized by the breakdown of the RPE, choriocapillaris, and macular 
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photoreceptors, leading to severe and irreversible central vision loss. At the moment, there are no 

therapies to restore the vision loss in patients with advanced NE-AMD.  

AMD is a multi-factorial disease; several risk factors such as age, female sex, cigarette smoking, 

diet, and Caucassian race have been associated with the developing and progression of AMD 

(Datta et al., 2017; Lambert et al., 2016; van Lookeren Campagne et al., 2014). In addition, RPE 

lipofuscin accumulation, choroidal blood flow insufficiency, inflammation, and oxidative stress 

have been involved in NE-AMD etiopathogenesis (Bowes Rickman et al., 2013; Ding et al., 

2009; Zarbin, 2004). Different studies indicate that damage to the RPE is an early event in AMD 

(Ach et al., 2015; Cai et al., 2000; Datta et al 2017), and clinically and experimentally relevant 

AMD results support that damage to the RPE is mainly caused by oxidative stress (Lambros and 

Plafker, 2016; Mao et al., 2014; Sachdeva et al., 2014; Zarbin, 2004). The macula lies in a high 

oxidative environment in part, because the RPE has a high metabolic demand that generates high 

levels of reactive oxygen species (ROS) produced from cellular metabolism to meet its multiple 

functions, and in part because of the macular blood flow (one of the highest in the body), and the 

high local oxygen partial pressure (i.e., between 70 - 90 mm Hg) (Datta et al., 2017; Winkler et 

al., 1999). Due to its high metabolic activity, the RPE is enriched with mitochondria, which are a 

major source of ROS in the RPE (Jager et al., 2008). The observation that the disease is 

circumscribed to the macular area, raises the question as to why the macula is particularly 

susceptible to the disease, while the rest of the retina remains (at least clinically) unaltered. 

Although there are no definitive answers to this question partly because the available animal 

models do not recapitulate this particular characteristic of the disease, the explanation is likely to 

be related to both the metabolic and structural attributes of this particular retinal region that 

differ from its surroundings, and to the functional alterations induced by the disease itself. A 

main problem in modelling NE-AMD in mice (the most frequent animal model for AMD) is that 

their retina lacks a macula. However, new evidence may argue on this point, since a central area 
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with a highest cone concentration, human-like cone/rod ratio, and Bruch´s membrane (BrM), and 

RPE specialization was described in C57BL/6J mice (Volland et al., 2015). Recently, we have 

developed an experimental model of NE-AMD induced by superior cervical ganglionectomy 

(SCGx) in C57BL/6J mice (Dieguez et al., 2018). In that context, we have shown that SCGx 

induces a photoreceptor function decline, and ubiquitous choroid and choriocapillaris changes, 

whereas BrM thickening, RPE melanin content, and retinoid isomerohydrolase loss, drusen-like 

deposit occurrence, and RPE and photoreceptors atrophy are exclusively localized in the 

temporal side of the optic nerve. Moreover, SCGx provokes RPE and photoreceptors apoptosis 

also localized in the temporal region. Therefore, unlike all the others experimental (genetically 

engineered, immunologically manipulated or mouse strains with spontaneously arising retinal 

degeneration) models of AMD, SCGx-induced NE-AMD has the clear advantage of inducing 

AMD-like alterations circumscribed to a particular region, corresponding to the mouse central 

retina described by Volland et al. (2015). Identifying the mechanisms that make only the 

temporal side sensitive to the SCGx-induced NE-AMD damage could contribute to understand 

the particular susceptibility of the human macula to AMD. In that context, the aim of this work 

was to analyse comparatively the mitochondrial status and the endogenous antioxidant system in 

the nasal and temporal RPE from naïve mice, and evaluating the involvement of oxidative stress 

in the temporal RPE/neural retina damage induced by SCGx. 

 

MATERIAL AND METHODS 

Animals 

All animal use procedures were in strict accordance with the NIH Guide for Care and Use of 

Laboratory Animals. The ethics committee of the University of Buenos Aires School of 

Medicine, (Institutional Committee for the Care and Use of Laboratory Animals, (CICUAL)) 

approved this study). Adult male C57BL/6J mice (average weight, 27 ± 3 g and average age 2.5 
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± 0.5 months) were housed in a standard animal room with food and water ad libitum, under 

controlled conditions of humidity and temperature (21 ± 2°C). The room was lighted by 

fluorescent lights (200 lux), which were turned on and off automatically every 12 hours (on from 

8.00 AM to 8.00 PM). For all experimental procedures, animals were anesthetized with 

intramuscular injection of 100 mg/kg ketamine hydrochloride and 1 mg/kg xylazine 

hydrochloride. 

 

RPE melanin content quantification 

Mice were intracardially perfused with 0.1 M PBS, pH 7.4, containing 0.5 ml heparin and 2.4% 

sodium nitroprusside as vasodilator, followed by a fixative solution containing 4% 

formaldehyde. Naïve eyes were carefully removed; the nictitating membrane was left attached to 

the eye for orientating purposes. After dehydration, samples were embedded in paraffin wax, 

transverse sections (5 m) across the optic nerve head (ONH) were obtained with a microtome 

(2125 RTS, Leica Biosystems, Buenos Aires, Argentina), and after deparaffinisation and 

dehydration were mounted in Canada balsam without any other treatment, in order to avoid any 

interference in the final result. Light microscopic images (×1000) were digitally captured, and 

analysed by masked observers. For each eye, the pigment area only present in the central nasal 

and temporal RPE at exactly 800 m from the ONH was quantified using ImageJ software 

version 1.42q (NIH, Bethesda, MD), and the average from four separate sections per eye (in the 

superior-inferior axis), and the mean of 5 eyes was recorded as the representative value for each 

group. 

 

Electron microscopy 

Mice were intracardially perfused using an ad hoc pump with 0.1 M PBS, pH 7.4, containing 0.5 

ml heparin and 2.4% sodium nitroprusside, followed by a fixative solution containing 2% 
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glutaraldehyde and 4% formaldehyde. Eyecups were sectioned along the horizontal meridian 

(nasal-temporal axis) through the optic nerve, and post-fixed with 1% osmium tetroxide for 2 

hours on ice. Samples were embedded in epoxy resin. Ultrathin sections (50 nm) from the central 

nasal and temporal RPE (at 800 μm from the ONH) were obtained using glass knives and an 

ultramicrotome Ultracut E (Reichert-Jung, Vienna, Austria). Sections were mounted on 300 

Mesh grids and stained with uranyl acetate (2% in 70% ethanol) and Reynolds lead citrate. 

Finally, sections were viewed and photographed using a Zeiss 109T transmission electron 

microscope (Carl Zeiss Microscopy, Peabody, MA, USA), equipped with a digital camera 

(ES1000W, Gatan, Pleasanton, CA, USA). Melanin granules and basal infoldings thickness were 

measured. For each group, 5 different sections from 4 different samples were averaged and the 

mean taken as the representative value. The area occupied by mitochondria in 100 m
2
 was 

quantified using ImageJ software version 1.42q (NIH, Bethesda, MD), and only mitochondria 

with distinguishable outer and inner membranes were evaluated. For each group, 

ultraphotomicrographs from 3 eyes were analysed. 

 

 

Tissue harvesting for SDS-PAGE and Western blotting 

After cervical dislocation, eyes were enucleated and the cornea and lens removed. Whole flat-

mounts (i.e., containing the retina and RPE) were placed on an iced dish, where a vertical 

incision across the ONH was done under a surgical microscope, thus obtaining the nasal and 

temporal hemi-retina/RPE. Finally, the neural retina was carefully detached from the RPE, and 

both tissues were homogenized as described below.  In order to ensure that RPE preparation was 

not contaminated with the neural retina and vice versa, an analysis of retinoid isomerohydrolase 

(RPE65) and visual arrestin protein levels were performed in these samples by Western blot. As 

shown in Figure S1, RPE65 was only present in RPE homogenates, whereas visual arrestin was 
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predominantly present in retina homogenates. The minor presence of visual arrestin in RPE 

homogenates might be due to outer segment phagocytosis.   

For each homogenate, four hemi-retinas or hemi-RPE were pooled and homogenized in 150 μl of 

a buffer containing 10 mM HEPES, 1 mM EDTA, 1 mM EGTA, 10 mM KCl, Triton 0.5% (v/v), 

pH 7.9, supplemented with a cocktail of protease inhibitors (Sigma Chemical Co. St. Louis, MO, 

USA). After 15 min at 4°C, homogenates were gently vortexed for 15 seconds and centrifuged at 

900g for 10 min. Protein content was determined by the method of Lowry et al. (1951), using 

bovine serum albumin as the standard. Proteins (50 µg/sample) were separated in SDS, 12% 

polyacrylamide gel. After electrophoresis, proteins were transferred to polyvinylidenedifluoride 

membranes for 60 min at 15 V in a Bio-Rad Trans-Blot SD system (Bio-Rad Laboratories, 

Hercules, CA, USA). Membranes were blocked in 5% non-fat dry milk in Tris-buffered saline 

(pH 7.4), containing 0.1% Tween-20 for 60 min at room temperature and then incubated 

overnight at 4ºC with the primary antibodies. The following antibodies were used: a mouse 

monoclonal anti-complex IV (1:300, Invitrogen, Carlsbad, CA, USA), a mouse monoclonal anti-

cytochrome c (1:1000, Santa Cruz Biotechnology, Dallas TX, USA), a rabbit polyclonal anti-

traslocase of the outer membrane (TOM20, 1:500, Santa Cruz Biotechnology, Dallas TX, USA), 

a rabbit polyclonal anti-voltage-dependent selective-anion channel (VDAC) (1:300, Santa Cruz 

Biotechnology, Dallas, TX, USA), a rabbit polyclonal anti-heme oxygenase-1 (HO-1) (1:1000, 

Enzo Life Sciences, Farmingdale, NY, USA), a mouse monoclonal anti-superoxide dismutase-1 

(SOD-1) (1:1000, Santa Cruz Biotechnology, Dallas, TX, USA), a mouse monoclonal anti- 

superoxide dismutase-2 (SOD-2) (1:1000, Santa Cruz Biotechnology, Dallas, TX, USA), a goat 

polyclonal anti-catalase (1:400, R&D Systems, Minneapolis, MN, USA), a mouse monoclonal 

anti-glutathione peroxidase (GPx) (1:1000, Santa Cruz Biotechnology, Dallas, TX, USA), a 

mouse anti- RPE65 (1:1000, EMD Millipore, Darmstadt, Germany), a mouse anti-visual arrestin 

(1:1000, Santa Cruz Biotechnology, Dallas, TX, USA), and a mouse anti--actin (1:1000, Santa 
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Cruz Biotechnology, Dallas, TX, USA). Membranes were washed and then incubated for 1 h 

with a horseradish peroxidase-conjugated secondary antibody. The following secondary 

antibodies were used: a donkey anti-mouse (1:2000, Jackson Laboratory, Bar Harbor, ME, 

USA), a donkey anti-rabbit (1:2000, Jackson Laboratory, Bar Harbor, ME, USA), and a donkey 

anti-goat (1:2000, Jackson Laboratory, Bar Harbor, ME, USA). Immunoblots were visualized by 

enhanced chemiluminescence Western blotting detection reagents (Amersham Biosciences, 

Buenos Aires, Argentina). Densitometric signals were quantified using ImageQuant software and 

adjusted by the density of β-actin. For each group, the mean of 6 homogenates were averaged 

and taken as the representative value. 

 

Ex vivo flat-mounted RPE viability assessment  

After cervical dislocation, eyes were immediately enucleated, and RPE flat-mounts were 

obtained and incubated in a 1 μg/ml solution of propidium iodide (Sigma Aldrich, Saint Louis, 

MO, USA) and 1 μg/ml Hoechst (Sigma Chemical Co., St Louis, MO, USA) in mammalian 

Ringer (MR) buffer (157 mM NaCl, 5 mM KCl, 7 mM Na2HPO4, 8 mM NaH2PO4, 0.5 mM 

MgCl2, 2 mM CaCl2, pH 6.9) for 15 minutes at 37ºC. After several washes with fresh MR, 

samples were fixed in 4% paraformaldehyde for 10 minutes, washed in MR, mounted with 

fluorescent medium. Cells were considered viable at the nasal and temporal RPE flat-mounts 

when propidium iodide staining was absent in most Hoechst stained nuclei, as shown in Figure 

S2.  

 

Ex vivo RPE mitochondrial labelling and superoxide detection 

RPE flat-mounts were obtained as described above and incubated with 500 nM MitoTracker Red 

CMXRos (Molecular Probes, Eugene, OR, USA) in MR buffer for 15 minutes or 5 M 

MitoSOX Red (Molecular Probes, Eugene, OR, USA) in MR buffer for 30 minutes at 37ºC in 
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dim red light.  After several washes in MR, samples were incubated with 1 g/ml Hoechst 

(Sigma Chemical Co., St Louis, MO, USA), washed, fixed in 4% paraformaldehyde, mounted 

with fluorescent medium, and viewed under an epifluorescent microscope (BX-50, Olympus, 

Tokyo, Japan). For each group, 3 images from the nasal and temporal central RPE from 4 

different eyes were analysed. 

 

Immunofluorescence studies 

Antigen retrieval was performed by heating slices at 90°C for 30 minutes in citrate buffer (pH 

6.3). Sections were immersed in 0.1% Triton X-100 (Roche Diagnostics GmbH, Mannheim, 

Germany) in 0.1 mol L-1 PBS for 20 minutes for permeabilization. Sections were preincubated 

with 5% normal horse serum for 1 hour and then were incubated overnight at 4°C with primary 

antibodies. The following primary antibodies were used: a mouse monoclonal anti-SOD-1 (1:50, 

Santa Cruz Biotechnology, Dallas, TX, USA), a mouse monoclonal anti-SOD-2 (1:50, Santa 

Cruz Biotechnology, Dallas, TX, USA), a goat polyclonal anti-catalase (1:50, R&D Systems, 

Minneapolis, MN, USA), a mouse monoclonal anti-GPx (1:50, Santa Cruz Biotechnology, 

Dallas, TX, USA), a mouse monoclonal anti-4-hydroxy-2-nonenal (4HNE) (1:250, R&D 

Systems, Minneapolis, MN, USA), a mouse monoclonal anti-carboxymethyl-lysine (CML) 

(1:250, R&D Systems, Minneapolis, MN, USA), and a rabbit polyclonal anti-nuclear factor 

erythroid-2 related factor 2 (Nrf2) (1:100, Novus Biologicals, Littleton, CO, USA). After several 

washes, secondary antibodies were added, and sections were incubated for 2 h at room 

temperature. Regularly, some sections were treated without the primary antibodies to confirm 

specificity. The following secondary antibodies were used: a goat anti-mouse IgM conjugated to 

Alexa 568 (1:500; Invitrogen, Molecular Probes, Carlsbad, CA, USA), a goat anti-mouse IgM 

conjugated to Alexa 488 (1:500; Invitrogen, Molecular Probes, Carlsbad, CA, USA), a goat anti-

rabbit IgM conjugated to Alexa 568 (1:500; Invitrogen, Molecular Probes, Carlsbad, CA, USA), 
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and a donkey anti-goat IgG conjugated to Alexa 488 (1:500; Abcam, Buenos Aires, Argentina). 

Nuclei were stained with Hoechst (1 μg/ml, Sigma Chemical Co., St Louis, MO, USA), mounted 

with fluorescent mounting medium and observed under an epifluorescence microscope (BX-50, 

Olympus, Tokyo, Japan) mounted with a video camera (3CCD; Sony, Tokyo, Japan) attached to 

a computer running image analysis software (Optimus, Media Cybernetics, Silver Spring, MD, 

USA). Comparative digital images from different samples were grabbed using identical time 

exposition, brightness, and contrast settings. Images from the nasal and temporal RPE and retina 

at 800 μm from the ONH were analysed. The mean of 4 eyes per group were averaged and taken 

as the representative value. 

 

Superior cervical ganglionectomy  

A ventral midline incision was made in the neck and the left superior cervical ganglion (SCG) 

was removed aseptically, as previously described (Dieguez et al., 2018; Romeo et al., 1991). 

This manoeuvre produces complete and permanent loss of ipsilateral orbital sympathetic 

innervation. Care was taken to avoid carotid artery tears. Incision was closed with 7-0 nylon 

sutures. All mice recovered without any sign of distress. A sham procedure, without removing 

the right SCG was performed, and the right eye was further then considered the control eye. In 

some animals, while the contralateral side remained intact, a sham procedure was performed 

without excision of the left SCG. In these animals, the right eye was called naïve. All animals 

were randomized before any experimental procedure was done and all investigators involved 

were blind to treatment. 

 

Morphometric Analysis 

All the images obtained were assembled and processed using Adobe Photoshop SC (Adobe 

Systems, San Jose, CA) to adjust the brightness and contrast. No other adjustments were made. 
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For all morphometric image processing and analysis, digitalized captured TIFF images were 

transferred to ImageJ software version 1.42q (NIH, Bethesda, MD). The analysers were masked 

for treatment and time point in all experiments. 

 

Statistical analysis 

Statistical analysis of results was made by a Student’s t-test or a two-way analysis of variance 

(ANOVA) followed by a Tukey´s test, as stated, and met the necessary assumptions. The 

assumption of equal variances was tested by the F-test. In every statistical analysis P<0.05 was 

considered statistically significant. 

 

RESULTS 

Figure 1 shows representative photomicrographs and ultraphotomicrographs of the nasal and 

temporal RPE from intact eyes. Melanin content and melanosome granules number were 

significantly lower, and basal infoldings thickness was significantly higher at the temporal than 

at the nasal RPE. The analysis of mitochondria distribution (assessed with MitoTracker Red), 

intrinsic mitochondrial protein levels, and mitochondrial structure is shown in Figure 2. The 

number of MitoTracker Red(+) mitochondria and the levels of complex IV, cytochrome c, 

TOM20, and VDAC were significantly higher at the temporal than at the nasal RPE. A similar 

profile was observed for mitochondria area (Figure 2). The levels and localization of antioxidant 

enzymes in RPE from naïve eyes were analysed by Western blot and immunohistochemistry. 

Catalase, SOD-1, SOD-2, and GPx levels were significantly higher at the temporal than at the 

nasal RPE (Figure 3). These results were confirmed by immunohistochemistry, as also shown in 

Figure 3. No differences regarding antioxidant enzimes levels were observed between the nasal 

and temporal neural retina from naïve eyes (Figure S3). In order to analyse the effects of SCGx 

on the RPE endogenous antioxidant system, catalase, SOD-1, SOD-2, and GPx levels were 
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assessed by Western blot and immunohistochemistry (Figure 4). At 6 weeks post-surgery, SCGx 

induced a significant decrease in these parameters at the temporal (but not nasal) RPE (Figure 4). 

SCGx did not affect antioxidant enzimes levels in the nasal and temporal neural retina (Figure 

S4). SCGx induced an increase in 4HNE- and CML-immunostaining at the temporal (but not 

nasal) RPE and photoreceptor outer segments, and RPE, respectively. To reveal mitochondria 

superoxide production, RPE flat-mounts were incubated with MitoSOX probe. At 6 weeks post-

SCGx, an increased number of MitoSOX-labelled mitochondria were observed at the temporal 

(but not nasal) RPE (Figure 5). Moreover, SCGx induced Nrf2 translocation to the nucleus and a 

significant increase in HO-1 levels only in the temporal RPE, as also shown in Figure 5. No 

differences in the levels and localization of 4HNE, CML, Nrf2, and HO-1 were observed 

between nasal and temporal retina from naïve, sham- or, SCGx-treated animals (data not shown). 

SCGx induced a significant decrease in MitoTracker-labelled mitochondria circumscribed to the 

temporal RPE (Figure 6). Moreover, SCGx significantly decreased complex IV, cytochrome c, 

TOM20, and VDAC levels only at the temporal RPE (Figure 6). Mitochondria ultrastructure was 

analysed in ultrathin sections from the RPE. At the temporal RPE, SGCx induced a significant 

decrease in mitochondria area, and frequent mitochondria ultrastructural alterations, such as 

membrane ruptures and electron dense material leak to the cytosol (Figure 6). No differences in 

any parameter studied were observed between the nasal and temporal side from naïve and sham-

treated eyes (data not shown). 

 

DISCUSSION 

For the first time, the foregoing results demonstrate significant differences in melanin content, 

basal infoldings thickness, mitochondrial mass, and the antioxidant defensive system between 

the temporal and the nasal RPE from naïve C57BL/6J mice. In addition, the present results show 

that SCGx, that mimics cardinal features of NE-AMD (Dieguez et al., 2018), induced a decrease 
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in the mitochondrial mass and the endogenous antioxidant system, leading to ROS accumulation 

and oxidative damage circumscribed to the temporal RPE. Notably, this particular retinal region 

correlates with the central retinal area described by Volland and co-workers (2015). It has been 

shown that melanin content is lowest in the central retina from monkeys and dogs (Durairaj et 

al., 2012), and in the macula from human donors, regardless of their age (Durairaj et al., 2012; 

Schmidt and Peisch, 1986). In agreement, melanin content and melanosome granule number 

were significantly lower at the temporal than the nasal RPE from naïve C57BL/6J mice, 

suggesting another feature in common between the RPE at the human macula and the central 

temporal RPE in C57BL/6J mice. Since C57BL/6J mouse central retina might share some 

similarities with the human macula, which has a high metabolic rate (Datta et al., 2017), we 

studied the nasal and temporal RPE mitochondria by measuring the levels of different intrinsic 

mitochondrial proteins. Increased levels of complex IV, cytochrome c, TOM20 and VDAC, as 

well as MitoTracker-labelled mitochondria, and mitochondrial area were found in the temporal 

RPE from naïve mice, supporting a higher metabolic activity in the temporal than in the nasal 

RPE. ROS are produced by a variety of pathways of aerobic metabolism; however, the major 

source of their production is the mitochondria. As in other tissues, ROS coming from RPE 

mitochondria metabolism need to be efficiently detoxified. The endogenous antioxidant system 

includes the catalysis of superoxide anions to hydrogen peroxide by SOD, the degradation of 

hydrogen peroxide by catalase, and the reduction of ROS by glutathione via GPx. As shown 

herein, the levels of these antioxidant enzymes were significantly higher at the temporal than at 

the nasal RPE. Taken together, these results could suggest that the temporal RPE has evolved an 

increased metabolic activity likely to fulfil the local energetic demand, and a highly effective 

cytoprotective system to neutralize unwanted oxidative damage.  

Since NE-AMD is characterized by a precise localization affecting the central retina, it is 

reasonable to think that the RPE, which displays histological, ultrastructural, and metabolic 
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differences between the nasal and temporal side (particularly at mitochondrial level), could show 

a differential regional susceptibility for damage provoked by SCGx-induced NE-AMD. 

Therefore, we studied the effect of SCGx on the mitochondrial status in the mouse nasal and 

temporal RPE. SCGx induced a significant decrease in SOD-1, SOD-2, catalase, and GPx levels 

at the temporal (but not nasal) RPE, which could lead to an increase in oxidative damage, 

supported by the increase in oxidized molecules (i.e., 4HNE and CML), and an increased 

number of MitoSOX-labelled mitochondria. Nrf2 is a transcriptional factor that that regulates the 

response to environmental stress and controls anti-oxidative responses and phase 2 enzymes such 

as HO-1 (Laboda et al., 2016). In agreement, increased nuclear levels of Nrf2 correlated with 

higher levels of HO-1 in the temporal RPE. Despite having high nuclear Nrf2 and HO-1 levels, 

this pathway seemed to be insufficient to protect the central temporal RPE, which showed signs 

of oxidative damage in SCGx-treated eyes. Echoed with our results, it has been demonstrated an 

increase in nuclear Nrf2-immunolabeling in the macular RPE from patients with early AMD 

(Datta et al., 2017). Several lines of evidence have implicated oxidative stress-induced damage 

to the RPE in the pathogenesis of NE-AMD (Datta et al., 2017; Hanus et al., 2015; Lambros and 

Plafker, 2016). In harmony with our findings, it has been shown that reduction in SOD-2 

specifically in the RPE leads to some of the features of GA in mice (Mao et al., 2014), and that 

under oxidative stress conditions, RPE cells from AMD patients produce more ROS than those 

derived from normal donors (Golestaneh et al., 2017), and are unable to increase the expression 

of SOD during oxidative stress (Hyttinen et al., 2018; McCord and Edeas, 2005). The key role of 

RPE mitochondria is also supported by the demonstration that their damage is sufficient to cause 

photoreceptor death (Zhao et al., 2011), and injury induced by human AMD (Brown et al., 2018; 

Terluk et al., 2015). The fact that mitochondria are the major site of ROS production has led to 

the suggestion that mitochondria might be a prime target of oxidative damage (Van Remmen and 

Richardson, 2001). In this line, SCGx decreased temporal RPE mitochondrial mass, as shown by 
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a decrease in complex IV, cytochrome c, TOM20, VDAC, MitoTracker-labelled mitochondria, 

and mitochondria area. Electron micrograph studies demonstrate that aged individuals have 

fewer and smaller RPE mitochondria, and mitochondria depletion is even more severe in AMD 

patients whom in addition, have pronounced damage to mitochondrial structure and show 

displaced mitochondria (Feher et al., 2006; Karunadharma et al., 2010). Another study shows 

severe disruptions in mitochondrial inner and outer membrane structure and mitochondrial 

cellular organization, as well as mitochondrial smaller size in RPE from patients with NE-AMD 

(Brown et al., 2018). In agreement, SCGx induced ultrastructural mitochondria alterations at the 

temporal (but not nasal) RPE. Among other important functions, RPE cells are required for 

photoreceptor outer segment membrane phagocytosis, and therefore, critical for photoreceptor 

survival, function and renewal. Consequently, RPE degeneration caused by oxidative stress or 

other stresses usually causes secondary photoreceptor cell death. In agreement, we have shown 

photoreceptor apoptosis in the temporal retina at later stages of SCGx (i.e, at 10 weeks post-

surgery) (Dieguez et al., 2018). Based on the present results, we could hypothesize that SCGx 

could downregulate the endogenous antioxidant defensive system in the temporal RPE resulting 

in oxidative damage, which in turn, could provoke a circumscribed RPE and photoreceptor 

damage. It remains unclear whether the observed phenomena are a factor contributing to disease 

progression or simply a result of disease. However, it should be noted that mitochondrial 

alterations induced by SCGx were observed at early stages of experimental NE-AMD (i.e., at 6 

weeks post-surgery), which preceded RPE and photoreceptor apopotosis (Dieguez et al., 2018). 

These findings suggest that mitochondrial dysfunctions might be involved in the pathogenesis of 

NE-AMD, and therefore, mitochondria appear to be an important target for the survey of NE-

AMD pathology, and possibly for providing promising therapeutic targets.  

Despite no differences regarding mitochondrial status and antioxidant defensive system were 

observed between the nasal and temporal neural retina from naïve or ganglionectomized mice, 
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the present results could allow shedding light on one of the key and still unsolved questions of 

NE-AMD, which is why the human macula (but not the peripheral retina) is susceptible to 

degeneration. The present results support that the temporal RPE might be biochemically adapted 

to surpass oxidative stress, and that SCGx, which diminished only the temporal RPE antioxidant 

activity, induced a circumscribed damage at the temporal central region. Moreover, we have 

previously shown that sympathetic choroid denervation, which induces ubiquitous choroid 

alterations, only damages the temporal outer retina (Dieguez et al., 2018). Thus, despite the well-

known differences between the human and mouse retina, it is tempting to speculate that it might 

not be the pathophysiology of NE-AMD which conditions the localization of the disease, but the 

macular RPE histologic and metabolic specific attributes that make it more susceptible to 

choroid alterations leading initially to a localized RPE dysfunction/damage, and secondarily to 

macular degeneration.    
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Figure 1. Histological differences between the nasal and temporal RPE from naïve mice. 

Upper panel: Transverse sections from the central nasal and temporal RPE (at 800 m from the 

ONH). Melanin content was significantly lower at the temporal RPE. Middle and lower panel: 

Ultrathin sections of the RPE at 800 m from the ONH. The number of melanin granules was 

significantly lower, whereas basal infoldings were significantly thicker (black bars) at the 

temporal RPE. Shown are photomicrographs representative from 5 eyes. RPE, retinal pigment 

epithelium; BrM, Bruch´s membrane; BI, basal infoldings. Scale bar upper panel  25 m, 

middle panel = 2 m, lower panel = 200 nm. Data are mean ± SEM (n: 5 eyes per group), *P  

0.05 vs. nasal RPE, by Student´s t-test.  
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Figure 2. Region-specific mitochondria mass differences in the RPE from naïve mice. Panel 

A: Mitotracker-Red-labeled mitochondria at the central nasal and temporal RPE flat-mounts. The 

number of Mitotracker-Red(+) puncta was significantly higher at the temporal RPE. Shown are 

photomicrographs representative from 4 eyes. Data are mean ± SEM (n: 4 eyes per group), *P  

0.05 vs. nasal RPE, by Student´s t-test. Panel B: Representative Western blot analysis for 

mitochondria specific proteins from the nasal and temporal RPE. Complex IV, cytochrome c, 

VDAC, and TOM20 levels were significantly higher at the temporal than at the nasal RPE. 

Densitometric analysis is shown on the right. Data are mean ± SEM (n: 6 samples per group), 

**P  0.01, *P  0.05 vs. nasal RPE, by Student´s t-test. Panel C: Mitochondria analysis on 

ultrathin sections of the central nasal and temporal RPE. The mitochondria area was significantly 

higher at the temporal RPE. Shown are photomicrographs representative from 5 eyes. Data are 

mean ± SEM (n: 5 eyes per group),*P  0.05 vs. nasal RPE, by Student´s t-test. Scale bar panel 

A  50 m, panel C  400 nm.  
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Figure 3. Region-dependent antioxidant status in the RPE from naïve mice. Panel A: 

Representative Western blots. Catalase, SOD-1, SOD-2, and GPx levels were significantly 

higher at the temporal than at the nasal RPE. Densitometric analysis is shown on the right. Data 

are mean ± SEM (n: 6 samples per group), *P  0.05 vs. nasal RPE, by Student´s t-test. Panel B: 

Localization of nasal and temporal RPE antioxidant enzymes at 800 m from the ONH. An 

increased SOD-1-, catalase-, SOD-2-, and GPx-immunoreactivity was observed at the temporal 

region. Shown are photomicrographs representative from 4 eyes. OS, photoreceptor outer 

segments; RPE, retinal pigment epithelium; Ch, choroid. Scale bars = 25 m.  
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Figure 4. Region-dependent effect of SCGx on the RPE antioxidant system. Panel A: 

Representative Western blots for the assessment antioxidant enzyme levels at the nasal and 

temporal RPE from sham- or SCGx-treated eyes. Catalase, SOD-1, SOD-2, and GPx levels were 

significantly higher at the temporal than at the nasal sham-treated RPE, whereas SCGx, which 

had no effect on the nasal region, induced a significant decrease in antioxidant enzyme levels at 

the temporal RPE. Densitometric analysis is shown on the right. Data are mean ± SEM (n: 6 

samples per group), **P  0.01, *P  0.05 vs. nasal RPE from sham-treated eyes; a: P  0.01 vs. 

temporal RPE from sham-treated eyes, by Tukey´s test (catalase F=36.0; SOD-1 F=31.7; SOD-2 

F=27.07; GPx F=41.67). Panel B: Localization of SOD-1, catalase, SOD-2, and GPx at the nasal 

and temporal RPE at 800 m from the ONH. SOD-1-, catalase-, SOD-2-, and GPx-

immunoreactivity was higher at the temporal than at the nasal RPE from sham-treated eyes, 

while SCGx, which had no effect on the nasal region, induced a decrease in antioxidant enzyme 

immunoreactivity at the temporal side. Shown are photomicrographs representative from 4 

eyes/group. OS, photoreceptor outer segments; RPE, retinal pigment epithelium; Ch, choroid. 

Scale bars = 25 m.  
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Figure 5. Region-dependent effect of SCGx on the RPE oxidative damage. Panel A: 4HNE- 

and CML-immunostaining at the nasal and temporal outer retina and RPE at 6 weeks post-SCGx. 

SGCx induced an increase in 4HNE- and CML-immunoreactivity at the temporal outer retina 

and RPE (arrows), and RPE respectively. Shown are photomicrographs representative from 6 

eyes/group. Panel B: MitoSOX-labeled mitochondria at the central nasal and temporal RPE flat-

mounts. SCGx induced the occurrence of MitoSOX(+) mitochondria only at the temporal RPE. 

Shown are photomicrographs representative from 4 eyes/group. Panel C: Localization of Nrf2 at 

the nasal and temporal RPE. SCGx induced Nrf-2 traslocation to the nucleus exclusively at the 

temporal RPE. Shown are photomicrographs representative from 4 eyes/group. Panel D: 

Representative Western blot for HO-1 assessment at the nasal and temporal RPE from sham- or 

SCGx-treated eyes at 6 weeks post-surgery. SCGx, which had no effect at the nasal region, 

induced a significant increase in HO-1 levels at the temporal region. Densitometric analysis is 

shown on the right. Data are mean ± SEM (n: 6 samples/ group), **P  0.01 vs. nasal RPE from 

sham-treated eyes; a: P  0.01 vs. temporal RPE from sham-treated eyes, by Tukey´s test 

(F=4.53). ONL, outer nuclear layer; IS, photoreceptor inner segments; OS, photoreceptor outer 

segments; RPE, retinal pigment epithelium; Ch, choroid. Scale bars = 25 m.  
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Figure 6. Region-dependent effect of SCGx on the RPE mitochondria mass. Panel A: 

Mitotracker-Red-labeled mitochondria in the central nasal and temporal RPE flat-mounts at 6 

weeks post-SCGx. The number of Mitotracker-Red(+) puncta was significantly higher at the 

temporal sham-treated RPE, whereas SCGx induced a significant decrease in this parameter in 

the temporal region. Shown are photomicrographs representative from 4 eyes. Data are mean ± 

SEM (n: 4 eyes per group), **P  0.01 vs. nasal sham-treated RPE;
 
a: P  0.01 vs. temporal 

sham-treated RPE, by Tukey´s test (F=24.07). Panel B: Representative Western blots for the 

assessment of mitochondria intrinsic proteins. Complex IV, cytochrome c, VDAC, and TOM20 

levels were significantly higher at the temporal RPE from sham-treated eyes. SCGx, which had 

no effect on the nasal RPE, induced a decrease in the levels of the temporal RPE mitochondria 

proteins. Densitometric analysis is shown on the right. Data are mean ± SEM (n: 6 samples per 

group), **P  0.01, *P  0.05 vs. nasal sham-treated RPE;
 
a:

 
P  0.01 vs. temporal sham-treated 

RPE, by Tukey´s test (complex IV F=27.95; cytochrome c F=67.5; VDAC F=156.5; TOM20 

F=20.88). Panel C: Mitochondria area on ultrathin sections of the nasal and temporal RPE at 800 
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m from the ONH. Shown are photomicrographs representative from 5 eyes. Mitochondria area 

was significantly higher at the temporal side from sham-treated RPE, whereas SGCx induced a 

significant decrease in this parameter in the temporal region. Moreover, SGCx induced the 

occurrence of altered mitochondria at the temporal RPE. SCGx had no effects on both 

parameters at the nasal RPE. Data are mean ± SEM (n: 5 eyes per group), **P  0.01, *P  0.05 

vs. nasal sham-treated RPE;
 
a: P  0.01 vs. temporal sham-treated RPE, by Tukey´s test 

(mitochondria area F=40.03; mitochondria damage F=26.56). Scale bar panel A  50 m, panel 

C  400 nm. 

 

HIGHLIGHTS: 

 The temporal retinal pigment epithelium (tRPE) has lower melanin content. 

 Higher antioxidant enzyme levels and mitochondria mass occur in the tRPE. 

 Superior cervical ganglionectomy (SCGx) induces oxidative stress only in the tRPE. 

 SCGx decreases mitochondria mass circumscribed to the tRPE. 

Oxidative stress and mitochondria are key factors in early macular degeneration. 

 

SUPPLEMENTARY FIGURE LEGENDS 

Figure S1. Tissue homogenates specificity evaluation. Representative Western blots analyzing 

the presence of visual arrestin and RPE65 in retina and RPE lysates. While visual arrestin was 

highly present in retinal homogenates, and only marginally present in RPE lysates, RPE65 was 

only detected in RPE homogenates.  

 

Figure S2. Ex-vivo flat-mounted RPE viability assessment. Ex-vivo RPE flat-mounts were 

incubated with propidium iodide. Shown are photomicrographs representative from 4 eyes. A 

low amount of propidium iodide(+) nuclei were observed at the central nasal and temporal RPE. 

Scale bar  50 m. 

 

Figure S3. Region-dependent antioxidant status in the retina from naïve eyes. 

Representative Western blots for catalase, SOD-1, SOD-2, and GPx analysis at the nasal and 

temporal retina. There were no differences in the levels of catalase, SOD-1, SOD-2, and GPx 
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between the nasal and the temporal retina. Densitometric analysis is shown on the right. Data are 

mean ± SEM (n: 6 samples per group).  

 

Figure S4. Region-dependent effect of SCGx on the retina antioxidant system. 

Representative Western blots for antioxidant enzymes analysis at the nasal and temporal retina 

from sham- or SCGx-treated eyes at 6 weeks post-surgery. There were no region-specific 

differences in the levels of catalase, SOD-1, SOD-2, and GPx in sham-treated retina, and SCGx 

had no effects on the levels of antioxidant enzymes. Densitometric analysis is shown on the 

right. Data are mean ± SEM (n: 6 samples per group).  




