
Analysis of a Batch Adsorber Analogue for Rapid Screening of
Adsorbents for Postcombustion CO2 Capture
Vishal Subramanian Balashankar,† Ashwin Kumar Rajagopalan,#,† Ruben de Pauw,‡ Adolfo M. Avila,§

and Arvind Rajendran*,†

†Department of Chemical and Materials Engineering, University of Alberta, 12th Floor, Donadeo Innovation Centre for Engineering
(ICE), 9211-116 Street, Edmonton, Alberta, Canada T6G 1H9
‡Department of Chemical Engineering (CHIS-IR), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
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ABSTRACT: A simplified proxy model based on a well-mixed batch adsorber for vacuum swing adsorption (VSA) based CO2
capture from dry postcombustion flue gas is presented. A graphical representation of the model output allows for the
rationalization of broad trends of process performance. The results of the simplified model are compared with a detailed VSA
model that takes into account mass and heat transfer, column pressure drop, and column switching, in order to understand its
potential and limitations. A new classification metric to identify whether an adsorbent can produce CO2 purity and recovery
values that meet current U.S. Department of Energy (US-DOE) targets for postcombustion CO2 capture and to calculate the
corresponding parasitic energy is developed. The model, which can be evaluated within a few seconds, showed a classification
Matthew correlation coefficient of 0.76 compared to 0.39, the best offered by any traditional metric. The model was also able to
predict the energy consumption within 15% accuracy of the detailed model for 83% of the adsorbents studied. The developed
metric and the correlation are then used to screen the NIST/ARPA-E database to identify promising adsorbents for CO2
capture applications.

1. INTRODUCTION
Carbon capture and sequestration (CCS), wherein CO2 emitted
from the large point sources is captured, transported, and
sequestered underground at high pressures, is a promising
technology to combat global warming.1,2 Coal-fired power
plants constitute a major source of CO2 emissions and hence are
an obvious choice for implementing CCS technologies.
Postcombustion carbon capture, where CO2 is concentrated
from a flue gas that consists of∼15% CO2 and the rest being N2,
O2, and H2O, carries an advantage that it can be retrofitted to
existing coal-fired power plants. Absorption, using aqueous
amines such as monoethanolamine (MEA), is the current
technology for scrubbing CO2 from the flue gas at large scales.2

However, due to some of the limitations posed by this process
such as the energy intensive solvent regeneration and the
corrosive nature of the solvent, there is a need for the

development of alternative technologies for CO2 capture.
3 In

this regard, adsorption based CO2 capture, that uses solid
sorbents, has shown potential for reducing the parasitic energy
consumption.3−6

The choice of an adsorbent is critical to the design of a
pressure swing adsorption (PSA), vacuum swing adsorption
(VSA), or a temperature swing adsorption (TSA) process.7,8

With significant developments being made in organometallic
chemistry, the number of adsorbents being developed has seen a
dramatic growth in recent years.9−11 Hence, it becomes a
challenging task when many adsorbents such as metal−organic
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frameworks (MOFs), zeolites, and activated carbons are to be
screened for the selection of the best adsorbents for the CO2
capture process.12

Several approaches have been suggested for adsorbent
screening in the literature. Harlick and Tezel suggested the
use of working capacity, which is given by the difference in
equilibrium loading between feed and desorption pressures.13

Snurr’s group, in an experimental study, screened 14 MOFs
based on the increasing CO2 adsorption capacity at 0.1 bar
pressure.14 Krishna et al. ranked a group of zeolites and MOFs
based on experimental breakthrough time.15 In another study,
Krishna proposed the separation potential that combines
selectivity and uptake capacity as a metric for screening
MOFs.16 Lin et al. screened thousands of zeolite and zeolitic
imidazolate framework structures based on the parasitic energy
load imposed on the power plant using a hybrid pressure−
temperature swing adsorption cycle.17 Berger et al. developed a
simplified method, for a temperature swing adsorption process,
to estimate the parasitic energy and used it to screen over 4
million zeolites and zeolitic imidazolite frameworks and found
few promising adsorbents with lower energy consumption.18

Most of the above-mentioned studies use simple metrics that
can be easily calculated based on adsorption isotherm
measurements. On the one hand, these metrics are convenient
especially when large databases of adsorbents are to be screened.
On the other hand, many recent studies that compared the
efficacy of these metrics with detailed process simulations have
demonstrated their poor reliability.19,20 The alternative to these
approaches is the use of detailed full-scale process simulations
combined with optimization. Here, a detailed model of the P/V/
TSA system is considered and is optimized to evaluate the best
performance that can result from using a certain adsorbent. This
detailed approach has been studied by Haghpanah who
compared the performance of different carbons and later with
zeolite 13X.21 Hasan et al. combined material characterization
and process optimization to screen the adsorbents based on the
cost of capture and compression.22 The group of Mazzotti
employed this approach for precombustion CO2 capture.23

Snurr and co-workers have studied these approaches for
screening materials using a two-stage process.24 Nikolaidis et
al. compared the performance of zeolite 13X and Mg-MOF-74
in an integrated two-stage P/VSA process for postcombustion
CO2 capture.

25 Rajagopalan et al. demonstrated that detailed
models are more reliable compared to simple screening
metrics.19 Khurana and Farooq in a series of papers have
explored this approach and concluded that process optimization
is essential for a reliable screening.20,26 Surrogate models have
been discussed in the literature20,27,28 to overcome the
computational challenges. While these are very powerful, they
do not provide physical insight into the performance of a
material. Hence, to aid the synthetic chemists, there is a need for
simpler models that are easy to solve while providing key
insights.
Detailed process-optimization-based screening is perhaps the

most reliable approach for adsorbent screening.29 However, it is
rather computationally demanding and requires the develop-
ment of sophisticated numerical schemes and the availability of
parallel computing power.5 There are no straightforward design
methods for cyclic adsorption processes, especially when the
adsorption isotherm is nonlinear, and when mass and heat
transfer effects play an important role. Hence, these processes
have to be simulated for 100s or 1000s of cycles before this cyclic
steady-state performance can be calculated for a given set of

operating conditions. Repeating this for 1000s of combinations
of operating conditions can be computationally very expensive.
Our experience indicates that running multiobjective optimiza-
tion of simple VSA processes could take up to a few days on
multicore desktop workstations. Scaling such approaches for
screeningmaterial databases that contain hundreds of thousands
of adsorbents is indeed a daunting task. Hence, a need exists for
models that are complex enough to capture the essential
dynamics of the process, while also simple enough for rapid
computation.
Maring and Webley proposed a simplified model (referred in

this work as MWmodel) for rapid screening of adsorbents.30 In
this model, a well-mixed adsorber was considered with no spatial
gradients of the intensive process variables. Hence, the model
equations of a PSA system, that are coupled algebraic-partial
differential equations, were reduced to coupled algebraic-
ordinary differential equations. Further, they also proposed an
approach to arrive at a cyclic steady state without having to
simulate the cycle multiple times. These two simplifications
meant that theMWmodel can be solved rapidly (on the order of
a few seconds) compared to several minutes that is required for
the solution of detailed PSAmodels. TheMWmodel was further
used to select adsorbents and to identify the key features of ideal
adsorbents. A similar approach has been discussed by Zhao et
al.31 It is important to note that the key mechanism of separation
in adsorption is to change operating conditions in order to
“position” the concentration fronts in the column to favor high
purity and recovery. In the MWmodel there is no mechanism to
achieve this as spatial gradients are completely eliminated.
Hence the MW model will give results identical to a detailed
model only under specific conditions. Although the model has
been used in the literature, there has been no study that validates
the MW model with the detailed process models.
The objective of the current work is to extend the MWmodel

to a different cycle configuration and to develop a graphical
design method. The model is compared with a detailed VSA
model in order to understand its advantages and limitations.
Then, the model is used to compare the performances of four
adsorbents and illustrate the graphical approach of the process
design. A classification model to identify whether a certain
adsorbent can provide PuCO2

≥ 95% and ReCO2
≥ 90%, a target

that is set by the U.S. Department of Energy for CO2 capture, is
developed. Further, a simple approach to estimate the parasitic
energy consumption is developed and validated. Finally, this
approach is used to screen adsorbents from the NIST/ARPA-E
adsorbent database to identify the potential materials for
postcombustion CO2 capture.
At the outset, it is important to stress that the goal of the

model, both MW and the current one, is not to represent the
dynamics of the actual VSA process. In fact, as shown byMaring
and Webley and in this work, the assumptions made will not
allow a suitable description. Instead, the target is to develop a
“reliable proxy” that can be calibrated using detailed models in
order to enable rapid evaluation of a large number of adsorbents.

2. BATCH ADSORBER ANALOGUE MODEL (BAAM)

The model that is considered in this work is based on the
framework developed by Maring and Webley30 with a few
modifications. In order to differentiate the two approaches, we
will refer to the current model as the batch adsorber analogue
model (BAAM).
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2.1. Assumptions. A batch adsorber filled with solid
adsorbents is considered for developing the model equations.
The mass of the adsorbent is taken to be 1 kg, and the volume of
the column needed to accommodate the adsorbent is computed
based on the bed porosity and adsorbent density. The bed
voidage (ϵ) is considered to be 0.37. The simplified
mathematical model is based on the following assumptions:

• The column is well-mixed and homogeneous, meaning
that concentration, pressure, and temperature gradients,
both axial and radial, are absent across the column.

• The fluid phase behaves ideally.
• Heat effects are not considered and the column is

isothermal.
• There is no mass transfer resistance; i.e., the equilibrium

between the gas and solid phase is instantaneous.
• The adsorbent properties and bed voidage are uniform

throughout the column.

The key difference between the BAAM and MWmodel is the
assumption of isothermality. Although heat effects are
important, for a particular cycle configuration that is considered
here (description given in the following section), the heat effects
seem to play a lesser role in deciding the cyclic steady state
performance.20 Evidence for this comes from experimental
measurements from a pilot plant containing ∼80 kg of
adsorbent.32 It was observed that during the initial periods,
the bed temperatures increased by ∼60 °C above the feed
temperature, and then dropped to <10 °C above the feed
temperature, once the system reached the cyclic steady state.
The second observation arises from detailed optimization
studies that revealed that models with the assumption of
isothermality yielded results comparable to those that accounted
for heat effects.20 As will be shown later, the assumption of
isothermal conditions also allows for a simplified graphical
representation that could aid in the easy understanding of the
process. The assumption related to mass transfer resistance also
deviates from reality. Real systems do have finite mass transfer
rates. Although many of the systems that have been studied for

postcombustion CO2 capture separate CO2 and N2 on the basis
of their equilibrium properties, mass transfer rates have a major
impact on achievable purity/recovery and the process
productivity.

2.2. Cycle Configuration and Mathematical Model.
Haghpanah et al. evaluated complex VSA cycles for the
postcombustion CO2 capture with zeolite 13X as the adsorbent,
and the four-step VSA cycle with light product pressurization
(LPP) was shown to be the best-performing cycle in terms of
least energy consumption while guaranteeing high CO2 purity
and recovery.33 Further, this cycle was also demonstrated
experimentally at a pilot-scale to produce 94.8 ± 1% CO2 purity
and 89.7 ± 5.6% CO2 recovery, thereby achieving the US-DOE
target in a single stage.32 The BAAM is developed for a four-step
VSA cycle with LPP, which comprises adsorption, blowdown,
evacuation, and light product pressurization steps. The
schematic of this cycle is shown in Figure 1.
The total number of moles of a species “i” in the column,

Ni,total, is given by the sum of the number of moles of species “i”
in the fluid phase, Ni,fluid, and in the solid phase, Ni,solid.

= +N N Ni i i,total ,fluid ,solid (1)

where,

=
ϵ

N
PyV

R Ti
i

,fluid
g (2)

= *N wqi i,solid (3)

In eqs 1−3, P, T, and yi are the fluid phase total pressure,
temperature, and fluid phase composition of species “i”
respectively, V and ϵ refer to the column volume and its
voidage, Rg denotes the universal gas constant, w is the mass of
the adsorbent, and qi* is the equilibrium solid phase loading of
species “i” which is given by a suitable isotherm expression as
below:

* =q f P T y( , , )i i (4)

Figure 1. Schematic of a four-step VSA cycle with light product pressurization (LPP).
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Since isothermal conditions are considered, once the operating
temperature is fixed, only two intensive variables P and yi need to
be specified in order to calculate the Ni,fluid and Ni,solid. In the
system studied, the feed consists of two components, CO2, the
strongly adsorbing component, and N2, the weakly adsorbing
component. A brief description of each step of the PSA cycle is
given below.
Blowdown (BLO) (α → β). The batch adsorber is initially

saturated with the feed composition (yCO2

feed) at high pressure PH.
This is referred to as state α, also illustrated in Figure 1. In
blowdown step, a vacuum is applied to the column thereby
reducing the pressure from PH to an intermediate pressure, PINT.
The aim of this step is to remove the weakly adsorbing
component (N2) from the column, leaving the bed concentrated
with strongly adsorbing component (CO2). This step can be
modeled by writing themass balances around the batch adsorber
that results in the following two ordinary differential equations
(ODE).
Overall mass balance:

i

k

jjjjjjj
y

{

zzzzzzz
ϵ +

*
+

*
= −V

R T
P
t

w
q

t

q

t
Q

d
d

d

d

d

dg

CO N2 2

(5)

Component mass balance:

ϵ +
*

= −V
R T

Py

t
w

q

t
Qy

d

d

d

dg

CO CO
CO

2 2

2 (6)

where Q refers to the total molar flow rate leaving the column.
The above equations can be combined to eliminate Q and t
resulting in

=
−

−

y

P

a y a

f f y

d

d
CO 1 CO 2

2 1 CO

2 2

2 (7)

where
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= ϵ +
∂ *
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f

PV
T

w
q

yR2
g

CO

CO

2

2 (8d)

The solution of eq 7 gives the gas phase composition, yCO2
, as a

function of total pressure, P. The blowdown step is carried out
until PINT is reached. The state of the adsorber at the
intermediate pressure is labeled as β. On the basis of states α
and β, the number of moles of CO2 and N2 removed from the
adsorber can be easily calculated with simple mass balance
equations. The adiabatic work done by the vacuum pump, that
delivers the gas at 1 bar pressure, assuming a constant isentropic
efficiency of η = 72% is given by

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
i
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jjj

y
{
zzz
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∫ η

=
−

−
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R T

P
N
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1 d

N

N k k

BLO g

( 1)/

total

total

(9)

where k is the adiabatic constant. Note that the value of η = 72%
used in this study is consistent with many theoretical
calculations presented in the literature. A few experimental
studies that havemeasured vacuum pump efficiencies at very low
pressures report lower values of ∼30%.32

Evacuation (EVAC) (β→ γ). The evacuation step starts from
state β and the adsorber is evacuated until the low pressure,
PLOW, is reached. The extract product (CO2) is collected in this
step. The state at the end of evacuation step is denoted by γ. The
same set of mass balance equations and the work done by the
vacuum pump, as described for the blowdown step is applicable
for the evacuation step for a value of pressure ranging from PINT
to PLOW. The energy consumption for this step is provided by
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EVAC g
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total

total

(10)

Light Product Pressurization (LPP) (γ → δ). The adsorber
which is at low pressure, PLOW, at the end of evacuation, needs to
be raised to high pressure, PH. This is achieved by pressurizing
the adsorber with the raffinate product from the adsorption step.
Note that the adsorption step, as will be described below, will
start with the state δ, which is the end of LPP step. Hence, in the
LPP step, the adsorber is pressurized using a stream whose
composition is yCO2

δ . This step is assumed to not consume any
power. The number of moles (NLPP) needed to pressurize the
column from PLOW to PH is calculated by solving the mass
balance equations as given in eqs 11−12 where yCO2

δ is the CO2

composition in the column at the end of LPP step.
Overall mass balance:

+ + = +γ γ δ δN N N N N( ) ( )CO ,total N ,total LPP CO ,total N ,total2 2 2 2

(11)

Component mass balance:

+ =γ δ δN N y NCO ,total LPP CO CO ,total2 2 2 (12)

In the above equations, NLPP and yCO2

δ are the unknowns which
are solved based on the known initial state, γ (end of evacuation
step). Note that this step is different from the MW model that
considered pressurization with the feed.

Adsorption (ADS) (δ → α). The column at the state δ
represents the initial condition for the adsorption step. The feed
is supplied to the column at constant high pressure PH and
temperature Tfeed. This step is modeled differently compared to
the other steps. Here, the adsorber is modeled as a standard
adsorption column that is originally saturated with the gas as
given by state δ. The feed gas is considered to flow through the
column like a plug that breaks through once the column is
completely saturated with the feed. The aim here, as it was with
the MWmodel, is to keep the mathematics of the model simple.
Under these assumptions, the two mass balances are given by
Overall mass balance:

+ + = +

+

δ δ α αN N N N N

N

( ) ( )CO ,total N ,total feed CO ,total N ,total

raff

2 2 2 2

(13)

Component mass balance:
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+ = +δ α δN N y N N yCO ,total feed CO
feed

CO ,total raff CO2 2 2 2 (14)

Nfeed and Nraff are calculated by solving the nonlinear equations
given in eq 13 and 14. At the end of adsorption step, the column
reaches state α. Note that the energy consumption during the
feed step is not calculated as its contribution is negligible.5,19

It is worth noting here that the sequence of steps starts and
returns to state α (beginning of the blowdown step and end of
the adsorption step), passing through states β, γ, and δ. This
avoids the need to repeat the calculations for multiple cycles,
thereby significantly reducing the computational time. Further,
once the adsorbent properties, feed pressure, composition, and
temperature are fixed, the model has only two design variables,
namely, PINT and PLOW. Considering the simplicity of the model,
the design space can be quickly scanned.
Performance Indicators. CO2 purity, recovery, energy

consumption, and working capacity are the performance
indicators for the VSA process. Purity is the ratio of the number
of moles of CO2 obtained to the total number of moles obtained
in the evacuation step.
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=
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− + −
×

β γ

β γ β γ
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N N

N N N N
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100

CO

CO ,total CO ,total

CO ,total CO ,total N ,total N ,total

2

2 2

2 2 2 2

(15)

Recovery is defined as the ratio of total moles of CO2 collected in
the evacuation step to the number of moles of CO2 in the feed.
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y
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zzzzzzzz
[ ] =

−
×

β γ

Re
N N

N y
Recovery, % 100CO

CO ,total CO ,total

feed CO
feed2

2 2

2

(16)

The total-energy consumption is the sum of work done by the
vacuum pump in the blowdown and evacuation step.
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Energy,
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BLO EVAC

CO ,total CO ,total CO2 2 2 (17)

where MCO2
is the molecular weight of CO2. Note that the

energy calculated here is in electrical units, and hence, the units
carry a subscript “e”. Since the model assumes instantaneous
equilibrium, i.e., a 100% efficient column, the productivity
cannot be calculated. In order to obtain an estimate of the
amount of adsorbent required, the working capacity can be
considered. This quantity is defined as the number of moles of
CO2 from the evacuation step per m3 of the adsorbent.
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Working capacity,
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CO ,total CO ,total

2

2 2

(18)

In this work, the ODE, given by eq 7, is solved in MATLAB
R2017a using ode23s solver with an initial condition of yi = yCO2

feed

at P = PH. The coupled nonlinear mass balance equations in the
LPP and ADS steps, given by eqs 11−14, are solved using fsolve
solver with trust-region-dogleg algorithm. All the simulations

reported in this work are computed using the desktop computer
with INTEL Core 2.80 GHz processor and 8.00 GB of RAM.

2.3. Detailed Model and Process Optimization. The
detailed model, that is used to predict the adsorption column
dynamics for a given PSA cycle configuration, solves coupled
partial differential equations of mass, momentum, and heat
balances with cyclic boundary conditions.5 The detailed
mathematical equations and corresponding boundary condi-
tions are given in the Supporting Information. It is a non-
isothermal and non-isobaric model which is robust and rigorous.
The set of partial differential equations are discretized spatially
using a finite volume technique, and the resulting ODEs are
solved using an inbuilt MATLAB ODE solver. The detailed
model has been validated against lab-scale34 and pilot-scale32

experimental results.
For the optimization of the VSA process, a genetic algorithm

(GA) that works in conjunction with the detailed model is used.
The GA chooses the set of decision variables, typically the
duration of the various steps, velocity of the feed, and pressure
levels PINT and PLOW, and passes them to the VSA simulator. The
dynamics of the process under these conditions is evaluated, and
the performance at cyclic steady-state conditions is evaluated
and returned to the GA. The GA proceeds from one generation
to the next by improving the objective functions until no further
improvement is possible. Multiobjective optimization problems
result in Pareto curves that provide the best trade-off between
the various objective functions. Details of this approach have
been discussed elsewhere.5

3. ILLUSTRATION AND VALIDATION OF THE BAAM
In this section, the developed BAAM is illustrated using four
adsorbents that have been studied in a previous work.19 The
high pressure, PH, is fixed at 1 bar for all the simulations since it
has been shown that increasing the adsorption pressure more
than 1 bar has a significant effect on the overall energy
consumption as the feed, which consists majorly of N2, has to be
compressed to higher pressure.5,30 The lower bound of PLOW in
this study is set to 0.03 bar, a pressure that was achieved in pilot
plant experiments.32 Due to the isothermal operation of the
column, the temperature is taken to be the feed temperature of
298.15 K. Thus, the BAAM cycling between atmospheric
pressure and low vacuum pressures at a fixed feed temperature of
298.15 K is considered for all the simulations. The feed gas
stream is considered to consist of 15mol % of CO2 and 85mol %
N2 at 1 bar and 298.15 K. In this work, the flue gas is considered
to be pre-dried. It is important to highlight that drying of the flue
gas is indeed energy intensive, and any comparisons to other
processes should be made with caution.35

3.1. Process Description. The four adsorbents considered
in this study for illustrating the features of the model are two
MOFs, namely, Mg-MOF-74 and UTSA-16, zeolite 13X, and a
variety of coconut-shell activated carbon (CS-AC). The
properties of these adsorbents have been given in the previous
publication.19 The isotherms of CO2 and N2 are described using
a dual-site Langmuir (DSL) isotherm model:

* =
+

+
+

q
q b C

b C

q d C

d C1 1i
i i i

i i

i i i

i i

sb, sd,

(19)

= −Δb b ei i
U R T

0,
/b i, g (19a)

= −Δd d ei i
U R T

0,
/d i, g (19b)
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where qi* is the equilibrium solid phase loading corresponding to
a fluid phase concentration of Ci. The constants qsb,i, qsd,i, bi, and
di are the equilibrium saturation solid phase loadings and affinity
parameters corresponding to the sites “b” and “d”, respectively.
The constants b0,i and d0,i are the pre-exponential factors, and
ΔUb,i and ΔUd,i are the internal energies. Note that “b” and “d”
refer to the high and low energy sites, respectively. The single
component isotherms of CO2 and N2 on Mg-MOF-74, zeolite
13X, UTSA-16 and CS-AC are depicted in Figure 2, and the
dual-site Langmuir isotherm parameters that are used to fit the
adsorption equilibrium measurements of the same are given in
Table 1. NoteMg-MOF-74 has the highest CO2 andN2 capacity
and affinities compared to the other three materials. Zeolite 13X
has the next strongest CO2 affinity. UTSA-16 has a moderate
CO2 affinity but the lowest N2 affinity. Finally, CS-AC has a low
CO2 affinity but a high N2 affinity. The extended DSL isotherm
model is assumed to describe the competitive nature adequately:
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+ +

+
+ +

q
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d C d C
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1
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sb,CO CO CO

CO CO N N

sd,CO CO CO
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The BAAM is run for fixed values of PH = 1 bar, PINT = 0.15
bar, PLOW = 0.03 bar, and Tfeed = 298.15 K for the four
adsorbents. The calculated results of each step of the cycle are
plotted in the respective CO2−N2 competitive isotherm of the

two adsorbents in Figure 3. The competitive loadings, for
different values of yCO2

calculated from eqs 20 and 21, are plotted
as a function of the total pressure. A semilog plot is used in order
to illustrate the behavior at low pressures. In Figure 3, the black
dashed line provides solution of the BAAM that are represented
as transitions between the different states for zeolite 13X (Figure
3a,b) and CS-AC (Figures 3c,d). Similar plots for Mg-MOF-74
and UTSA-16 are provided in the Supporting Information. The
case of zeolite 13X is discussed first. At state α, the bed is
completely saturated with the feed CO2 concentration, yCO2

=

0.15. During the blowdown step, yCO2
in the column increases as

the weakly adsorbing component N2 is removed from the
column and is depicted by moving along the black dashed line in
Figure 3a,b from α to β. The CO2 solid phase loading remains
almost constant until CO2 composition in the adsorber becomes
yCO2

≈ 1.00. Thereafter, in the evacuation step, the CO2 loading
decreases along the pure CO2 isotherm until the state γ,
corresponding to PLOW = 0.03 bar is reached. The LPP step,
represented by the transition from γ to δ, is nearly a straight line
on the CO2 isotherm plot that can be identified by the
intersection of a horizontal line from state γ, and a vertical line
from PH = 1 bar. The adsorption step moves along the vertical
line, PH = 1 bar until state α is reached. Similar trends are
observed for UTSA-16 and Mg-MOF-74.
In the case of CS-AC (Figure 3c,d), there is a significant

decrease in the CO2 loading as one moves from α to β. Further,
at PINT = 0.15 bar, the CO2 composition is yCO2

= 0.65 compared

to yCO2
≈ 1.00 in the case of zeolite 13X. The inferior

performance of CS-AC can be explained by observing the
transition in N2 isotherm in Figure 3d that indicates that a
significant amount of N2 is left in the column at PINT = 0.15 bar.
This observation can be explained by a lower selectivity and a
weak CO2 competition, thereby affecting the CO2 purity and

Figure 2. Pure-component isotherms of (a) CO2 and (b) N2 at 298.15 K for the four adsorbents studied [reproduced from Rajagopalan et al.19

Copyright 2016 Elsevier].

Table 1. Dual-Site Langmuir Pure-Component Isotherm Parameters of CO2 and N2 on the Adsorbents Considered19

adsorbent particle density [kg/m3] adsorbate qsb,i [mol/kg] qsd,i [mol/kg] b0,i[m
3/mol] d0,i [m

3/mol] −ΔUb,i [kJ/mol] −ΔUd,i [kJ/mol]

Mg-MOF-74 588.25 CO2 6.80 9.90 1.81 × 10−7 1.06 × 10−6 39.30 21.20
N2 14.00 3.45 × 10−6 15.50

zeolite 13X 1130.00 CO2 3.09 2.54 8.65 × 10−7 2.63 × 10−8 36.60 35.70
N2 5.84 2.50 × 10−6 15.80

UTSA-16 1092.00 CO2 5.00 3.00 6.24 × 10−7 1.87 × 10−23 30.60 44.70
N2 12.70 2.96 × 10−6 9.77

CS-AC 799.50 CO2 0.59 7.51 9.40 × 10−6 1.04 × 10−5 25.61 17.55
N2 0.16 41.30 1.81 × 10−3 1.72 × 10−12 8.67 44.90
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recovery. Table 2 provides the summary of the simulated results
for the fixed operating condition. UTSA-16 gives PuCO2

> 99.9%

and ReCO2
≈ 80% with the lowest energy consumption of 88.50

kWhe/tonne CO2 cap. when compared to the other adsorbents.
Mg-MOF-74, zeolite 13X, and UTSA-16 give similar CO2 purity
and recovery values for the given PLOW and PINT, but there is a
significant difference in energy values. CS-AC shows the worst
performance among the four adsorbents considered.
As observed from Figure 3, the transitions for the various steps

of the four-step VSA cycle with LPP indicate that for materials
with high selectivity, a simple approach can be used to estimate
the process performance. The blowdown and evacuation
transitions start from state α and move horizontally, i.e., at
constant qCO2

* , until yCO2
= 1.00 is reached and follow the yCO2

=
1.00 isotherm until state γ is reached. For the LPP step, the value
of yCO2

δ can be calculated by solving the isotherm expression by

enforcing the condition qCO2
*γ = qCO2

*δ . With all the four states now

identified, the purity, recovery, energy consumption, and
working capacity can be estimated. This approach is similar to
those that have been used in the literature.31

3.2. Comparison of BAAM with the Detailed Model. In
this section, the results from the BAAM are compared with the
results obtained from the detailed model for the case of zeolite
13X. For a process design of the four-step VSA cycle with LPP
using the detailed model, two pressures (PLOW, PINT), feed
velocity (vfeed), and step times (tBLO, tEVAC, and tADS) are the
typical design variables. In order to compare the product purity
and recovery, it is important to understand the impact of these
six variables on the process performance. Of the six variables,
PLOW, PINT, vfeed, and tADS are the most critical ones. In a VSA
process, the outlet flows typically drop exponentially as the
pressure drops. In this case, if tBLO and tEVAC are kept sufficiently
long, this will ensure that the purity and recovery from the
process can be treated as the ideal case. In this study, PLOW and
PINT are fixed at 0.03 and 0.15 bar respectively (as done in the

Figure 3. Transitions (black dashed lines) of the four step VSA cycle with LPP calculated using the BAAM. (a) CO2 isotherm for zeolite 13X; (b) N2
isotherm for zeolite 13X; (c) CO2 isotherm for CS-AC; and (d) N2 isotherm for CS-AC. The solid lines indicate the competitive CO2/N2 loadings at a
specified CO2 composition.

Table 2. Performance Indicators for PLOW = 0.03 bar, PINT = 0.15 bar, and T = 298.15 K

En [kWhe/tonne CO2 cap.]

adsorbent PuCO2
[%] ReCO2

[%] BLO EVAC total WCCO2
[mol CO2/m

3]

Mg-MOF-74 99.86 78.00 2.44 96.06 98.49 1146.36
zeolite 13X 99.96 79.30 1.65 92.49 94.13 1143.0
UTSA-16 99.97 79.97 1.66 86.84 88.50 1674.4
CS-AC 94.42 55.63 19.19 99.49 118.68 297.2
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previous section), while tEVAC and tBLO are set to 200 s. Hence,
we are left with tADS and vfeed as the two design variables. A
parametric study is then performed, using the detailed model, by
varying tADS and vfeed in the ranges 0 < tADS [s] < 180, and 0 < vfeed
[m/s] < 1.5, and the corresponding CO2 purity and recovery
contours are plotted as a function of tADS and vfeed in Figure 4.
The detailed model simulation parameters used in this study are
provided in the Supporting Information.
It is observed from Figure 4a that the CO2 purity increases and

approaches close to 100% when tADS and vfeed are high. Under

these situations, the CO2 composition front has the opportunity
to completely saturate the bed with the feed, and most of the N2

is removed in the blowdown step. This condition also means
that large quantities of CO2 will be also lost as raffinate product
in the adsorption step leading to poor recoveries as seen in the
top right corner in Figure 4b. The design space is then scanned
to pick an operating condition from the detailed model which
closely corresponds to the CO2 purity and recovery values
predicted from the BAAM. This is shown in red “*” in Figure 4.
For this case, the energy consumption from the full model is

Figure 4.Contours of (a) CO2 purity and (b) CO2 recovery plotted as a function of tADS and vfeed from the detailedmodel for the case of zeolite 13X. PH
= 1 bar, PINT = 0.15 bar, PLOW = 0.03 bar, tBLO = tEVAC = 200 s. The point shown as a red * gives PuCO2

and ReCO2
comparable to the values obtained from

the BAAM at PH = 1 bar, PINT = 0.15 bar.

Figure 5. Contour plots of process indicators for zeolite 13X calculated from the BAAM (a) PuCO2
(solid lines), and ReCO2

(dashed lines); (b) energy
consumption in kWhe/tonneCO2 cap. (c)Working capacity inmol CO2/m

3. Subfigure (d) shows the purity−recovery Pareto curves for various values
of PLOW.
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found to be 125.68 kWhe/tonne CO2 cap. which is significantly
high when compared to the result from the BAAM for zeolite
13X given in Table 2, which is 94.13 kWhe/tonne CO2 cap. To
understand the differences in energy values, the same exercise
was repeated, but now by assuming an isothermal operation and
no pressure drop across the column. This required some changes
to the operating conditions in order to ensure that the CO2
purity and recovery are comparable to the BAAM. The energy
consumption from the detailed model dropped to 108 kWhe/
tonne CO2 cap. (15% less than the previous case) for the similar
values of CO2 purity and recovery. Assuming zero mass transfer
resistance and axial dispersion would further reduce the energy
consumption calculated from the detailed model. Summarizing,
the BAAM can represent the dynamics of the detailed model
only under certain fixed operating conditions, i.e., when the
column is fully saturated with the feed and when the key
assumptions of the BAAM are enforced on the detailed model.
This is a key limitation of the BAAM.

4. PARAMETRIC STUDY USING BAAM
The previous section described the simulated results for a fixed
PLOW and PINT. Evaluation of the adsorbents for a fixed operating
condition does not guarantee the correct ranking as the optimal
performance of an adsorbent might be different from the fixed
operating conditions that have been considered. A parametric
study is performed for the case of zeolite 13X by varying PLOW
and PINT in the ranges of 0.03 ≤ PLOW [bar] ≤ 0.1 and PLOW +
0.01 ≤ PINT [bar] ≤ PH − 0.01 using the BAAM model. The
contour plots of each of the performance indicators are
generated to study the operating regions giving high product
purity and recovery with lower energy consumption and higher
working capacity.
Figure 5a shows that CO2 purity is dependent on the value of

both PINT and PLOW. At a given PINT, CO2 purity increases with
decreasing PLOW. At a fixed PLOW, CO2 purity increases with
decreasing PINT. In the former case, reducing PLOW increases the
working capacity of the sorbent as the nonlinear portion of the
isotherm is accessed. In the latter case, lowering PINT increases
the amount of N2 that is removed thereby resulting in higher
CO2 purity. A value of PuCO2

≈ 100% is achieved when PINT is
close to its lower bound for a fixed PINT. The CO2 recovery
shows a similar trend for a fixed PINT. However, for a fixed PLOW,
PINT has a minimal effect on recovery for PINT > 0.15 bar. From
Figure 5a, it can be seen that the amount of CO2 removed is
hardly affected in the range 0.15 < PINT [bar] < 1, and this
explains why ReCO2

is unaffected.
The energy contours are shown in Figure 5b. For a specific

value of PH and yCO2

feed , the total power consumption [kWhe] is
only a function of PLOW. However, the specific power
consumption [kWhe/tonne CO2 cap.] depends on the amount
of CO2 recovered in the evacuation step, in other words a
function of the recovery. Hence, it comes as no surprise that the
contours of the specific energy resemble that of the recovery; i.e.,
the specific power consumption is sensitive to PLOW for a fixed
PINT, but insensitive to PINT for PINT > 0.15 bar where PLOW is
fixed.
The working capacity contours in Figure 5c depict the same

trend as seen with the recovery contours. Working capacities as
high as 1050 mol CO2/m

3 are achieved at very low pressures.
The values of purity and recovery for a fixed value of PLOW and
variable PINT are shown in Figure 5d. It is observed that the best
combination of product purity and recovery is achieved when

PLOW is at the lowest value. The outermost front in Figure 5d,
corresponding to PLOW = 0.03, will be referred to as the purity−-
recovery “Pareto curve” for the BAAM model.

4.1. Comparison of BAAM with the Optimized Results
fromDetailedModel. In order to evaluate various adsorbents,
it is important to compare their optimal performance. Figure
6a,b shows the purity−recovery Pareto curves for the four

adsorbents obtained from the BAAM and the optimization of
the detailed model, respectively. It is important to note that the
values of PH, PLOW, y

feed, and Tfeed are identical for both the
detailed model and the BAAM. The detailed model considers
tADS, vADS, tBLO, and tEVAC as decision variables. Comparing
Figure 6a,b, two observations become evident: (1) the
maximum recovery values predicted from the BAAM are lower
when compared to their detailed model counterparts; (2) the
BAAM predicts a purity of 100% at relatively higher recovery for
Mg-MOF-74, zeolite 13X, and UTSA-16. The former
observation can be explained by the assumption in the BAAM
that requires the column to be completely saturated with the
feed in the adsorption step and partly due to the absence of axial
concentration and temperature profiles in a perfectly mixed
batch system. As a result, a significant amount of CO2 is lost
during the adsorption step, whereas in the detailed model by
controlling the position of CO2 front in the column, it is possible
to prevent the loss of CO2 in the adsorption step. The latter
observation can be understood by looking at the simplified
process transitions in Figure 3 and also contour plots in Figure 5.
When PINT is decreased from 1 to 0.15 bar, the recovery is fairly
constant due to the flat blowdown profile for the case of zeolite
13X, but the purity increases significantly until PINT correspond-

Figure 6. Comparison of PuCO2
and ReCO2

Pareto curves obtained from
(a) the BAAM (b) optimization using the detailed model.19 Figure 6b
reproduced with permission from Rajagopalan et al.19. Copyright 2016
Elsevier.
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ing to yCO2
= 1.00 is reached. At this point, the CO2 purity equals

100%, but the recovery decreases when PINT approaches PLOW.
A closer examination of Figure 6a,b reveals an interesting

correlation. Although the absolute values of CO2 purity and
recovery do not match, the BAAM gives a correct ranking of
adsorbents as compared with the detailed optimized ranking.
Thus, based on maximization of purity−recovery values, the
decreasing order of ranking of the adsorbent is UTSA-16 >
zeolite 13X > Mg-MOF-74 > CS-AC.

5. USING THE BAAM FOR ADSORBENT SCREENING

In the previous section, the performance of the BAAM was
compared with the detailed model under optimized conditions,
and it was observed that the model underpredicts the purity and
recovery performance although providing the correct ranking of
the adsorbents. While this is helpful, the practical questions that
need to be answered are, will a particular adsorbent be able to
produce PuCO2

≥ 95% and ReCO2
≥ 90% in order to satisfy US-

Department of Energy (US-DOE) requirements, and if so, what
is the energy consumption of the process while guaranteeingUS-
DOE targets? The aim of this section is to develop a
classification and energy scaling approach that will help answer
these questions.
Khurana and Farooq examined a set of adsorbents for

adsorbent screening using the detailed model process
optimization.20 A total of 75 adsorbents, including a wide
range of zeolites, zeolitic imidazolate frameworks (ZIFs), cation
exchanged zeolites (CEZs), porous polymer networks (PPNs),
and MOFs containing both real and hypothetical adsorbents
were examined. A detailed multiobjective optimization aimed to
maximize PuCO2

and ReCO2
was performed, and those adsorbents

that met US-DOE requirements were screened. For those
adsorbents that met these requirements, a separate optimization
run that aimed tominimize energy while satisfying the PuCO2

and

ReCO2
constraints was performed. The results of this study are

provided in the Supporting Information. This group of
adsorbents along with the four that have been considered in
the previous sections, totalling 79, were used to develop a
classification and energy scaling approach for the BAAM. The
adsorbents were described by the authors using a DSL model,
and the fitting parameters are provided in the Supporting
Information.
5.1. Purity - Recovery Classifier. The BAAM was used to

generate the purity−recovery Pareto curves for the 79
adsorbents for a low pressure PLOW of 0.03 bar and different
intermediate pressures. The purity−recovery Pareto curves
obtained from the BAAM are plotted in Figure 7. Two colors are
used to plot these curves: green curves are used to represent
those adsorbents that were identified by Khurana and Farooq to
have met the US-DOE purity−recovery constraints, and red
curves were used to represent adsorbents that failed to meet the
constraint. It is interesting to note that there is a clear clustering
of green curves toward the top-right and the red ones toward the
bottom left. This shows the potential of the BAAM to be used as
a classifier. In order to reduce the two-dimensional measure (the
Pareto curve), to a one-dimensional measure, the maximum
Eucledian distance from the origin (denoted as rmax) to the
Pareto curve is considered as a proxy for the performance of an
adsorbent. The mathematical description of rmax is given by

=r r Pu ReMax( ( , ))max CO CO2 2 (22)

where r is the distance of each point on the Pareto curve, which is
defined as

= +r Pu Re( ) ( )CO
2

CO
2

2 2 (23)

Now, the goal is to determine the value of r95−90 that provides
the best classification for identifying materials that can provide
PuCO2

≥ 95% and ReCO2
≥ 90%. The classification learner app

from Statistics and Machine Learning Toolbox36 available in
MATLAB was used to perform the linear discriminant analysis
with a 5-fold cross validation with rmax for 79 adsorbents as the
input and the PuCO2

−ReCO2
constraints from the detailed model

optimization as the response. The results of the detailed model
were converted into a binary output. A value of “1” was assigned
if the purity−recovery constraint was achieved, and a value of “0”
otherwise. The analysis resulted in r95−90 = 110.25 with an
accuracy of 87.3%. In other words, an adsorbent with an rmax ≥
r95−90 = 110.25, is expected to meet US-DOE requirements,
while an adsorbent with a rmax < 110.25 is not expected to meet
the targets. The black dashed line, in Figure 7, represents the
points for which r = r95−90 = 110.25. This curve divides the whole
plot into two regions one where the PuCO2

/ReCO2
constraints are

satisfied (green shade), and the other where it is not (red shade).
The efficacy of the BAAM to classify a material according to

its potential to satisfy US-DOE purity−recovery targets is
compared with a variety of performance metrics that are used in
the literature. A list of performance metrics tested and their
definitions is given in Table 3. The details of these metrics have
been discussed in a previous work.19 For each of the 79
adsorbents, the set of performancemetrics were calculated based
on their isotherms. Each metric was used as an input in
MATLAB classification learner toolbox in order to predict the
digital output (1 if purity−recovery constraints are met, and 0
otherwise). The classification accuracy is reported as the
Matthew correlation coefficient (MCC),37 which is defined as

= · − ·
+ + + +

MCC
TP TN FP FN

(TP FP)(TP FN)(TN FP)(TN FN)
(24)

Figure 7. Collection of purity−recovery Pareto curves calculated using
the BAAM for 79 adsorbents The green curves correspond to the
adsorbents that met PuCO2

= 95% and ReCO2
= 90%, and the red ones

correspond to those that did not satisfy based on the detailed model
optimization.20 The black dashed line represents the locus of r95−90. In
order to meet the PuCO2

= 95% and ReCO2
= 90% requirement, a point

on the Pareto curve of an adsorbent obtained from the BAAM should
fall above this curve.
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where the symbols TP, TN, FP, and FN refer to True-Positive,
True-Negative, False-Positive, and False-Negative, respectively.
These are obtained from the confusion matrix provided by the
classification learner app. By definition theMCC can range from
−1 to 1. A value of −1 referring to the case where all population
is misclassified; 0 referring to the case of a completely random
metric; and 1 referring to the case where all population is
correctly classified. TheMCC for each of the adsorbent metric is
listed in Table 3, and it can be observed that the BAAMwith the
MCC of 0.76 significantly outperforms every other metric. The
next best performer is the Wiersum’s figure of merit with an
MCC value of 0.39. This comparison highlights the advantage of
the BAAM that has a high classification accuracy without any
significant increase in the computational time.

5.2. Calculation of Minimum Energy. In order to
compare the performances of different adsorbents, it is
important that energy consumption has to be calculated at a
specific PuCO2

and ReCO2
. The energy consumption, for the case

of zeolite 13X, plotted in Figure 5b is replotted in Figure 8a but
now as a function of PuCO2

and ReCO2
. In addition to the

contours of energy, the locus of r95−90 is plotted as black dashed
line. As it can be seen, the values of energy vary as one moves
along the dashed line. The energy value decreases, reaches a
minimum, and then increases. In this case, we choose the
minimum energy that coincides with the locus of r95−90 as being
representative of the minimum energy for this adsorbent. This
choice is not based on any physical argument, but is simply
suggested as an approach that will allow the development of a
consistent methodology.
The minimum energy values thus obtained from the BAAM

for each of the adsorbents are compared with the corresponding
minimum energy values from the detailed model in Figure 8b. It
is important to note that only 35 of the 79 adsorbents that met
the purity−recovery constraints were considered for the energy
consumption calculations. A linear regression was performed to
find the relationship betweenminimum energies calculated from
the BAAM and that of the detailed model. This relationship is
provided by

= +En En1.1446 66.53min,scaled min,BAAM (25)

Table 3. US-DOE Purity−Recovery Classification Accuracies
of Commonly Used Adsorbent Performance Metrics Based
on the Seventy-Nine Adsorbents Considered in This Studya
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aThe equilibrium loadings at adsorption and desorption conditions
are qads* = q*(1 bar, 298.15 K, yfeed) and qdes* = q*(0.03 bar, 298.15 K,
yfeed), respectively.

Figure 8. Calculation of energy consumption using the BAAM. (a) Energy contours as a function of CO2 purity and recovery for the case of zeolite
13X. The black dashed line represents the locus of r95−90 with the minimum energy point being shown as a “*”. (b) Linear regression relating the
minimum energy values computed from the BAAM to that of the optimization of the detailed model.
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where Enmin,scaled is the scaled energy that can be compared with
results from a full model. As seen in Figure 8b, the minimum
energies of 53% of the 35 adsorbents were predicted within
±10%, and that of 83% was predicted within±15% of the values
from the detailed model. This accuracy seems reasonable
considering the number of assumptions that went into
developing the BAAM along with a significant reduction in
computational time.
5.3. Ranking Metric. In order to compare the multiple

adsorbents, both the minimum energy and working capacity
need to be considered. The minimum energy and the
corresponding working capacity for the 35 adsorbents that
satisfied PuCO2

−ReCO2
constraints are shown in Figure 9a. An

ideal adsorbent is the one with that has a low minimum energy
consumption and corresponding high working capacity. This
would form the bottom-right corner of the plot. It is worth
noting here that zeolite 13X, which is commercial and available
at a modest cost, stands out as one of the materials with the
lowest energy consumption. UTSA-16 that has a low N2 affinity,
and a few hypothetical adsorbents, outperforms zeolite 13X.
These results are consistent with other reports in the literature.20

Some of the promising adsorbents are named in Figure 9a, while
the values of theminimum energy calculated from the BAAM for
the other adsorbents are provided in the Supporting
Information.

6. SCREENING OF THE NIST/ARPA-E DATABASE

The National Institute of Standards and Technology (NIST)
maintains a free and publicly accessible NIST/ARPA-E
Database of Novel and Emerging Adsorbent Materials reported
from a wide range of scientific literature.38 The database, which
is growing at a rapid rate, includes data from published
experimental and theoretical studies that are self-reported. In
this section, the potential of the BAAM is demonstrated by using
it to screen this large publicly available database. The objective is
to identify those adsorbents that have the potential to meet US-
DOE purity−recovery targets and, if so, calculate their parasitic
energies. The database consists of thousands of isotherm
datafiles. Hence, it was important to develop a filtering scheme
in order to identify those materials for which reliable adsorption
isotherm data are available within the range of interest for
postcombustion CO2 capture. The approach which is graphi-
cally described in the Supporting Information is briefly

described here. A query was made through Python API script
to retrieve all the adsorption isotherm data for all the adsorbent
materials for which CO2 andN2 were reported as the adsorbates.
The query resulted in 810 digital object identifiers (DOIs),
which represents an unique information source. This process
also yielded the isotherm data of other adsorbates and
competitive isotherm data which were not of interest to the
current work. Accordingly, these data points were removed in
the first step before analyzing the data. This step identified those
data points that contained isotherm information for pure CO2
and N2 on the material. This filter resulted in 757 DOIs and
1540 unique adsorbents. At this stage, it was important to
convert the reported values of pressure, loading, and temper-
ature into a common unit. Pressure and temperature units were
reported only in bar and K, respectively. These were retained as
they are. However, equilibrium loadings were reported in a
variety of units, and the corresponding conversion factors were
applied to convert to a common unit (in this case “mmol/g”).
For loadings that were reported on a “per unit volume of the
adsorbent”, an adsorbent density of 1130 kg/m3, that
corresponding to zeolite 13X, was chosen to convert to per
unit weight of the adsorbent. Materials for which equilibrium
loadings were reported on a “per unit-cell” basis were not
considered further. This filter results in 743 DOIs and 1486
unique adsorbents. It is important to note here that multiple
DOIs could report data on materials that have identical names.
For example, data on “zeolite 13X” was reported by 17 DOIs. In
this study, each of these zeolites is considered as a unique
adsorbent. The BAAM requires isotherm information for both
CO2 and N2 at low pressures, i.e., < 1 bar and at 298 K. Hence, it
was important to identify data that included this information.
Applying this filter, significantly reduced the search space to only
102 DOIs and 159 unique adsorbents. It was seen that most of
the isotherm data for CO2 were reported at 273 K, while N2 data
were reported at 77 K, primarily as a part of the adsorbent
characterization experiments. Upon closer inspection of the
data, it was found that some DOIs reported multiple CO2
isotherms for the same adsorbent at 298 K. Investigating the
primary reference revealed that these could be results of
theoretical studies, experimental measurements, or even data
from other research groups that were merely referenced to.
Under these situations, each set of isotherm was assumed to
belong to a variant of the same adsorbent. In a similar fashion,

Figure 9. Plots of working capacity vs minimum energy calculated from the BAAM. (a) Shows the adsorbents considered by Khurana and Farooq20

and this work. (b) Shows the results from the screening of the NIST/ARPA-E database.

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.8b05420
Ind. Eng. Chem. Res. XXXX, XXX, XXX−XXX

L

http://pubs.acs.org/doi/suppl/10.1021/acs.iecr.8b05420/suppl_file/ie8b05420_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.iecr.8b05420/suppl_file/ie8b05420_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.iecr.8b05420/suppl_file/ie8b05420_si_001.pdf
http://dx.doi.org/10.1021/acs.iecr.8b05420


some DOIs reported multiple N2 isotherms. In such a situation,
in order to avoid the multifarious combinations of CO2 and N2,
we just considered the N2 isotherm that showed the highest
loading at 1 bar pressure.
The CO2 and N2 isotherm data hence obtained was described

by single site Langmuir (SSL) model by forcing equal saturation
loadings for the two adsorbates, thereby ensuring thermody-
namic consistency. Note that the SSL is a special form of the
DSL in which only one of two Langmuirian terms is retained.
The complete list of materials along with the SSL isotherm
parameters is provided in the Supporting Information. The
BAAM was then run to identify adsorbents that could meet the
US-DOE PuCO2

−ReCO2
constraints. Of the 197 materials, a total

of 120 were found to meet the requirements. The minimum
energy and the corresponding working capacity for these 120
materials were computed and depicted in Figure 9b. The process
of isotherm fitting and the BAAM calculations was completed in
less than two seconds per adsorbent. Zeolite 13X still stands out
as the best-performing adsorbent in terms of minimum energy
consumption from screening the NIST database. A few other
zeolites, microporous organic polymers (MOPs), and MOFs,
namely, zeolite GIS, C24H21N3, and activated [NC2H8]4Cu5-
(BTT)3xG offer low parasitic energies. It is important to
acknowledge that it is quite possible that promising adsorbents
could have been missed based on the filtering approach that was
adopted. This highlights the fact that reporting of equilibrium
data for both CO2 at capture conditions and N2 is critical in
order to perform reliable screening.39 However, the objective of
this exercise, which was to showcase the flexibility and speed of
the BAAM that can be adapted to any large database, has been
sufficiently demonstrated.

7. CONCLUSIONS
In this work, a batch adsorber analogue model (BAAM) based
on the framework described by Maring and Webley has been
developed. It is based on several simplifying assumptions that
aims to reduce the computational complexity. Specifically, the
adsorber is considered as a mixed system that is isothermal and
with the solid reaching instantaneous equilibrium with the fluid
phase. This reduces the PDEs to ODEs and eliminates the heat
balances and the solid−fluid mass balances. It was shown that
the results of the BAAM can be represented on a isotherm plot
that requires only the description of the competitive behavior of
CO2 and N2. Under certain conditions, a simple graphical
solution, which does not require the solution of ODEs, can be
obtained. By comparing the results of the BAAM with those
from detailed optimization studies, a classification model was
developed that showed aMatthew correlation coefficient of 0.76
in determining whether an adsorbent can produce a PuCO2

≥
95% and ReCO2

≥ 90% when implemented in a full-scale process.
A simple linear relationship to calculate the minimum energy
calculated from the BAAM was developed. It was able to
estimate the minimum energy within ±15% for over 83%
adsorbents. The ability of the model to screen large number of
materials was demonstrated by considering 197 adsorbents from
the NIST/ARPA-E database.
In this work the shortcomings and advantages of the BAAM

were studied by comparing its result with those from detailed
models. The BAAM has four important shortcomings. First, the
model is based on several assumptions that are far from reality.
Real VSA units work under non-isothermal conditions; mass
and heat transfer rates are finite, and there is a pressure drop

across the column. In fact, as discussed, the ability to control the
position of the mass and thermal fronts is the basis of an
adsorption process. Second, it has a finite accuracy in being able
to either determine purity−recovery classification or to calculate
the energy calculation. Hence, it is advisable not to select
adsorbents purely on the basis of the BAAM or any other
simplified model as suggested in many papers in the literature.
Third, the operating conditions obtained from the BAAM
cannot be translated to an experimental demonstration. Fourth,
while the BAAM provides a reasonable estimate of the energy
consumption, owing to the imposition of the equilibrium
assumption, it cannot provide any information about the
productivity. Costing studies have shown that both the parasitic
energy and productivity play comparable roles in deciding the
cost of CO2 capture. Hence, detailed modeling and costing
analysis are required to select adsorbents for scale-up.40 The key
advantages of the BAAM are 2-fold. First, the model captures the
underlying physics that governs the separation and provides a
graphical method to rationalize the results. Second, is the speed
with which the purity−recovery classification and minimum
energy consumption can be calculated. It takes less than a
second to perform these calculations on a standard laptop
computer, compared to a few days that is required for detailed
process optimization. It was shown that in terms of the accuracy
with which the classification can be performed, the BAAM
outperforms simple adsorption metrics without any increase in
computational time. In conclusion, it is recommended that the
BAAM be used to perform a preliminary screening and identify a
handful of adsorbents that can be further studied using the
detailed model combined with rigorous optimization. This
approach could potentially increase the success rates in
screening materials while reducing the time for screening.
Further, the ability to predict broad trends and to understand
them based just on the isotherms still makes this a powerful tool
in the suite of models that are available to process engineers.
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■ NOMENCLATURE

Roman Symbols
b adsorption equilibrium constant for high energy site [m3

mol−1]
C fluid phase concentration [mol m−3]
d adsorption equilibrium constant for low energy site [m3

mol−1]
En energy consumption [kWhe tonne of CO2 cap.

−1]
F adsorbent figure of merit [mol kg−1 or mol3 J−1 kg−2 or −]
k adiabatic constant [−]
M molecular weight [g mol−1]
N number of moles [mol]
P total pressure [bar]
Pu purity [%]
q* equilibrium solid phase loading [mol kg−1]
Q outlet molar flow rate [mol s−1]
r Euclidian distance of a purity-recovery point on the Pareto

front from the origin
Rg Universal gas constant [Pa m3 mol−1 K−1]
Re recovery [%]
S selectivity
t time [s]
T temperature [K]
ΔU internal energy [J mol−1]
v velocity [m s−1]
V column volume [m3]
W vacuum pump work done [J]
WC working capacity [mol m−3 or mol kg−1]
w adsorbent mass [kg]
y mole fraction [−]
Greek Symbols
α state at the end of adsorption step [−]
β state at the end of blowdown step [−]
γ state at the end of light product pressurization step [−]
δ state at the end of evacuation step [−]
ϵ bed voidage [−]
η vacuum pump efficiency [%]
ρ particle density [kg m−3]
Abbreviations, Subscripts, and Superscripts
ADS adsorption
BLO blowdown
class classification
detailed detailed model
EVAC evacuation

fluid fluid phase
H high
i index of species
INT intermediate
LPP light product pressurization
max maximum
min minimum
scaled linear regression fit energy
solid solid phase
total fluid phase + solid phase

Acronyms
BAAM batch adsorber analogue model
CCS carbon capture and storage
CEZ cation exchanged zeolites
CSS cyclic steady state
DOI digital object identifier
FVM finite volume method
GA genetic algorithm
MOF metal−organic framework
MCC Matthews correlation coefficient
MW Maring and Webley’s simplified model
ODE ordinary differential equation
PDE partial differential equation
PPN porous polymer network
PSA pressure swing adsorption
VSA vacuum swing adsorption
TSA temperature swing adsorption
ZIF zeolitic imidazolate frameworks
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