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Abstract 

BACKGROUND: Fruit dips in calcium ions solutions have been shown as an effective 

treatment to extend strawberries (Fragaria x ananassa, Duch) quality during storage. In the 

present work, strawberry fruit were treated with 10 g L-1 calcium chloride solution and 
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treatment effects on cell wall enzymes activities and the expression of encoding genes, as 

well as enzymes involved in fruit defense responses were investigated. 

RESULTS: Calcium treatment enhanced pectin methylesterase activity while inhibited 

those corresponding to pectin hydrolases as polygalacturonase and ² -galactosidase. The 

expression of key genes for strawberry pectin metabolism was up- (for FaPME1) and 

down- (for FaPG1, FaPLB, FaPLC, Fa² Gal1 and FaAra1) regulated by calcium dips. In 

agreement, a higher firmness level and ionically-bound pectins (IBP) amount were detected 

in calcium-treated fruit compared with controls. The in vitro and in vivo growth rate of 

fungal pathogen Botrytis cinerea was limited by calcium treatment. Moreover, the activities 

of polyphenol oxidases, chitinases, peroxidases and ² -1,3-glucanases were enhanced by 

calcium ions dips.  

CONCLUSION: News insights concerning the biochemical and molecular basis of cell 

wall preservation and resistance to fungal pathogens on calcium-treated strawberries are 

provided. 
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INTRODUCTION  

 Strawberry is a soft fruit which undergoes a rapid loss of firmness during storage 

leading to mechanical damage as well as increasing fungal infections.1 In strawberry, fruit 

softening is mainly caused by cell wall disassembly and middle lamella dissolution, being 

pectins metabolism a key control point for this process.2,3 In this sense, the use of more 
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environment-friendly approaches as heat- and UV-C light treatments to delay softening and 

to control diseases during postharvest have been assayed in strawberry fruit.4-6 Moreover, 

several research groups have reported the beneficial effect of treatments with calcium 

solutions to maintain strawberry quality. Lara et al.7 informed that 1% w/v calcium chloride 

dips improved resistance to the necrotrophic pathogen Botrytis cinerea, helped treated fruit 

to retain higher amounts of ionically-bound pectins (IBP) and contributed to preserving 

structural integrity of cell wall and middle lamella. Hernández-Muñoz et al.8 showed that 

1% w/v calcium gluconate dips were effective to decrease surface damage caused by B. 

cinerea and to delay both fungal decay and loss of firmness on treated fruit when compared 

with controls. In a very interesting work, Zhang et al.9 demonstrated that fruit immersion in 

2% w/v calcium chloride solution, effectively inhibited the degradation of IBP as an 

evident cross-linking between calcium and pectin was observed in treated fruit. Through 

Atomic Force Microscopy (AFM) assays, authors showed that after thirteen and seventeen 

days of cold storage, calcium-treated fruit were firmer and showed a larger percentage of 

wider and longer IBP molecules than controls, respectively.  

 Despite these valuable contributions, the biochemical and molecular basis 

underlying the effects of calcium on cell wall preservation and resistance to fungal 

infection in strawberry fruit has not been explored. Accordingly, the main goal of the 

present study was to determine the influence of calcium chloride treatment on the 

expression pattern and activities of genes and enzymes closely related to strawberry cell 
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wall metabolism and fruit firmness. The effect of calcium dips on defense-related responses 

in strawberry fruit was also explored. 

MATERIALS AND METHODS 

Fruit material and calcium chloride treatment 

 Three hundred strawberry fruit (Fragaria × ananassa, Duch, cv Aroma) were 

harvested at commercial ripening stage (80-90% red) from local producers (La Plata, 

Buenos Aires Province, Argentina) and transported to the laboratory. The peduncle of each 

fruit was cut at 30 mm from the receptacle base, and fruit with no visible damage were 

classified according to size and shape. Two hundred and thirty fruit were put in fourteen 

plastic trays. The following treatments were applied on a set of almost 115 fruit (seven 

trays) for each condition: 0.5 h of incubation in distilled water at room temperature (25 ± 1 

°C) (Control or C) and, 0.5 h of incubation in 10 g L-1 CaCl2 at room temperature (Calcium 

chloride-treated fruit or Ca). Fruit were dried in air at room temperature for 2 h. Fruit from 

three trays per each condition (C and Ca) were taken after each treatment (0 days or 0 d) 

and used to measure firmness. Then, samples were cut into eights, frozen in liquid nitrogen 

and stored at -80 °C until use. Fruit from four trays per each condition (C and Ca) were 

stored for 8 days at 4 °C and then incubated during 2 days at 20 °C (shelf condition) (8 + 2 

d). Subsequently, firmness was measured and fruit were cut into eights, frozen in liquid 

nitrogen and stored at -80 °C until use. 

Firmness 
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 Fruit firmness was measured with a texture analyzer (TA.XTPlus, Stable Micro 

Systems Texture Technologies), using a 25 mm diameter cylinder Perspex. Fruit were 

compressed 0.8 mm and the maximum force (in Newton, N) developed during the test was 

recorded. Two measures were made for each fruit, with a rotation of 180° angle between 

measures. 

Cell wall polysaccharides 

 Measurements were performed according to Villarreal et al.10 with slight 

modifications. Five grams of frozen fruit were homogenized with 20 mL of absolute 

ethanol and boiled with reflux during 30 min. The homogenate was vacuum filtered and the 

residue was washed three times with 15 mL of absolute ethanol. The residue was dried for 

12 h at 37 °C and weighed. Three independent strawberry cell wall extracts (expressed as 

Alcohol Insoluble Residues or AIRs) were obtained for control and calcium chloride-

treated fruit at the final time of assay (8 + 2 d). Afterward, 50 mg of AIRs were 

homogenized in 50 mL of distilled water and shaken overnight at 20 °C. The homogenate 

was vacuum filtered and the solid was washed three times with 5 mL of distilled water. 

Filtrates obtained were pooled and named as water-soluble pectins (WSP). The residue was 

subsequently suspended in 25 mL of 0.05 M sodium acetate which contained 0.04 M 

EDTA, pH= 4.5 and shaken at 20 °C for 4 h. The vacuum filtered homogenate was saved 

and the solid was washed three times with 2.5 mL of the same buffer. Filtrates were pooled 

and named as EDTA-soluble pectins (ESP). Then, the residue was suspended in 25 mL of 

0.05 M HCl and heated at 100 °C with agitation for 1 h. The homogenate was cooled and 
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vacuum filtered, and the residue was washed three times with 2.5 mL of 0.05 M HCl. 

Filtrates were pooled and named as HCl-soluble pectins (HSP). Uronic acid concentration 

of each fraction was evaluated by the m-hydroxydiphenyl method using galacturonic acid 

(GalA) as standard.  

 Finally, the washed residue from pectin extraction was mixed with 50 mL of 4 M 

NaOH and shaken during 8 h at 20 °C. The vacuum filtered homogenate was washed three 

times with 5 mL of 4 M NaOH and filtrates were joined and named as hemicellulose 

fraction. Samples were hydrolyzed with 660 mL L-1 H2SO4 at 37 °C for 1 h and 

hemicelluloses content was estimated as glucose with the anthrone method.11 

 Neutral sugars (NS) concentration was measured over total pectins (extracted from 

100 mg of AIR in a similar way of HSP extraction) by the anthrone method. 

Cell wall enzymes activity 

 Three independent extracts using 5 g of frozen strawberries for calcium-treated and 

controls fruit were prepared at each time of assay, and activity of each extract was 

measured twice. Measurements of cell wall enzymatic activities were performed as 

previously fully described.12 

 Data for total pectin methylesterase (PME; EC: 3.1.1.11) activity was expressed as 

µmol of demethylated galacturonic acid (GalA) generated per second and per kilogram of 

fruit. Results for polygalacturonase (PG; EC: 3.2.1.15) activity were expressed as nmol of 

galacturonic acid released per second per kilogram of fruit. ² -galactosidase (² -Gal; EC: 

3.2.1.23) activity results were shown as nmol of p-nitrophenol released per second per 
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kilogram of fruit. Finally, ±-arabinofuranosidase (±-Ara; EC: 3.2.1.55) activity was 

indicated as nmol of 4-nitrophenol released per second per kilogram of fruit. 

RNA extraction, cDNA synthesis and Real-time PCR assays 

 Total RNA was isolated from 5 g of frozen strawberries using the 2-butoxyethanol 

method,13 treated with DNAase I (Promega) and purified with chloroform:octanol (24:1). 

Five independent RNA extractions were performed for control and calcium chloride-treated 

fruit. The first strand of cDNA for each sample was obtained as described in Langer et al.12 

Primers sequences, sizes of amplified fragments and accession numbers are listed as 

supporting information (Table S1). The amplification reactions for Real Time PCR assay 

were performed using Fast Start Universal SYBR Green Master Rox 2X (Roche) according 

to the instructions of the manufacturer, in a Step One Plus Real-Time PCR System 

(Applied Biosystems), using the same conditions described in Langer et al.12 The relative 

expression level corresponding to mean of five biological replicates was normalized against 

the expression level of FaGAPDH1 gene (showing constant expression level throughout all 

conditions analyzed). Relative expression levels were calculated conforming to the method 

described by Pfaffl14 and expressed in arbitrary units ± SEM 

Botrytis cinerea growth rate assay and fruit infection 

B. cinerea strain B05.10 from the IIB-INTECH Fungal Culture Collection IFCC 

458/02, was used. Prior to inoculation, mycelium was grown at 24 °C in solid Czapek-Dox 

medium (50 g glucose, 2 g NaNO3, 1 g KH2PO4, 0.5 g MgSO4.7H2O, 0.5 g KCl, 0.05 g 

FeSO4.7H2O, 20 g agar, pH= 5.5-6.0).  
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In vitro assay: A growth curve was performed in a previous work.10 As a result, 

assays were performed using 0.2 mg mL-1 of AIRs for each condition studied and using a 4 

mm2 agar plug which was transferred from the edge of a 5-day-old actively growing culture 

of B. cinerea to the solidified plates with 8 g L-1 agar. Botrytis growth areas were measured 

after 24, 72 and 120 h. Three independent AIRs extractions from control and calcium-

treated fruit were used, and three technical replicates of each of them were made. Sizes of 

the fungus growth areas were measured using the Image-Pro®Plus software (Media 

Cybernetics Inc., San Diego, CA). 

In vivo assays: For sporulation, plates were kept from 7 to 10 d in darkness at 

room temperature. Then, conidia were harvested with sterile water containing 0.02 mL L-1 

Tween-20, filtered and counted with a hemocytometer. The inoculum concentration was 

tuned to 2 x 104 conidia per mL with PDB medium, complemented with 10 mM KH2PO4 

and 10 mM sucrose. Prior to inoculations, conidia were incubated for 2-3 h at room 

temperature without shaking. Strawberries at ripe stage were disinfected with 2 mL L-1 of a 

commercial NaClO solution (55 g of active Cl2 L
-1) and twenty-four fruit for control and 

calcium chloride treatment were used. For inoculation, two 10 μL droplets were placed on 

the surface of each fruit and incubated at 20 °C in darkness during 6 days. Fruit were 

observed daily, photographed with a digital camera and lesions were evaluated as the 

percentage of mycelia on the inoculation zone; incipient lesion beyond the inoculation zone 

+ mycelia; moderate lesion beyond the inoculation zone + mycelia and putrefaction 

symptoms.  
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Defense enzyme activity 

 All activity measures were performed according to Pombo et al.6 with some 

modifications, using 5 g of frozen strawberries for each assay.  

 For chitinase (Chi; EC: 3.2.1.14) and ² -1,3-glucanase (² -1,3-gluc; EC: 3.2.1.6) 

activities 5 g of strawberries were homogenized in an Omnimixer with 30 mL of 10 mM 

sodium acetate buffer, 20 g L-1 PVP, pH= 5.0. The mixture was stirred at 4 °C for 3 h and 

then centrifuged for 30 min at 12,000 xg.  

 For chitinase, 2,210 µL of supernatant were mixed with 739 µL of 2 g L−1 chitin 

azure (Sigma). The reaction mixture was incubated at 37 °C with stirring, 710 µL aliquots 

were taken at 0, 2, 4 and 6 h (stopping the reaction with the addition of 178 µL of 2 N HCl 

and frozen with N2 (l)) and absorbance was measured at 575 nm. 

For ² -1,3-glucanase activity, 1,050 µL of extract were mixed with 350 µL 10 g L-1 

laminarin azure (Sigma). The reaction mixture was incubated at 37 °C with stirring and 

aliquots of 300 µL were taken at 0, 7, 15 and 22 h. The reaction was immediately stopped 

by adding 750 µL of ethanol, frozen with N2(l) and absorbance was measured at 575 nm.  

 For polyphenol oxidase (PPO; EC: 1.10.3.1) and peroxidase (POD; EC: 1.11.1.7) 

activities, 5 g of strawberries were homogenized in an Omnimixer with 0.02 M Na2HPO4, 

0.08 M NaH2PO4, 1 mL L-1 Triton X-100, 1 M NaCl, 30 g L−1 PVPP, pH= 6.0. The mixture 

was stirred for 1 h and then centrifuged at 12,000 xg for 20 min. 

This article is protected by copyright. All rights reserved.



 

 
 

 For PPO, 400 µL of the supernatant were mixed with 950 µL of 0.02 M Na2HPO4, 

0.08 M NaH2PO4 pH= 6.0 and 150 µL of 20 mM pyrocatechol. The mixture was incubated 

at 30 °C and the enzymatic activity was evaluated by measuring the OD increase at 410 nm. 

 For POD, 100 µL of extract were mixed with 0.02 M Na2HPO4, 0.08 M NaH2PO4 

pH= 6.0, 2 mM pyrogallol and 4 mM H2O2. The mixture was incubated at 30 °C and the 

enzymatic activity studied by measuring the increase of OD at 470 nm. 

Statistical analysis 

 Results for RIAs and polymers content were analyzed by Student’s t-test. Data 

corresponding to the rest of experiments was analyzed by One-way ANOVA and means 

compared with Tukey as post-test (except for in vitro B. cinerea growth where Dunnett was 

used as post-test) at p < 0.05. 

RESULTS 

Fruit firmness, cell wall amount and composition  

 In contrast with control fruit, which flesh firmness decreased after storage, calcium 

chloride-treated fruit showed an arrestment on postharvest softening (Fig. 1A). Moreover, 

calcium-treated fruit were around 15% firmer than controls after 8 days at 4 °C + 2 days at 

20 °C (8 + 2 d) (Fig. 1A).  

 As differences in firmness levels were detected after cold + shelf storage, for 

calcium chloride-treated and control fruit, these samples were used to study the effect of 

treatment on cell wall (as Alcohol Insoluble Residues, AIRs) content and composition. As a 

result, no differences in AIRs amount between control and treated fruit were observed (Fig. 
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1B), although differences were detected when AIRs from both groups of fruit were 

sequentially fractionated.  

 Considering pectins, the most remarkable result was observed in ionically bounded 

pectins (ESP) as its amount of GalA was 25% higher in treated fruit than in controls (Fig. 

1D). A slightly higher (10%) content of galacturonic acid (GalA) from WSP was shown in 

calcium chloride-treated fruit compared to controls (Fig. 1C) and no differences in 

covalently bounded pectins (HSP), as well as hemicelluloses content, were evident (Fig. 1E 

and Supp. Fig. 1A, respectively). Additionally, a significantly greater amount of neutral 

sugars was detected in total pectins extracted from AIRs of calcium-treated fruit in relation 

to controls (Fig. 1F). 

Activity of cell wall enzymes and the expression of encoding genes 

 The responses to calcium chloride treatment of pectin methylesterase and 

polygalacturonase activities as well as encoding genes were evaluated. Total PME activity 

increased after eight days at 4 °C + two days at 20 °C both for calcium chloride-treated and 

control fruit (Fig. 2A). Nevertheless, treated fruit showed a higher PME activity in relation 

to controls both at 0 days (0 d) and after cold + shelf storage (8 + 2 d) (Fig. 2A). 

Concomitantly, a higher accumulation of FaPME1 transcript was observed in calcium-

treated fruit at 0 days compared with controls (Fig. 2B). It is worth to mention, that the 

effect of calcium treatment on the degree of esterification (DE) of pectins was also 

analyzed and, accordingly with PME activity results, it was detected a lower DE on treated 

fruit than in controls both at 0 d and at 8 + 2 d (Fig. 2C).  
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 Calcium chloride treatment significantly decreased total PG activity both previous 

(0 d) and after cold + shelf storage (8 + 2 d) when compared with not treated fruit (Fig. 

2D). A down-regulation on FaPG1 gene expression was observed in calcium-treated fruit 

compared to controls after treatment (0 d, Fig. 2E).  

 The effect of calcium chloride dips on the expression pattern of a family of pectate 

lyase (PL, EC: 4.2.2.2) genes (FaPLA, FaPLB and FaPLC) was also studied. A decrease on 

FaPLA expression was detected after storage (8 + 2 d) both for control and treated fruit but 

no differences on the expression levels between treated and control fruit were observed 

(Fig. 2F). Interestingly, calcium chloride-dips provoked a significant down-regulation of 

FaPLB expression both prior and after storage (Fig. 2G) and a lower accumulation of 

FaPLC transcripts than controls immediately after treatment (Fig. 2H).  

 The action of calcium chloride dips on the metabolism of pectins side chains was 

also evaluated. An inhibition on ² -galactosidase (EC: 3.2.1.23) activity was observed on 

calcium chloride-treated fruit compared to controls after assay (0 d), then activity decreased 

for controls remaining at the same level of treated fruit (Fig. 3A). In agreement, a down-

regulation on Fa² Gal1 expression was detected at 0 days for treated fruit and then, 

transcript levels decreased and were equal for both groups of fruit (Fig. 3B). No differences 

on the expression of Fa² Gal4 were observed between calcium-treated fruit and controls at 

any time assayed (Fig. 3C). 
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 Considering arabinans metabolism, although FaAra1 was significantly down-

regulated at 0 days in calcium chloride-treated fruit compared to controls (Fig. 3E), no 

effect on total ±-arabinofuranosidase (±-Ara) activity was observed by treatment (Fig. 3D). 

 The effect of calcium chloride-dips on the expression of genes encoding a putative 

² -xylosidase (FaXyl1, EC 3.2.1.37), xyloglucan endo-transglycosylase (FaXTH1, EC 

2.4.1.207) and an expansin (FaExp2) was also studied. It was shown a decrease in the 

expression levels for the three genes considered after cold + shelf storage for both groups of 

fruit (Supp. Fig. 1B-D). Nevertheless, no differences in the accumulation of any transcript 

at any time of assay between calcium-treated and controls fruit were evident (Supp. Fig. 

1B-D).   

In vitro and in vivo Botrytis cinerea growth  

 Growth of Botrytis cinerea mycelia on agar plates containing AIRs from calcium 

chloride-dipped or control fruit as the only carbon source was evaluated. As a result, the 

radial growth of B. cinerea on plates containing AIRs from treated fruit (Ca2+ 8 + 2 d) was 

significantly lower than non-dipped (C 8 + 2 d) fruit at each time evaluated (24, 72 and 120 

h post inoculation, hpi) (Fig. 4). In order to discard an inhibitory effect of calcium chloride 

per se, agar plates containing 10 g L-1 CaCl2 + AIR from treated fruit (Ca2+ 8 + 2 d) were 

included. As a result, it was shown a higher rate of growth of Botrytis (reaching Petri dish 

edge at 72 hpi) on these plates when compared to those containing AIR from controls and 

calcium-treated fruit (Fig. 4).  
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 The effect of calcium chloride treatment on fruit resistance to B. cinerea infection 

was also studied. Fruit from calcium-treated and controls were inoculated with a suspension 

of fungal conidia and then stored at 20 °C for 6 days. Two days post-inoculation (dpi), 81% 

of controls and 57% of calcium-treated fruit showed incipient mycelia in the inoculation 

zone (Fig. 5A). At 4 dpi, 17% of controls fruit showed mycelia in the inoculation zone, 

45% incipient lesion beyond the inoculation zone + mycelia, 29% moderate lesion beyond 

the inoculation zone + mycelia and 5% putrefaction symptoms, while percentages of fruit 

with the same kind of lesions after calcium chloride treatment were 38%, 50%, 7% and 2%, 

respectively (Fig. 5B). At 6 dpi calcium chloride-treated fruit continued showing a 

reduction on the severity of fungal infection (21% mycelia in the inoculation zone, 21% 

incipient lesion beyond the inoculation zone + mycelia, 52% moderate lesion beyond the 

inoculation + mycelia and 2% putrefaction symptoms) compared with controls (5%, 14%, 

67% and 10% respectively) (Fig. 5C). 

Defense responses  

 An enhancement in polyphenol oxidase activity was detected in calcium chloride-

treated fruit in comparison with controls just after treatment (0 days). At 8 days at 4 °C + 2 

days at 20 °C (8 + 2 d), values in treated tissues decreased and reached similar levels to 

those of controls (Fig. 6A).  

 Total peroxidase activity increased between 0 and 8 days at 4 °C + 2 days at 20 °C 

both in controls and treated fruit. Nevertheless, calcium-treated fruit showed a significantly 

higher POD activity than control group both prior and after cold + shelf storage (Fig. 6B). 
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 An increase in chitinase activity was detected in calcium chloride-treated fruit at 0 

days. After 8 days at 4 °C + 2 days at 20 °C, levels on enzyme activity remained at similar 

values in both groups (Fig. 6C). 

 For ² -1,3-glucanase, the enzymatic activity in calcium chloride-dipped fruit was 

higher than in the corresponding controls after storage (8 + 2 d, Fig. 6D). No differences in 

phenylalanine ammonia lyase (PAL) activity were observed between controls and treated 

fruit at any time analyzed (Supp. Fig. 1E).  

DISCUSSION 

 Besides turgor pressure, pectins metabolism is central to determine strawberry fruit 

texture.3;15;16 Pectin is a structural heteropolysaccharide, consisting of homogalacturonan 

(HG) and type I and type II rhamnogalacturonan regions (RG-I and RG-II, respectively).16 

PMEs catalyzed the de-esterification of galacturonic acid from HG backbone, allowing 

calcium bridges formation and also providing the substrate of pectinases such as PGs and 

PLs.2,17 Besides HG´s structure preservation, it has been shown that the side-chain 

conformation of the RG-I are tightly related to fruit firmness, being the study of ² -Gal and 

±-Ara activities a matter of interest.18,19 

 The ability of calcium ions treatments to preserve strawberry cell wall structure has 

been studied by others research groups mainly through physicochemical approaches as cell 

wall mono- and polysaccharides composition, transmission electron microscopy, nuclear 

magnetic resonance, high-performance liquid chromatography and atomic force 

microscopy.7,9 
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In the present work, the biochemical and molecular basis which might explain the 

efficacy of calcium ions treatments to preserve strawberry cell wall structure were 

explored.  

 Similarly to results reported for strawberry fruit dipped in 1% (w/v) calcium 

gluconate and 2% (w/v) calcium chloride,8,9 higher firmness levels in calcium chloride-

treated fruit were observed after 8 days of cold + 2 days of shelf storage comparing with 

non-treated fruit (Fig. 1A). When total cell wall content was analyzed, no differences 

between treated and control fruit were observed (Fig. 1B). Nevertheless, calcium dips 

affected cell wall composition, especially increasing the amount of ionically-bound pectins 

(IBP or ESP) as well as neutral sugars content on pectins branch chains when compared 

with controls (Fig. 1D and F). In that sense, it has been reported that strawberry uptake of 

exogenous calcium ions increases the amount of chelate-soluble pectins, thus enhancing 

cell wall stability and preventing the dissolution of the middle lamella.7;9 Notably, Zhang et 

al.9 informed that, after cold storage, strawberries from cv Sijichun showed cross-linked 

structures and lower degradation of linear, branched and polymeric structures than not 

treated fruit. In addition, larger percentages of longer and wider IBP molecules (length 

e800 nm and width e90 nm) were observed in calcium-treated group as regards controls.  

 Besides maintaining cell wall structure through Ca2+-dimethyl esterified pectin 

networks, it has been suggested that calcium ions are able to preserve pectin structure by 

the inactivation of pectinases.9,20 To our knowledge, the present work constitutes the first 

one reporting the effect of calcium on relevant enzyme activities for strawberry pectin 
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metabolism such as pectin methylesterase,21 polygalacturonase,22 ² -galactosidase23 and ±-

arabinofuranosidase.18 A positive regulation of total PME activity by calcium was detected, 

being this result confirmed by assaying the degree of pectins esterification (Fig. 2A and C). 

On the other hand, calcium dips were able to inhibit both total polygalacturonase and ² -

galactosidase activities (Fig. 2D and Fig. 3A, respectively).  

 In strawberry, cell wall enzymes are typically encoded by a gene family.23-26 

Accordingly, we were interested to study the effect of calcium ions on the expression of 

those genes specifically expressed in fruit and/or those which were functionally 

characterized trough antisense technologies and proved to be relevant to determine fruit 

firmness (FaPME126, FaPG122;27, FaPLB, FaPLC25,28, FaGal1, FaGal419,23 and FaAra118). 

We detected an up-regulation of FaPME1 and a significant down-regulation of FaPG1, 

FaPLB, FaPLC, FaGal1 and FaAra1 on calcium-treated fruit regarding controls (Fig. 2E, 

G, H; Fig. 3B, E). Notably, the most pronounced calcium effects both in enzymatic 

activities and gene expression were found prior to cold + shelf storage (0 days). 

Accordingly, we suggest that higher fruit firmness and a more preserved cell wall structure 

of calcium-treated fruit after storage (8 + 2 d), is closely related to the down-regulation of 

genes involved in fruit pectin disassembly (FaPG1, FaPLB, FaPLC, Fa² Gal1), as well as 

an up-regulation of FaPME1 just after assay. Thus, calcium ions would be maintaining 

ionically-bound pectins structure and middle lamella through an up-regulation of PME 

activity and its related gene expression, allowing a higher number of Ca2+-pectin bridges to 
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be formed and, simultaneously down-regulating the activity and gene expression of well-

known pectin degrading enzymes. 

 When the ability of Botrytis cinerea to growth both in a medium containing isolated 

cell walls (AIRs) as well as on the surface of fresh fruit was evaluated, a reduction on the 

growing area an also in the percentage and severity of lesions were detected in calcium-

treated fruit in comparison with controls (Fig 4 and Fig 5, respectively). Lower in vitro rate 

growth and in vivo infection of Botrytis might be explained by the effect of calcium on the 

strengthened of cell wall (which would limit the accessibility of pathogen’s hydrolases to 

its plant substrates), and/or through an activation of fruit defense responses. Indeed, Lara et 

al.7 suggested that the improved strawberry resistance to fungal attack could arise from 

increased biosynthesis of protective proteins by calcium treatment. 

 Hence, the effect of calcium ions on a set of strawberry enzymatic activities well 

documented as related to plant defense against pathogens invasion1 was studied. The 

enzyme activity of polyphenol oxidase, peroxidase and chitinase increased over levels 

found in controls after treatment (0 days); while higher activity of ² -1,3-glucanase was 

observed in treated fruit compared with control after cold + shelf storage (Fig. 6). Although 

an enhancement of defense activities in strawberry fruit has been informed for others 

postharvest treatment such as UV-C irradiation6 and methyl jasmonate29, the present work 

is the first one providing biochemical information about calcium effect on strawberry 

resistance mechanisms to fungal pathogens. 
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 As a final remark, it is worth to consider that calcium ions might be acting directly 

on the activation of these defense enzymes, but also treated fruit could be responding to a 

plant elicitor generated through the increase on PME activity by calcium. In this sense, it 

has been reported that the overexpression of FaPME1 gene in woodland Fragaria vesca 

generate partially demethylated oligogalacturonides (OGAs) with eliciting capacity.30 In 

addition and, through metabolomics and transcriptomics studies, authors showed that the 

generation of these partially demethylated OGAs might reinforce the plant defense system 

and also play an active role in fruit development.31 In this way, although further studies are 

needed in order to confirm this hypothesis, it could be possible that the up-regulation of 

FaPME1 by calcium dips elicits the defense responses observed in treated fruit, thus 

contributing to restrict fungal pathogen’s invasion and preserving strawberry fruit quality. 
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Figure legends 

Fig. 1 Effect of calcium chloride treatment on strawberry fruit firmness (A), cell wall 

content per Kg of fruit (B), GalA-WSP (C), GalA-ESP (D), GalA-HSP (E) and neutral 

sugars (F) content per Kg of AIR. C 0 d, Ca2+ 0 d: control and calcium chloride treated 

fruits prior storage; C 8 + 2 d, Ca2+ 8 + 2 d: control and calcium chloride treated fruits after 

8 days at 4 °C + 2 days at 20 °C. Different letters indicate statistically significant 

differences at p < 0.05 (One-way ANOVA and Tukey for A and Student’s t-test for B-F).  
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Fig. 2 Calcium chloride effect on PME activity and FaPME1 gene expression (A, B), 

degree of pectin esterification (% DE, C), PG activity and FaPG1 gene expression (D, E), 

FaPLA, FaPLB and FaPLC gene expression (E, F, G). Different letters indicate significant 

differences among mean values (p < 0.05, ANOVA, Tuckey). 

 

Fig. 3 Effect of calcium chloride dips on ² -Gal activity, Fa² Gal1 and Fa² Gal4 gene 

expression (A, B, C), ±-Ara activity and FaAra1 gene expression (D, E). Different letters 

indicate significant differences among mean values (P < 0.05, ANOVA, Tuckey). 

 

Fig. 4 In vitro Botrytis cinerea growth on agar plates containing AIRs from control (C), 

CaCl2 treated fruit (Ca2+) and CaCl2 + AIR from treated fruit (10 g L-1 CaCl2 + Ca2+) after 

cold + shelf storage (8 + 2 d). Asterisks indicate significant differences between treatments 

and controls (*: p < 0.05; **: p < 0.01; ***: p < 0.001, One-way ANOVA, Dunnett). 

 

Fig. 5 Effect of calcium chloride dips on strawberry’ susceptibility to Botrytis cinerea 

infection after 2, 4 and 6 days post inoculation (dpi, A, B and C respectively). Different 

grade of damage: mycelia on the inoculation zone (white bar); incipient lesion beyond the 

inoculation zone + mycelia (light gray bar); moderate lesion beyond the inoculation zone + 

mycelia (dark gray bar) and putrefaction symptoms (black bar).  
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Fig. 6 Calcium chloride effects on polyphenol oxidase (PPO), peroxidase (POD), chitinase 

(Chi) and ² -1,3-glucanase (² -1,3-Gluc) activities. Different letters indicate statistically 

significant differences at p < 0.05 (One-way ANOVA and Tukey). 
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