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1. Introduction

Worldwide production of hexaploid bread wheat (Triticum 
aestivum) and tetraploid durum wheat (Triticum durum) 
was estimated at 744 million tons in 2017 (FAO, 2018), 
making it the second most widely grown cereal after 
maize and similar in production level to rice. Wheat can 
be consumed with a minimum of processing and the wide 
range of wheat cultivars enables the production of different 
foods to satisfy a myriad of demands. Bread wheat and 
durum wheat are both important due to their differential 
adaptation to climatic conditions and environments, and the 
different food products they are used to produce. Wheat is 
considered the main food for 35% of the world’s population, 
providing 20% of global calories and protein (FAO, 2018). 
Major wheat exporters include Russia (36 million tons), 

the European Union (26 million tons), the United States 
of America (25 million tons), Canada (22.5 million tons), 
Australia (17.5 million tons), and Argentina (13.7 million 
tons) (USDA-FAS, 2018).

Increases in global population combined with the impacts 
of climate change and plant diseases, suggest that wheat 
production will not meet global demand if the current 
genetic gain in yield of ~1% per year remains unchanged. 
Demand is expected to increase by 70% by 2050, and 
average yields need to increase by at least 1.7% per year to 
reach this goal (FAO, 2009). Successful scenarios all give 
increased disease control a central role in the production 
of more high-quality grain (Ray et al., 2013). A major 
disease problem in wheat production is Fusarium head 
blight (FHB), which causes billions of dollars of losses 
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Abstract

With 744 million metric tons produced in 2017/2018, bread wheat (Triticum aestivum) and durum wheat (Triticum 
durum) are the second most widely produced cereal on a global basis. Prevention or control of wheat diseases may 
have an enormous impact on global food security and safety. Fusarium head blight is an economically debilitating 
disease of wheat that reduces the quantity and quality of grain harvested, and may lead to contamination with the 
mycotoxin deoxynivalenol, which affects the health of humans and domesticated animals. Current climate change 
scenarios predict an increase in the number of epidemics caused by this disease. Multiple strategies are available for 
managing the disease including cultural practices, planting less-susceptible cultivars, crop rotation, and chemical 
and biological controls. None of these strategies, however, is completely effective by itself, and an integrated 
approach incorporating multiple controls simultaneously is the only effective strategy to limit the disease and reduce 
deoxynivalenol contamination in human food and animal feed chains. This review identifies the available tools and 
strategies for mitigating the damage that can result from Fusarium head blight.
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worldwide (McMullen et al., 2012; Windels 2000). The 
major fungal pathogens associated with FHB include strains 
from the Fusarium graminearum species complex (FGSC) 
and related species such as Fusarium avenaceum, Fusarium 
culmorum and Fusarium poae (Leslie and Summerell, 
2006). Other species, e.g. Fusarium acuminatum, 
Fusarium chlamydosporum, Fusarium equiseti, Fusarium 
langsethiae, Fusarium sporotrichiodes, Fusarium cerealis 
and Fusarium tricinctum, are of lesser importance in the 
global incidence of this disease (Bottalico and Perrone, 
2002; Van der Lee et al., 2015). FHB can cause direct losses 
through decreased grain yield, lower by-product quality, 
and reduced seed germination, kernel weight, number of 
kernels per head, and grain marketability (Dahl and Wilson, 
2018; Wilson et al., 2018). Harvested grain also may be 
contaminated with zearalenone (ZEA) and trichothecenes, 
such as nivalenol (NIV), deoxynivalenol (DON), and DON’s 
acetyl derivatives 3-acetyl-deoxynivalenol (3-ADON) 
and 15-acetyl-deoxynivalenol (15-ADON) (Desjardins, 
2006; McCormick et al., 2013; McMullen et al., 2012). 
ZEA is a non-steroidal pseudo-oestrogenic mycotoxin 
(Hidy et al., 1977; JECFA, 2000) and has been associated 
experimentally with oestrogenic syndromes in pigs and 
experimental animals (Zinedine et al., 2007). NIV is more 
commonly found on rice than it is in wheat (Yang et al., 
2018). Commercial antibody kits are generally available 

for the most common trichothecenes produced by F. 
graminearum (Nguyen et al., 2019).

Trichothecenes cause oxidative stress damage through the 
generation of free radicals, inhibition of protein synthesis, 
and interference with intercellular signalling (Rocha et al., 
2005). Acute DON poisoning causes emesis and diarrhoea in 
experimental animals while low dose ingestion is associated 
to anorexia, growth retardation, immunotoxicity and 
diminish reproduction and development as consequence 
of maternal toxicity (Pestka, 2010).

Due to the toxic effects of mycotoxins, maximum regulatory 
limits for DON and ZEA have been established for 
wheat and wheat by-products (Table 1). These limits are 
not harmonised across jurisdictions, and are probably 
exceeded in the diets of some populations even in the 
first world (Papageorgiou et al., 2018). The need for 
global harmonisation of mycotoxin regulation is reflected 
in the recent MycoTox Charter (Logrieco et al., 2018) call 
to minimise human and animal exposure to mycotoxins 
worldwide.

Plants can metabolise mycotoxins and the resulting 
metabolites are commonly termed modified, or ‘masked’, 
mycotoxins (Berthiller et al., 2013; Rychlik et al., 2014). 

Table 1. Maximum regulatory limits for deoxynivalenol (DON) and zearalenone (ZEA) established for wheat and wheat by-products 
in different countries/regions.

Country / region Product DON (μg/kg) ZEA (μg/kg)

Europe1 unprocessed durum wheat 1,750 100
unprocessed cereals other than durum wheat 1,250 100
cereal for direct human consumption 750 75
dried pasta 750 –
bread, pastries, biscuits, cereal snacks and breakfast cereals 500 50
processed cereal-based foods and baby foods 200 20

Brazil2 unprocessed cereals 3,000 40
bread, pastries, biscuits, cereal snacks and breakfast cereals 750 100
wheat bran 1000 200

Uruguay3 wheat flour, crackers, etc. 1000 100
processed products 1000 –

USA4 finished wheat products for human consumption 1000 –
grains and grain by-products 10,000 –

Canada5 un-processed cereals 2,000 –
baby foods 1000 –

China6 grains and processed products 1000 60

1 EC, 2006, 2007.
2 ANVISA, 2017.
3 MSP, 2001.
4 FDA, 2010.
5 Health Canada, 2018.
6 FAO, 2004.
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Plants can add glucose residues to DON and ZEA via 
glucosyltransferases to produce deoxynivalenol-3-
glucoside (DON-3G) and zearalenone-14-glucoside 
(ZEA-14G), respectively. These glucosides, at present, 
are not regulated and usually are not detected in standard 
tests for DON and ZEA. Chemical reactions during food 
or feed processing or digestion can cleave the glycosidic 
bond and release the original mycotoxin. Potential risks 
attributable to these glucosides per se are unknown, but 
the mycotoxin molecules released during processing and 
digestion should be as capable of interfering with animal 
and human metabolism as they were prior to being bound 
in the glucoside (Berthiller et al., 2016; EFSA CONTAM 
Panel, 2014).

FHB was first reported in 1884 in England (Parry et al., 
1995) and since then episodic outbreaks have occurred in 
different countries around the world (Alconada Magliano 
and Chulze, 2013; Bilska et al., 2018; Ji et al., 2014; 
McMullen et al., 2012; Obanor et al., 2013). Over the last 
25 years the epidemics have become more frequent and 
more severe, and escalated to a significant threat to world 
food safety and security. Major losses have been reported in 
the USA, Canada, Europe, China and South America, e.g. 
Alconada Magliano and Chulze (2013), Cai et al. (2011), 
Gilbert and Haber (2013), McMullen et al. (2012), Palazzini 
et al. (2015), Windels (2000) and Zhang et al. (2013).

The objective of this review is to identify and summarise 
recent advances in strategies for reducing the impact of 
FHB, and associated mycotoxin accumulation, across the 
wheat food chain with a focus on pre- and post-harvest 
control strategies.

2. Fusarium head blight

Ascospores and conidia from Fusarium strains associated 
with Fusarium head blight persist on crop residues for 
long periods of time, when temperatures are conducive 
and sufficient moisture is available for the fungus to 
grow and sporulate. Wheat ears are susceptible to fungal 
colonisation during anthesis, a time when fungal perithecia 
often are ejecting ascospores. Infected wheat heads whiten 
prematurely and appear discoloured and wrinkled, which 
may reduce both yield and grain quality by up to 80% 
(McMullen et al., 2012).

Pathogens

The Fusarium graminearum species complex (FGSC) is 
comprised of 15 formally described phylogenetic species 
and one additional species that is informally recognised 
based on genealogical exclusivity and conidial morphology 
(Aoki et al., 2012, 2014; O’Donnell et al., 2004; Sarver et 
al., 2011; Starkey et al., 2007). F. graminearum sensu stricto 
(Leslie and Summerell, 2006) is the main pathogen isolated 

from wheat in North and South America, Europe and 
Africa, and can be found in most wheat fields worldwide 
(Minaar-Ontong et al., 2017; Van der Lee et al., 2015). 
Although primarily associated with the diseases it causes 
on wheat and maize, F. graminearum can colonise at least 
25 other native grass species, and interactions with these 
native species may play a role in determining a strain’s 
metabolic and pathogenic capabilities (Lofgren et al., 2018). 
Genetically, populations of this pathogen are highly variable 
(Kelly and Ward, 2018), with as much variation within a 
small portion of a single field as across much of North 
America (Zeller et al., 2003, 2004). Fusarium asiaticum is 
the most important phylogenetic species in China, Japan 
and Korea and also has been isolated in Uruguay and in 
United States of America (Gale et al., 2011; Qu et al., 
2008; Shin et al., 2018; Umpierrez-Failache et al., 2013; 
Zhang et al., 2012). Strains of other Fusarium species, 
including F. acuminatum, F. avenaceum, F. cerealis, F. 
chlamydosporum, F. culmorum, F. equiseti, F. langsethiae, 
F. poae, F. sporotrichiodes and F. tricinctum also may cause 
the disease (Bottalico and Perrone, 2002).

Strains within the FGSC usually exhibit one of three 
primary trichothecene profiles: (1) deoxynivalenol and 
3-acetyldeoxynivalenol (3-ADON type); (2) deoxynivalenol 
and 15-acetyldeoxynivalenol (15-ADON type); or (3) 
nivalenol and its acetylated derivatives (NIV type). The 
different toxin types are not uniformly distributed across 
various wheat-growing regions. In North America, 
Central Europe, Southern Russia, and South America, 
the 15-ADON type dominates, and in Northern Europe, 
China, Australia, New Zealand and Korea the 3-ADON 
type dominates (Van der Lee et al., 2015; Yli-Mattila et 
al., 2009). The NIV type has been isolated in China, Japan 
and other Asian countries and less frequently in Europe, 
South Africa and the Americas (Gale et al., 2011; Suga 
et al., 2008; Van der Lee et al., 2015; Zhang et al., 2012). 
In Canada and the United States, a significant increase 
in the DON/3-ADON type has been observed in recent 
years (Gale et al., 2011; Guo et al., 2008, Puri and Zhong, 
2010; Ward et al., 2008). A fourth trichothecene toxin type 
was detected in the United States in 2015 (Varga et al., 
2015) and produces NX-2, a trichothecene with a chemical 
structure similar to 3-ADON. To date, strains producing 
NX-2 have not been found outside North America (Kelly 
et al., 2016; Liang et al., 2014). PCR analysis of predicted 
trichothecene genotype often is used as a proxy for chemical 
analysis of mycotoxin production. Unfortunately, variation 
in organisation within the Tri gene cluster and the wide 
variety of mutants that can influence the trichothecene 
produced have made developing broadly applicable PCR 
assays difficult (Villafana et al., 2019).

ZEA production by multiple species occurs worldwide, 
including Canada, the United States, Europe, China, and 
South America (Chełkowski et al., 2012; Ji et al., 2014; 
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Schwake-Anduschus et al., 2015; Stanciu et al., 2015; 
Tittlemier et al., 2013; Tralamazza et al., 2016; Yerkovich 
et al., 2017). Since toxin types present in populations can 
change, it is important to continue monitoring strains 
associated with FHB to understand current mycotoxin 
contamination potential within the wheat grain chain.

Infection cycle

Understanding the pathogen’s life cycle, the infection 
process, and the role of environmental conditions in the 
epidemiology of the disease, is important for effective FHB 
management and control. Ascospores (sexual spores) and 
macroconidia (asexual spores) are the most important 
source of inoculum, although hyphal fragments also can 
serve as inocula. Ascospores are produced in specialised 
sexual structures, termed perithecia (Guenther and Trail, 
2005; Trail and Common, 2000), that can be found on plant 
debris and require exposure to light for proper development 
(Kim et al., 2015; Krause, 1930). F. graminearum can 
survive for years as a saprotroph growing in the soil and 
on dead organic matter, e.g. crop residues. Factors, such 
as temperature, water, light and O2 availability, can alter 
survival time (Leplat et al., 2012). Weed plants can serve 
as reservoir of the pathogen, with genetically diverse F. 
graminearum strains isolated from the inflorescences of 
healthy weed plants belonging to gramineous and non-
gramineous species growing in or near commercial fields 
(Mourelos et al., 2014; Postic et al., 2012; Sneideris et al., 
2019). High humidity and warm temperatures in the spring 
favour the development and maturation of perithecia. 
Ascospores and macroconidia can travel long distances 
when carried by the wind and also may be dispersed by 
rain (Keller et al., 2013; Schmale et al., 2006). Once spores 
land on a suitable host, high humidity is required for spore 
germination and plant infection (Bushnell et al., 2003). 
Airborne inoculum levels at and before anthesis are strongly 
correlated with disease incidence and DON accumulation 
(Hellin et al., 2018).

Macroconidia of F. graminearum germinate within 6 to 12 
h post-inoculation on the face of the glume, and by 12 to 24 
h post-inoculation hyphae are easily seen and often have 
reached stomata (Pritsch et al., 2000). The development of 
FHB after fungal infection depends on the growth stage of 
the plant, the amount of inoculum, and the weather. Long-
term exposure to high humidity and temperatures ≥25 °C 
promote the disease (Parry et al., 1995). Infection initiates 
during anthesis, when the wheat flower is directly exposed 
to the environment. Tissue colonisation depends on cultivar 
resistance, temperature, humidity, fungal aggressiveness 
and mycotoxin production (Champeil et al., 2004). Under 
optimal conditions, the first symptoms of FHB appear 
2-4 days after inoculation as slightly brown, water-soaked 
spots in the spikelets. The infection may be limited to the 
infected spikelet, or spread across the entire spike. The 

pathogen disperses from spikelet to spikelet through the 
rachis. As the infection progresses, the spikelets die, dry 
up and become bleached resulting in shrivelled kernels 
(Bushnell et al., 2003).

F. graminearum sensu stricto should be considered a 
hemibiotroph. After it penetrates the wheat ear there are 
two distinct phases of infection (Brown et al., 2010; Kazan 
et al., 2012). Initially the fungus develops a biotrophic 
relationship with the host in which the invaded tissues 
remain alive and completely functional. As the infection 
progresses, the pathogen changes to a necrotrophic state in 
which it invades the host cells leading to necrosis. Spread 
of the fungus within the plant occurs more readily in the 
presence of DON, which blocks a jasmonate-related defence 
reaction (Bonnighausen et al., 2019), and this mycotoxin 
functions as a virulence factor in wheat (Bai et al., 2002; 
Jansen et al., 2005). DON biosynthesis is specifically 
induced in infection structures, but the toxin is not a 
prerequisite for the development of these structures or 
for the initial penetration of wheat tissues (Boenisch and 
Schäfer, 2011). Thus, the current working hypothesis is 
that DON is important for suppressing plant defences and 
enabling the pathogen to break through the rachis node.

Crop phenology

Understanding plant growth and development is an 
essential component of a wheat management system. 
The phenological system of Zadoks et al. (1974) is widely 
used for wheat and other small grains, with each stage of 
plant growth assigned a number. Stages are illustrative 
and the small differences between stages are important 
since plant growth is continuous and does not stop at the 
admittedly arbitrary borders of the different stages in the 
system. Stage 0 is associated with germination, including 
all steps from a dry seed up to the appearance of the 
coleoptile. Stage 1 begins with seedling growth, includes 
the unfolding of the leaves, and continues until tillering. 
Stage 2 is specific for tillering. Stage 3 begins with stem 
elongation and continues until the flag leaf appears. Stage 4 
is specific for the boot process. Stages 5 and 6 are associated 
with inflorescence emergence and anthesis, respectively. 
Caryopsis development occurs in three stages: Stage 7 is 
the milk stage, Stage 8 is dough development, and Stage 9 
is grain ripening. Secondary growth stages are identified by 
a second digit to better define closely related differences. 
The second digits follow the Feckes’ scale for intermediate 
stages, which enables the identification of specific details 
as needed (Zadoks et al., 1974). For example, codes for 
the number of leaves are important for determining when 
fungicide(s) and herbicide(s) should be applied.

Some canopy and ear traits are associated with higher 
levels of FHB (Jones et al., 2018). Flag leaf length and the 
number of tillers were the most significant canopy traits, 
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while spikelet density was the most significant ear trait. 
Unfortunately reducing flag leaf length, the number of 
tillers per plant or the density of the spikelets will almost 
certainly reduce yield in addition to reducing FHB severity.

3. �Pre-harvest strategies to reduce Fusarium 
head blight and toxin accumulation

Different strategies for reducing the impact of FHB have 
been proposed including planting more disease-tolerant 
cultivars, crop rotation, tillage practices, chemical and 
biological control and forecasting systems (Chulze et al., 
2015; Mesterházy et al., 2003; Wegulo et al., 2015). Different 
stages of the wheat chain and which strategies can be used 
in each one to reduce DON accumulation (Figure 1). During 
the FHB disease cycle, debris, fungal spore release, and 
weather at anthesis are critical variables for controlling the 
pathogen. The fungi overwinter on stubble and other plant 
debris, and under favourable conditions plant infection 
occurs during flowering. In some regions a wheat-maize 
rotation is practiced which increases the risk of FHB 
disease and DON accumulation (Vogelgsang et al., 2011). 
For integrated management of the disease the best chance 
for success comes from combining two or more strategies 
(Acs et al., 2018; McMullen et al., 2012; Mesterhazy et al., 
2018a,b; Wegulo et al., 2013).

Biological control of Fusarium head blight

FHB management by antagonist microorganisms is a very 
promising strategy. Biocontrol agents can be applied to 
stubble to reduce pathogen survival and to limit growth 
on residue of the previous crop (Palazzini et al., 2013; 
Wegulo et al., 2015). Biocontrol agents can interact with 
the pathogen either directly, e.g. parasitism or antibiosis, 
or indirectly, e.g. induction of resistance, competition, or 
plant growth promotion (Legrand et al., 2017). Multiple 
antagonist microorganisms are available and can control 
FHB pathogens both in vivo and in vitro (Table 2). 
Successful antagonism in vitro, however, is not always a 
good predictor of successful in vivo activity (Whitaker 
and Bakker, 2019). Combination applications of chemical 
controls with biological controls may be possible, but the 
data to date are relatively limited (Palazzini et al., 2018a).

Reduction of disease severity and the level of DON 
contamination are both important. Greenhouse 
applications often are more effective than field applications. 
Experimental conditions vary considerably and direct 
comparisons of results from different studies usually cannot 
be made. Effects may be measured in terms of reduction 
of fungal growth/sporulation, toxin production or disease 
severity. The potential use of Cryptococcus (Schisler et al., 
2011) may encounter regulatory concerns over the ability 
of some strains of species in this genus to cause human 
and animal disease. Work on biocontrol of F. graminearum 
with RNAi (Machado et al., 2018; Yu et al., 2018) is still 
in preliminary stages. Since 2002, a number very different 
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Figure 1. Management to reduce the deoxynivalenol accumulation in wheat.
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viruses – dsRNA (Chu et al., 2002; Li et al., 2019; Wang et 
al., 2013; Yu et al., 2009), negative strand RNA (Wang et al., 
2018), and positive single-stranded RNA (Chen et al., 2016) 
viruses – have been described in F. graminearum. In general 
work with these viruses has not gone very far beyond their 
description, and infected fungal strains often have few or 
no morphological differences from the wild type strains (Li 
et al., 2016). Some viruses, however, are reported to cause 
major changes in internal fungal metabolism (Bormann et 
al., 2018; Cho et al., 2012; Yu et al., 2016) and/or to reduce 
pathogenicity (Chu et al., 2002; Darissa et al., 2012; Tóth et 
al., 2005). These mycoviruses appear to have potential for 
biocontrol of F. graminearum, but more work appears is 
needed to develop these viruses as biological control agents.

Chemical control of Fusarium head blight

Chemical control, i.e. fungicides, is an available strategy to 
reduce the risk of FHB and can effectively reduce disease 
severity and mycotoxin contamination in both naturally 
and artificially infected plants. Fungicide effectiveness 
depends on other agronomic practices, e.g. crop rotation, 
tillage, nitrogen fertilisation, seed treatment and resistant 
cultivars (Acs et al., 2018; Beyer et al., 2006; Edwards, 2004). 
Many fungicides have been used to reduce FHB, including 
triazoles, carbendazim, mancozeb, benomyl, prochloraz, 
propiconazole and triadiamenol. None of these chemicals, 
however, suffice by themselves to completely control FHB 
in wheat (Dweba et al., 2017; Spolti et al., 2013; Yuan and 
Zhou, 2005).

Fungicides, such as tebuconazole, metconazole and 
prothioconazole (Paul et al., 2008; Pirgozliev et al., 2002) 
currently provide the most effective control of FHB in 
wheat, but this control is not complete. Triazole fungicide 
application, usually tebuconazole or prothioconazole, 
can reduce FHB incidence, disease severity and DON 
accumulation. Application is most effective during anthesis, 
but application after or prior to anthesis also can reduce 
disease severity and DON accumulation (Paul et al., 2018). 
Tebuconazole, one of the most widely tested products, 
reduced FHB severity 25-77% and DON content 32-89% 
in field trials (Haidukowski et al., 2005; Paul et al., 2007). 
Prothioconazole is the most recently registered broad-
spectrum fungicide and can reduce FHB disease severity 39-
93% and DON accumulation 40-90% relative to untreated 
controls in field trials (Haidukowski et al., 2012; Mesterházy 
et al., 2003; Müllenborn et al., 2008; Paul et al., 2007, 2008). 
Triazole-based fungicides inhibit cytochrome P450 sterol 
14α-demethylase (also termed CYP51 and ERG11), an 
essential enzyme in fungi that is required for ergosterol 
biosynthesis. Ergosterol is an indispensable component 
of fungal cell membranes. Reduction of this enzyme’s 
activity reduces fungal membrane integrity and lowers 
strain viability (Becher et al., 2011). Different alleles of 
CYP51 differ in their sensitivity to seven different triazoles 
(Liu et al., 2011).

Repeated applications of the same fungicide to a field can 
lead to fungicide resistance in the pathogen population. 
Thus, the use of mixtures of multiple triazoles and/or 

Table 2. Biocontrol agents for reducing Fusarium head blight disease and deoxynivalenol (DON) production by Fusarium 
graminearum.

Biocontrol agent Experiment 
location

% Reduction Reference

Growth Sporulation Disease 
severity 

DON

Aureobasidium pullulans greenhouse – – 22 – Wachowska and Głowacka, 2014
Bacillus spp. in vitro 88 96 –1 100 Zhao et al., 2014
Bacillus velezensis field – – 25 51 Palazzini et al., 2018b
Clonostachys rosea greenhouse – – 46 33 Xue et al., 2014a,b
Cryptococcus aureus + Cryptococcus flavescens greenhouse – – 32 – Schisler et al., 2011
Paecilomyces spp. in vitro 62 – – – El-Hasan et al., 2018
Pseudomonas spp. greenhouse – – 25 or 50 – Schisler et al., 2006

field – – 46 or 63 –
Lysobacter greenhouse – – 80 – Jochum et al., 2006
Streptomyces albidoflavus greenhouse – – 40 60-100 Palazzini et al., 2007

field – – 30 25 Palazzini et al., 2018b
Trichoderma gamsii in vitro – – – 90 Matarese et al., 2012
Trichoderma spp. in vitro 72-84 – – – El-Hasan et al., 2018

1 No data.
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triazoles with strobilurins are recommended for more 
sustainable control (Gilbert and Haber, 2013; McMullen 
et al., 2008; Ramirez et al., 2004). Strobilurins inhibit 
growth of the fungus by blocking electron transport in 
the mitochondrial respiratory chain and thereby reduce 
aerobic respiration and energy production. Low doses of 
strobilurins or tebuconazole generally are ineffective in 
controlling FHB, and DON content may even increase 
relative to an untreated control (Pirgozliev et al., 2002; 
Ramirez et al., 2004; Simpson et al., 2001).

In China, FHB frequently occurs in the middle and lower 
reaches of the Yangtze River, the Huaihe River Valley, and the 
Eastern coastal region. More recently, disease incidence also 
has increased in the northern and western wheat growing 
areas. Benzimidazole fungicides, particularly carbendazim 
(MBC), have been applied regularly to control FHB for over 
30 years during wheat heading and flowering in areas with 
warm and moist weather. The effectiveness of MBC has 
been threatened by the emergence of resistant pathogen 
populations in the field. The frequency of MBC-resistant 
isolates in some regions of China increased gradually, with 
the efficacy of MBC against F. graminearum decreasing 
dramatically after 1998. The decrease in carbendazim 
efficacy paralleled the increased frequency of resistant 
strains in the population. A new fungicide, cyanoacrylate, 
also known as JS399, was developed by the Jiangsu 
Branch of National Pesticide Research & Development 
South Center (NPRDSC) of China. Both MBC-resistant 
and MBC-sensitive F. graminearum isolates can readily 
develop resistance to cyanoacrylate. Strains resistant to both 
fungicides are expected to emerge and potentially create 
major problems since both fungicides are used extensively 
in China (Chen and Zhou, 2009).

The selection and timing of fungicide application, the rate 
of application and the coverage of the spike (Mesterházy et 
al., 2003, 2011, 2018b) are all variables that can affect the 
amount of disease controlled. Although excessive fungicide 
use is regarded as toxic by the general public, mycotoxin 
contamination usually is more problematic for humans and 
domesticated animals than is fungicide overapplication. 
The maximum tolerable Daily Intake (MTDI) for the sum 
of DON, 3-ADON, 15-ADON and DON-3G in humans is 
1 μg/kg body weight/day (EFSA CONTAM Panel, 2017), 
while the MTDIs for the fungicides range from 18 to 40 
μg/kg body weight/day. Fungicides also degrade under 
field conditions within two weeks of application, while 
mycotoxins may persist for years and are stable to heat 
(Mesterházy et al., 2018a). DON contamination of grain 
can be reduced with the use of fungicides, but fungicides 
alone do not suffice to prevent FHB. Other factors that are 
important for the reduction of disease severity, incidence 
and DON accumulation include the aggressiveness of the 
infection in the field, weather, and the implementation of 
agronomic practices known to mitigate FHB.

Genetic crop resistance

Resistant cultivars are an important FHB management 
strategy. At least five types of resistance to FHB are 
known (Mesterházy, 1995): type I – resistant to pathogen 
penetration and the onset of disease; type II – resistant 
to spread of the pathogen in the plant once the disease is 
established; type III – resistant to infection of the grain; 
type IV – tolerance of the disease, i.e. infection occurs but 
grain yield is not reduced; and, type V – toxin degradation 
or inhibition of toxin activity. Bread wheat is generally less 
susceptible to FHB than durum wheat.

Wheat cultivars with different levels and mechanisms of 
resistance to FHB have been identified (Bai and Shaner, 
2004; Bainotti et al., 2017; Wegulo et al., 2013, 2015). 
Resistance to FHB is quantitative, and is controlled by 
multiple genes (loci) with individual alleles responsible 
for small levels of increased resistance. As the different 
resistance alleles usually must be incorporated individually 
from exotic backgrounds into commercial breeding lines, 
developing resistant varieties is a relatively slow process 
since rare recombination events must be selected to 
reduce linkage drag (Brar et al., 2019), and high levels of 
resistance have been difficult to obtain (Bai and Shaner, 
2004). Researchers have identified and mapped more than 
100 quantitative trait loci (QTLs) that are associated with 
resistance to FHB (Bai et al., 2018; Buerstmayr et al., 2009; 
Cainong et al., 2015; Cuthbert et al., 2007; Xue et al., 2010). 
The pathogen population also contains considerable genetic 
variation to overcome host resistance (Voss et al., 2010), and 
managing the disease solely through resistant germplasm 
seems unlikely in the near future.

Amongst the 100 reported QTLs for FHB resistance, 
22 QTL regions on 16 wheat chromosomes have been 
characterised in more detail. QTLs associated with both 
reduced FHB severity and lower DON content include: 
Fhb1 (chromosome 3BS), Qfhs.nau-2DL (2DL), Qfhs.ifa-
5A (5A), and Fhb7AC (7A) (Buerstmayr and Lemmens, 
2015). Fhb1 is derived from the Sumai-3 Chinese wheat 
cultivar and is, so far, the most important source of FHB 
resistance. Map-based cloning to identify candidate genes in 
the Fhb1 region associated a pore-forming toxin-like gene 
with FHB resistance (Rawat et al., 2016), and suggested a 
resistance mechanism involving fungal cell wall interactions. 
This QTL has been incorporated as a resistance source 
into multiple cultivars and can explain up to 60% of the 
phenotypic variation for type II FHB resistance (Buerstmayr 
et al., 2002). FHB resistant cultivars and breeding lines, 
including Sumai-3, accumulate very low levels of DON (<2 
mg/kg) and have fewer than 10% infected spikelets (Bai et 
al., 2001). Incorporation of QTLs into commercial lines 
can be even more difficult as gene pyramiding usually is 
required for an effective level of resistance to be obtained 
and both doubled haploids and molecular mapping with 
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linked markers may be required to select genetic material 
with commercial potential (Da Silva et al., 2019).

FHB disease severity was reduced 64-74% in transgenic 
wheat expressing a barley UDP-glucosyltransferase 
(HvUGT13248) (Li et al., 2015b). The transformation of 
DON to the less toxic DON-3G was 24% more efficient 
in the transgenic plants than in the non-transformed 
controls. Plant height of both transformed and non-
transformed plants was similar and taken as evidence 
that expression of the heterologous enzyme did not alter 
phenotypic characters. Thus, converting DON to DON-
3G detoxifies DON in planta and reduces FHB disease 
severity (Li et al., 2015b). DON-3G is less toxic in planta, 
but can be hydrolysed to release DON during digestion 
or food processing. The released DON molecules can be 
distributed, metabolised and excreted in the same manner 
as DON molecules that were never incorporated into a 
DON-3G intermediate. Although toxicity data for DON-
3G is limited and in vivo data on chronic toxicity are not 
available, the EFSA CONTAM Panel determined that DON-
3G could be associated with acute and chronic adverse 
health effects similar to those associated with DON (EFSA 
CONTAM Panel, 2017).

Agricultural practices

The implementation of good agricultural practices is critical 
for effective control of FHB. Crop rotation and management 
of infected residue in the field may reduce FHB severity 
and DON contamination by up to 30%. F. graminearum 
can persist as a saprophyte in the field between crops on 
maize and soybean plant residues. Thus, both crop rotation 
and tillage can be important in reducing the amount of 
inoculum (McMullen et al., 2012).

Tillage buries infested plant residues below the soil surface, 
and prevents the formation of perithecia and ascospores, 
which require light (Leplat et al., 2012). Reducing the 
number of ascospores present reduces the inoculum 
available to infect wheat plants when they are susceptible 
to infection. Perithecia and ascospores can develop more 
easily on the above ground residue found in fields managed 
following no-till practices. While no-till cultivation of wheat 
has many advantages, FHB can increase in no-till fields 
(Blandino et al., 2010; Duveiller et al., 2014; Klem et al., 
2007; Leplat et al., 2012). Ploughing, when combined with a 
resistant wheat cultivar and fungicide application reduced 
DON contamination by 94% in comparison to direct sowing 
of a susceptible wheat cultivar and no fungicide application 
(Blandino et al., 2012).

Good agricultural practices for reducing FHB should 
include the use of fertilisers and herbicides. FHB severity 
and/or DON accumulation increase in grain as nitrogen 
input increases (Heier et al., 2005; Lemmens et al., 2004). 

The impact of glyphosate applications on FHB has not been 
consistent. In minimum-till wheat fields in Canada, the FHB 
index was higher in fields previously treated with glyphosate 
(Fernandez et al., 2009a). In another study (Bérubé et al., 
2012), glyphosate applied to a soybean crop during the year 
preceding the wheat crop did not have any effect on the FHB 
index or DON content. Ryegrass is a widespread weed in 
wheat-growing regions of Brazil, and glyphosate-resistant 
ryegrass is common in areas where glyphosate has been 
applied to agriculturally important crops (Machado et al., 
2015). The glyphosate-resistant ryegrass could increase 
FHB in wheat by serving as a reservoir for increased fungal 
inoculum during the growing season.

Both chemical and biological seed treatments are available 
to control seedling blight and to protect wheat seeds and 
seedlings against seed- or soil-borne pathogens (Dal Bello 
et al., 2002; Khan et al., 2006; Schaafsma and Tamburic-
Ilincic, 2005). The role of these treatments in reducing 
FHB or DON contamination, which are problems in adult 
plants, is not clear. F. graminearum inoculum can be found 
in seeds and soil and the fungus can grow systemically 
within the plant (Moretti et al., 2014). Treating seeds 
with commercial fungicides is not sufficient to prevent 
plant infection, since infection also can occur at other 
stages of growth (Fernandez et al., 2009b). Although seed 
treatments may not prevent infection, treatment with 
chitosan (Bhaskara Reddy et al., 1999) may induce the 
seedlings to accumulate additional phenolic compounds 
and lignin that increase their resistance to disease. Planting 
fungicide-treated seeds improves emergence and tillering, 
which increases plant canopy density as the crop grows and 
matures. This increase in canopy density favoured increased 
FHB, but did not alter the amount of DON accumulated 
(Schaafsma and Tamburic-Ilinic, 2005). It is possible for F. 
graminearum to colonise parts of the plant other than the 
heads and the grain, e.g. leaves and stems (Moretti et al., 
2014). These plant parts may be used for animal feed and 
provide an alternate route for the introduction of DON, 
ZEA and related toxins into the diets of these animals. Thus, 
further work to understand where and how F. graminearum 
colonises these portions of the plants is warranted, with 
the role of seed treatments in reducing or delaying such 
colonisation of particular interest.

Predictive models

Forecasting systems (DeWolf and Paul, 2014; Prandini et 
al., 2009) play a key role in the practical management of 
FHB since they allow near-real time estimation of FHB 
disease risks during the growing season. Models have been 
developed for Argentina (Moschini and Fortugno, 1996; 
Moschini et al., 2013), Belgium (Detrixhe et al., 2003), 
Brazil (Del Ponte et al., 2005), Canada (Hooker et al., 2002), 
Italy (Rossi et al., 2003, 2012), the Netherlands (Franz et 
al., 2009) and the United States (DeWolf et al., 2003), with 
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some more focused on FHB and FHB severity and others on 
toxin accumulation. In the United States, farmers can obtain 
real-time estimates of predicted disease severity on line 
(http://www.wheatscab.psu.edu/) based on a combination 
of flowering status, predicted weather and the resistance 
of the planted variety. Such estimates can be used to help 
determine whether fungicide applications are warranted, 
but cannot be used as a sole guide since chemical control 
is most effective if applied prior to flowering and most 
models rely on weather at the time of flowering for estimates 
of disease severity (De Wolf and Paul, 2014; Moschini et 
al., 2013; Rossi et al., 2012). The models also assume a 
typical harvest date for a region, although extended delays 
in harvesting can increase contamination by DON or ZEA 
10-25 fold (Edwards and Jennings, 2018).

FHB is well suited for risk assessment modelling because 
of the severity of the epidemics, the losses that result from 
mycotoxin contamination, and the relatively short time 
for pathogen sporulation, inoculum dispersal, and host 
infection (DeWolf et al., 2003; Shah et al., 2019). Models 
often focus on weather forecasts and the susceptibility of the 
planted cultivar. Modelling mycotoxin production is more 
difficult than is modelling disease incidence and severity 
since toxin production is affected by additional factors, 
e.g. variation in the capacity of different strains to produce 
toxins, competition with other microbes in the plant, and 
effects of fungicides on toxin biosynthesis (Landschoot 
et al., 2013; Ramirez et al., 2004; Xu et al., 2007). Most of 
existing models are empirical in nature, as the fundamental 
factors connecting disease progression and toxin production 
to the environment are not well understood. Thus, the 
models quantify the impact of readily-obtained practical 
variables on DON accumulation at harvest, most commonly 
through the use of multiple regression.

Existing forecasting systems are based primarily on weather 
data, e.g. temperature, rainfall and moisture, and have 
been developed for application in particular geographic 
regions, usually where they were developed. In Argentina, 
the Predictive Index (PI%) of Moschini and Fortugno (1996) 
estimates mean head blight incidence from temperature 
(maximum and minimum daily temperature) and moisture 
variables beginning eight days before heading and ending 
when 530 degree days have been accumulated, a period 
viewed as the susceptible period for infection. Since 2005-
2006 wheat growing season, a system for assessing FHB risk 
has been functioning in the Pampas region of Argentina 
(Moschini et al., 2013). The system incorporates daily 
meteorological data from 45 weather stations and short 
range weather forecasts into predictive FHB models to 
generate comments and maps showing the potential risk 
of an FHB epidemic (climayagua.inta.gob.ar).

In the United States, the Fusarium Risk Assessment Tool 
(www.wheatscab.psu.edu/) estimates the risk of an FHB 

epidemic with more than 10% field severity with weather 
variables observed 15 days prior to flowering. The goal of 
this tool is to help growers in all US states where wheat and 
barley are grown assess the risk of FHB in their area and 
then apply the best management practices to suppress the 
disease. FHB risk maps are posted daily, from the beginning 
of winter wheat flowering until the end of the flowering 
period for spring wheat. The models from this web site are 
correct 70-80% of the time.

In Canada, models that predict both FHB severity and 
DON accumulation risks have been developed. FHB risk 
maps for the provinces of Saskatchewan and Manitoba 
are available and based on weather data prior to flowering 
(https://www.gov.mb.ca/agriculture/crops/plant-diseases/
fhb-risk-forecast-wheat.html). Unfortunately, the models 
and disease descriptors are different in each province. 
Farmers are encouraged to use these risk maps (www.gov.
mb.ca/agriculture/crops/plant-diseases/fhb-risk-forecast-
wheat.html; http://www.saskwheat.ca/producer-info/
fusarium-risk-assessment-map) as part of an integrated 
approach to make management decisions about FHB. 
DONcast® is a commercially available forecasting system 
that enables farmers to predict DON accumulation in 
wheat at harvest. This tool was developed in Canada by 
Weather Innovations Consulting LP (2018) and utilises 
actual, forecasted and historical weather data together 
with field-specific agronomic data, such as cultivar, crop 
rotation and tillage to predict with 80-85% accuracy whether 
the DON accumulation at harvest will be above or below 
1 mg/kg (Giroux et al., 2016). This model also has been 
tested in Uruguay and France, where its accuracy, 60-80%, 
is somewhat lower than what it was in Canada (Schaafsma 
and Hooker, 2005).

In Italy, a mechanistic model that relies on weather data 
and wheat growth stages is used to predict both FHB 
risk and DON contamination. The model produces two 
indices: one for the risk of FHB on wheat and the other for 
mycotoxin accumulation. Model validations were based on 
data collected at several locations in northern Italy and gave 
satisfactory results since the indices calculated with the 
model coincided with those obtained from the fields (disease 
symptoms, kernel infection and mycotoxin concentration 
in the kernel samples) (Rossi et al., 2003). Mechanistic 
models should work irrespective of the geographic area 
in which they were developed, while empiric models rely 
more on local conditions (Camardo Leggieri et al., 2013). 
Thus, mechanistic models can be core components of a 
generalised Decision Support System (Rossi et al., 2012).

Climate change and Fusarium head blight

FHB is a weather-dependent disease, so climate change may 
alter both when and where the disease occurs. Continued 
anticipated growth in CO2 emissions are projected to 
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increase the mean global surface temperature in 2100 
by 3.7-4.8 °C compared to pre-industrial levels (IPCC, 
2013). Consequently, seasonal and regional climates are 
expected to become more variable and extreme in terms 
of temperature and precipitation (IPCC, 2007, 2012).

Battilani et al. (2016) and Van der Fels-Klerx et al. (2016) 
examined predicted changes resulting from increased 
temperatures of 2 and 5 °C. Earlier flowering of wheat, 
changes in pest pressure, and susceptibility of wheat 
grown in broader geographic regions to FHB and DON 
contamination all could occur. If elevated CO2 levels and 
drought/flooding weather events also were included, then 
the impacts could be even more severe.

Increases in CO2 levels alone could change fungal growth 
and host-pathogen interactions. In general, fungi are 
tolerant to elevated CO2 stresses, but when this stress is 
combined with other environmental stresses their tolerance 
to increased CO2 levels decreases (Magan and Aldred, 
2007). Three-way interactions between elevated CO2 (350-
400 vs 650-1,200 ppm), temperature increases (2-5 °C) and 
drought stress, all altered the growth of F. graminearum. 
Changing aw × temperature altered the ratio of DON, 
3-ADON and 15-ADON, produced both in vitro and in 
grain (Medina et al., 2017).

Better understanding and modelling of the impact of 
climate change requires additional experimental data. 
Increasing temperature results in both increased disease 
incidence and increased DON accumulation, and rank 
correlations between ‘normal’ and ‘warm’ treatments were 
weak suggesting that selection for lines that respond well 
to a warmer environment need to be conducted in the 
warmer environment (Tessmann and Van Sanford (2018). 
When both the fungus and the wheat plants were exposed 
to 390 and 780 ppm CO2 (Vary et al., 2015), there was 
more disease development at the higher CO2 level. The 
highest FHB disease levels and associated yield losses 
occurred when elevated CO2-acclimated F. graminearum 
was inoculated onto elevated CO2-acclimated wheat. Thus, 
climate change could potentially expand the geographic 
range over which FHB occurs and increase losses due to 
greater disease severity and toxin contamination.

4. Post-harvest storage and decontamination

Storage

FHB as a disease is a pre-harvest risk, but fungal spoilage 
and contamination of grains with mycotoxins, such as 
DON and ZEA may continue during storage if moisture, 
temperature and aeration are suitable for fungal growth and 
toxin production (Magan et al., 2010). Both temperature 
and water activity (aw) affect the accumulation of DON and 
ZEA (Garcia-Celá et al., 2018a). Typically, the maximum 

amount of ZEA, 1,600 μg/kg, is detected at 25 °C and 0.93 
aw with production at the same aw at 15 °C (550 μg/kg) 
only about a third of that at the higher temperature. The 
maximum amount of DON, 806 μg/kg, was detected at 
20 °C and 0.95 aw with almost the same production (720 
μg/kg) at the same aw at 15 °C (Garcia-Celá et al., 2018a).

Adequate storage requires drying the grain to 12-15.5% 
moisture content, depending on the storage temperature, 
and then maintaining the grain under these conditions until 
used (Bala, 2016). The most important control measures 
to adopt during storage include: (1) removal of Fusarium-
damaged grains during harvest by using combine settings 
with an appropriate fan speed to exhaust the ‘tombstone’ 
kernels; (2) prompt drying of grain to a storable moisture 
content; and (3) adequate storage that includes moisture 
control and control of insects and other pests (Magan et 
al., 2014).

Dry matter loss by grain is used as a proxy for grain quality. 
Fungal growth can occur at 20-25 °C and 0.90 aw, i.e. 19-21% 
moisture content, in both wheat and barley with dry matter 
loss of 0.22-0.44% (Magan et al., 2010). The respiration rate 
of stored wheat can be used to estimate dry matter loss 
and ZEA contamination. Dry matter losses of <1.0% have 
a low risk of either ZEA or DON contamination exceeding 
EU legislative limits (Garcia-Celá et al., 2018b; Mylona et 
al., 2012).

Managing storage conditions is very important, but 
fungal growth and mycotoxin production in storage 
usually originate from infections that initially occur in 
the field. Thus, the best strategy for reducing Fusarium 
and mycotoxin contamination in storage is to follow good 
agricultural practices during pre-harvest crop growth and 
harvest, and minimise the fungal infection that occurs 
before the grain is placed in storage.

Ozonation

Ozone, O3, has been widely used in the food industry as an 
antimicrobial agent. Ozone gas is a strong oxidising reagent 
that can oxidise double bonds in organic compounds and 
inactivate microorganisms by reacting with intracellular 
enzymes, nuclear material, cell walls and membranes, spore 
coats, and viral capsids (Khadre et al., 2001). Ozone can 
be used to decontaminate mycotoxins in cereals (Chen et 
al., 2014; Qi et al., 2016; Savi et al., 2014), and has several 
advantages over traditional chemical agents, including: (1) 
rapid decomposition (half-life of 20-50 min) to molecular 
oxygen; (2) no residue remains after treatment; (3) on-
site generation; and (4) no hazardous chemical storage or 
disposal (Sandhu et al., 2011). Ozone also can be used to 
decontaminate produce, equipment, food contact surfaces, 
and processing environment (Khadre et al., 2001). Wheat 
contaminated with DON can be treated with O3 to reduce 
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DON levels (Li et al., 2015a; Sun et al., 2016; Wang et al., 
2016).

Ozone may attack DON at the C9-10 double bond leading to 
its breakdown to simpler acids, aldehydes, ketones and CO2 
(Young et al., 2006). Complete degradation of DON can 
occur with saturated aqueous ozone (~25 ppm), but with 
dry ozone no reduction in DON was seen in wheat kernels. 
Thus, moisture is essential for the reaction between DON 
and ozone to occur. pH also is an important factor. At pH 
4-6 DON was degraded readily, while at pH 7-9 there was 
little or no degradation. Fungal growth, germination and 
sporulation all can be limited or completely inhibited by 
ozone, thus preventing additional toxin biosynthesis after 
treatment (Kottapalli et al., 2005; Savi et al., 2014; Wu et al., 
2006). The efficacy of decontamination or growth limitation 
depends on a myriad of factors including, but not limited 
to: O3 concentration, exposure time, substrate, moisture 
content, pH, mode of application (gaseous or aqueous), 
and the fungal species present and their growth stage(s) 
(Trombete et al., 2017; Young et al., 2006). In general DON 
degradation increases with O3 concentration and processing 
time (Li et al., 2015a). Grain with higher moisture content 
is easier to decontaminate with ozone than is grain with a 
low moisture content (Young et al., 2006).

Ozone is GRAS (Generally Recognized as Safe) for the 
treatment, storage and processing of food and water (FDA, 
2001). Moreover, ozone is considered a ‘green technology’, 
since its production is environmental friendly and it leaves 
no residues in the food. Thus, ozonation could have a role 
as a sanitising agent for organic food production (Trombete 
et al., 2017). Treatment of wheat grain and flour with O3 
may even improve bread or noodle quality (Li et al., 2012, 
2015a; Sandhu et al., 2011; Savi et al., 2014). In particular, 
flour obtained from wheat treated with ozone had higher 
tenacity and whiteness, which improved the quality of the 
flour (Wang et al., 2016).

Ozonation also can degrade ZEA in maize and water. Again, 
toxin degradation increased with O3 concentration and 
treatment time (Dudziak, 2012; Qi et al., 2016). In wheat 
bran, over half of the ZEA (52%) was degraded after a 
15-min exposure to ozone, a rate nearly twice that of the 
degradation of DON (Santos Alexandre et al., 2018). The 
quality of the wheat bran was not affected by the treatment. 
In wheat used for malting, up to 49% of the ZEA present 
could be degraded following exposure to 20 mg/l O3 for 
40 to 130 min (Reinholds et al., 2016). More work on ZEA 
degradation by ozone is needed, but clearly ozonation has 
the potential to significantly reduce both ZEA and DON 
in contaminated wheat.

5. Post-harvest grain processing

Post-harvest, wheat is subjected to multiple processes 
including: cleaning, aeration, debranning and milling that 
can redistribute the mycotoxins present in the grain, with 
a comprehensive review of the distribution of mycotoxins 
through the process recently published (Schaarschmidt 
and Fauhl-Hassek, 2018). Cleaning, sorting and milling of 
wheat can reduce the mycotoxin content by 57% in finished 
flour (Tibola et al., 2016). In the cleaning process, kernels 
with extensive fungal growth, broken kernels, dust and fine 
materials are removed. During the debranning process, 
outer layers of the wheat grains are removed prior to the 
milling process. Debranning can increase the milling 
performance of wheat and the degree of refinement of flour 
and semolina (Cheli et al., 2013). Fermentation of grains 
as part of the malting process with lactic acid bacteria can 
reduce contamination with DON by 34% and ZEA by 23% 
as well as increasing germination by 8-9% (Juodeikiene et 
al., 2018).

In the milling process, mycotoxins may be redistributed 
and concentrated in particular milling fractions. Mycotoxin 
levels generally are lower in the inner fractions, e.g. flour 
and semolina, commonly used for human food, and higher 
in the outer fractions, e.g. bran, flour shorts, screenings and 
middlings, used for animal feed (Cheli et al., 2013). Outer 
fractions may, however, be used for some human foods due 
to nutritional (essential amino acids, vitamins, antioxidants 
and mineral content) and physiological benefits such as 
improved large bowel function, slowed digestion, better 
absorption of carbohydrate and fat, and reduced risks for 
some diseases, e.g. obesity, cardiovascular diseases, type 2 
diabetes, colon diverticulosis and gastro-intestinal cancers 
(Hemdane et al., 2016).

DON contamination in finished flour is significantly lower 
than in milled wheat; however, there are no significant 
differences in DON levels between milled wheat and bran. 
DON-3G distribution in the different milling fractions 
is similar to that of DON, but DON-3G levels in bran 
were higher than those in flour (Kostelanska et al., 2011; 
Schwake-Anduschus et al., 2015; Zhang and Wang, 2015). 
The distribution of ZEA and ZEA-glucosides follows that 
of DON and DON-3G (Edwards et al., 2011; Schwake-
Anduschus et al., 2015; Zheng et al., 2014).

Durum wheat has some different processing considerations 
since most of this wheat goes to pasta and noodles rather 
than to flour for bread. Relative to the initial intact grain, 
DON contamination levels in processed clean wheat, peeled 
wheat and semolina were 30, 66 and 63%, respectively. DON 
levels in the by-products increase about 10-fold for foliage 
waste and ranged from 2-5 higher than the unprocessed 
grain for the three successive dehulling steps (Brera et al., 
2013). Although the inner structures of a wheat kernel are 
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contaminated at lower levels than the outer portions, even 
the inner structures can be contaminated by trichothecene-
producing Fusarium strains. Thus, none of the structures 
within the kernel effectively block fungal colonisation. 
Semolina is an excellent substrate for trichothecene 
biosynthesis, but the bran contains biochemical inhibitors 
that can limit mycotoxin synthesis (Pinson-Gadais et al., 
2007).

Durum wheat also can be processed by pearling. This 
process removes the outer layers of wheat kernels by 
abrasion and increases the yield of semolina. Spaghetti 
made with semolina from pearled wheat is less brown and 
brighter in colour, and the texture of the cooked spaghetti 
is not changed (De Brier et al., 2015; Dexter et al., 1994). 
Pearling also was more efficient than milling in reducing 
Fusarium and DON content in the outer layers of the grain, 
which were the most contaminated. A 10% reduction in 
grain tissue through pearling could lead to a 45% reduction 
in DON in the final product (Rios et al., 2009).

Food processing procedures, such as bread-making and 
pasta production, also can affect levels of DON and ZEA. 
At both pilot and industrial scales, modifying the baking 
step (time/temperature ranges), even within the acceptable 
technological range, was crucial for minimising DON in 
the final product (Bergamini et al., 2010). Bread-making 
includes both fermentation and baking steps. DON levels 
can be altered, either reduced or increased, during dough 
fermentation (Vidal et al., 2014). Fermentations at high 
temperatures that avoided enzyme use reduced DON levels 
at the end of the fermentation, while fermentations that 
include enzymes, especially xylanase and α-amylase, could 
increase DON levels, probably due to enzymatic release of 
DON bound to polysaccharides (starch and arabinoxylans) 
and from DON-3G (Vidal et al., 2016a).

Studies of the effects of bread-making on DON-3G content 
have not been consistent. In one report (Kostelanska et 
al., 2011), there were no substantial changes in DON-3G 
levels during the dough preparation process, i.e. kneading, 
fermentation, and proofing. If bakery improver enzyme 
mixtures were included, however, an increase of up to 145% 
of conjugated DON-3G occurred in the fermented dough 
(Kostelanska et al., 2011), although there was an overall 
decrease in DON-3G by the time the baking process was 
complete. In a second report (Vidal et al., 2014), the DON-
3G level increased during both kneading and fermentation, 
but the DON level decreased. This result could occur if 
the DON is glycosylated during the process. In a third 
report (Vidal et al., 2017), the presence of α-amylase and 
xylanase did not affect the DON-3G concentration during 
fermentation. In a fourth report (Vidal et al., 2016b), the 
DON-3G level decreased by the end of the fermentation 
stage regardless of either the fermentation temperature 

or the addition of exogenous enzymes. Clearly, additional 
work is needed in this area.

Reports of the effects of baking on DON levels also have 
been inconsistent. DON-3G levels can be reduced during 
baking (Simsek et al., 2012). If the initial level of DON is 
high, then the amount of reduction in DON level also is 
high (Bergamini et al., 2010). Changes in DON content 
during baking can be affected by: (1) the scale at which 
studies are conducted; (2) the size of the baked items; (3) the 
time of baking; and (4) the addition of exogenous enzymes, 
e.g. xylanase and α-amylase (Vidal et al., 2016c). Thermal 
degradation products derived from DON-3G have been 
found in bread (Kostelanska et al., 2011).

Fermentation and baking reduced ZEA levels by 12% and 
80%, respectively. Baking was the most important step in 
ZEA reduction since this toxin is thermosensitive under 
the second set of conditions. In pasta production, 10% of 
the ZEA present was detected in the water used for boiling. 
Less mycotoxin reduction occurred in pasta production 
than in baking, probably due to the lower temperature used 
in pasta cooking (85-98 °C) relative to the baked products 
(220 °C) (Keller Bol et al., 2016). Bullerman and Bianchini 
(2007) reported that temperatures greater than 150 °C 
are needed for good reduction of ZEA during extrusion 
processing of food and Ryu et al. (2003) found that the 
greatest losses occurred above 175 °C.

Relative to semolina, DON was reduced in dry and cooked 
pasta by 8 and 41%, respectively (Brera et al., 2013). The 
larger reduction for cooked pasta was attributed to DON’s 
solubility in water. These results are consistent with 
previous results (Visconti et al., 2004) in which the highest 
levels of DON were found in the bran fraction, and DON 
levels dropped by 23% in cleaned wheat, 63% in semolina, 
67% in spaghetti, and 80% in cooked spaghetti. Decline of 
DON levels in the spaghetti after cooking was attributed 
to DON leaching into the cooking water.

DON was stable during the kneading and drying steps 
in spaghetti production (Vidal et al., 2016c), but was 
consistently reduced by >40% during cooking. The DON 
that leached into the boiling water was not degraded and 
the amount of DON that leached into the water depended 
on the cooking time, with the amount leached increasing 
as cooking time increased. These results suggest that the 
exposure to DON in pasta is minimised if the water in 
which the pasta is cooked is discarded and not retained 
for use in a soup. DON-3G also is stable throughout the 
pasta making process and can be leached into the cooking 
water (Vidal et al., 2016b; Zhang and Wang, 2015; Figure 2).
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6. Conclusions

Numerous strategies are available to reduce Fusarium head 
blight and mycotoxin accumulation in the wheat food chain. 
Among the points to consider are:
•	 Pre-harvest

▶	 Continued routine monitoring of biodiversity in the 
pathogen populations is needed to estimate the risks 
of mycotoxin contamination and of resistance to 
fungicides.

▶	 Changes in the phenology (e.g. early anthesis) of wheat 
cultivars under some climate change scenarios could 
significantly increase FHB and DON accumulation.

▶	 Relative merits of chemical and biological controls 
should be determined to minimise consumer exposure 
to fungicides and to ensure an environmentally 
friendly approach.

▶	 A combination of moderately resistant cultivars with 
fungicide use as needed is currently the best defence 
against this disease.

▶	 Forecasting models are important tools to support 
monitoring and predictions of disease damage and 
mycotoxin contamination during crop growth and 
at harvest.

▶	 Survival of pathogen on crop residue should be 
considered a critical control stage.

•	 Post-harvest
▶	 Drying, cleaning, segregation and storage of grain 

under controlled conditions is critical to ensure safety 
and quality of final products.

▶	 Ozonation is a promising strategy for remediating 
contaminated materials, but the presence and toxicity 
of residues from incomplete mycotoxin degradation 
need further study.

•	 Processing
▶	 Studies of the effects of glycosylated toxins on human 

and animal health are needed to determine what role 
monitoring for the presence of these compounds 
in grain should play and whether they warrant 
regulation.

▶	 Further studies of processing are needed to determine 
the stability, biodegradation and modification of 
mycotoxins at pilot and industrial scales.
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