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1.1  �Introduction

Enzymes are proteins that act as highly efficient catalysts in biochemical reactions. 
This catalytic capability is what makes enzymes unique and they work efficiently, 
rapidly, and are biodegradable. The use of enzymes frequently results in many ben-
efits that cannot be obtained with traditional chemical treatments. These often 
include higher product quality and lower manufacturing cost, less waste, and reduced 
energy consumption. Industrial enzymes represent the heart of biotechnology 
processes and biotechnology (Whitehurst and van Oort 2009; Sabalza et al. 2014)
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Proteases are enzymes that hydrolyze peptide bonds of proteins and, from the 
point of view of industry, are the most important type of enzymes because they 
represent ca. 60% of all commercialized enzymes in the world (Feijoo-Siota and 
Villa 2011). These enzymes polarize the carbonyl group of the substrate peptide 
bond by stabilizing the oxygen in an oxyanion hole, which makes the carbon atom 
more vulnerable for attack by an activated nucleophile. Proteases can do this in four 
major ways, which gives the names to four catalytic classes: cysteine proteases, 
serine proteases, metalloproteases, and aspartic proteases (Dunn 2002).

These enzymes are widely distributed in all plants, animals, and microorgan-
isms. Proteases account for approximately 2% of the human genome and 1–5% of 
genomes of infectious organisms (Puente et al. 2003). In plants, the Arabidopsis 
genome encodes over 800 proteases, which are distributed over almost 60 families, 
which belong to 30 different clans (van der Hoorn 2008). The distribution and the 
family size are well conserved within the plant kingdom because poplar and rice 
have similar distributions (García-Lorenzo et al. 2006).

1.2  �Classification of Proteases

1.2.1  �Catalyzed Reaction

This is the main property established by the Enzyme Nomenclature of the Committee 
of the International Union of Biochemistry and Molecular Biology (ENCIUBMB) 
that classifies these enzymes within group 3 (hydrolases) and subgroup 4 (hydro-
lases of peptide bonds). Subclass 3.4 may be in turn subdivided into endo- or exo-
peptidases (amino-terminal or carboxy-terminal) depending on their ability to 
hydrolyze internal peptide bonds or bonds located at the ends; endopeptidases are 
by far more important from the industrial point of view (Barrett 1994).

1.2.2  �Nature of the Active Site

Hartley set a classification of proteases according to their catalytic site (Hartley 
1960), in which proteases were divided into six mechanistic classes: serine endo-
peptidases (EC 3.4.21); cysteine endopeptidases, formerly denoted as thiol prote-
ases (EC 3.4.22); aspartic endopeptidases, first known as acid proteases; glutamic 
endopeptidases (EC 3.4.23); metalloendopeptidases (EC 3.4.24); and threonine 
endopeptidases (EC 3.4.25), with a fifth group including peptidases with unidentified 
mode of action (EC 3.4.99).

Serine, threonine, and cysteine proteases are catalytically very different from 
aspartic and metalloproteases in that the nucleophile of catalytic site of the former 
group is part of an amino acid, whereas it is an activated water molecule for the last 
two types.
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1.2.3  �Structure-Based Evolutive Relationships

Rawlings and Barrett (1994) classified proteases according to their amino acidic 
sequence and relationships in families and clans. Proteases were placed within the 
same family if they shared sufficient sequence homology, and families believed to 
have a common ancestor placed within the same clan. The names of clans and fami-
lies in the MEROPS database are built on the letters S, C, T, A, G, M, and U, which 
refer to the catalytic types. However, some of the clans are mixed type and contain 
families with two or more catalytic types and designated with the letter “P.” This 
classification resulted in the creation of the MEROPS peptidase database, which is 
constantly revised: http://merops.sanger.ac.uk (Rawlings et al. 2010). The plant 
proteases most frequently used belong to the groups of cysteine, aspartic, and serine 
proteases (SPs).

1.3  �Plant Proteases

Plant proteases are involved in many aspects of plant physiology and development 
(van der Hoorn 2008). They play a pivotal role in processes such as protein turnover, 
degradation of misfolded proteins, senescence, and the ubiquitin/proteasome path-
way (Beers et  al. 2000). Proteases are also responsible for the posttranslational 
modification of proteins by limited proteolysis at highly specific sites (Schaller 
2004). They are involved in a great diversity of cellular processes, including photo-
inhibition in the chloroplast, defense mechanisms, programmed cell death, and 
photomorphogenesis in the developing seedling (Estelle 2001). Proteases are thus 
involved in all aspects of the plant life cycle ranging from mobilization of storage 
proteins during seed germination to the initiation of cell death and senescence 
programs (Schaller 2004).

1.3.1  �Plant Cysteine Proteases

Fourthly, Cysteine proteases (CPs) family are recognized until today in which the 
nucleophile is the sulfhydryl group of a cysteine residue. The catalytic mechanism is 
similar to that of serine-type peptidases in that the nucleophile and a proton donor/
general base are required, and the proton donor in all cysteine peptidases is a histidine 
residue as in the majority of the serine entered forms (Domsalla and Melzig 2008). 
Although there is evidence in some families that a third residue is required to orientate 
the imidazolium ring of the histidine, a role analogous to that of the essential aspar-
tate seen in some serine peptidases. There are a number of families in which only a 
catalytic dyad is necessary (Barrett et al. 1998).

1  An Overview of Plant Proteolytic Enzymes
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According to the MEROPS database, CPs are divided into ten clans: CA, CD, 
CE, CF, CH, CL, CM, CN, CO, and C-, and to date, plant CPs have been described 
as belonging to five of these clans (CA, CD, CF, CO, and CE). Most plant CPs 
belong to the C1 family, also known as the papain family (clan CA). A complete list 
of CPs may be found in the MEROPS database (Rawlings et al. 2010).

Plants offer an attractive alternative for the production of CPs as they occur natu-
rally in different tissues, in some cases in excessive amount (González-Rábade 
et al. 2011). CPs of the tropical plants Carica papaya (papain, chymopapain, caric-
ain, and glycyl endopeptidase), Ananas comosus (fruit bromelain, stem bromelain, 
ananain, and comosain), and Ficus glabrata (ficin) are of considerable commercial 
importance, due to their strong proteolytic activity against a broad range of protein 
substrates and because they are active over a broad range of pH and temperature 
(Feijoo-Siota and Villa 2011). CPs have been isolated from: PsCYP15A from pea 
roots (Vincent and Brewin 2000); GP2 and GP3 from ginger rhizomes (Kim et al. 
2007), from sweet potato (Ipomoea batatas) roots (Huang and McDonald 2009); 
FLCP-1 and FLCP-3 from Phaseolus leaves (Popovič et al. 2002); and bromelain 
(Rowan et al. 1990) and ananain (Lee et al. 1997) from stems. The most ubiquitous 
group are found in fruits, i.e., balansain I, macrodontain I in Bromeliaceae (Pardo 
et  al. 2000; López et  al. 2000), araujiain in Asclepiadaceae (Priolo et  al. 2000); 
papain, chymopapain, papaya glycyl endopeptidase, and caricain from C. papaya 
latex (Azarkan et al. 2003). Papain-like cysteine proteases are usually lysosomal 
(vacuolar) or secreted proteins (Dubey et al. 2007).

According to the review by González-Rábade et al. (2011), proteases like papain, 
bromelain, and ficin are employed in different industrial processes and medicines 
(Uhlig and Linsmaier-Bednar 1998). Some of these proteases are used in the food 
industry for cheese, brewing and beverage industries for the preparation of highly 
soluble and flavored protein hydrolysates (papain-like proteases), as a food comple-
ment (Kleef et al. 1996; La Valle et al. 2000; Losada Cosmes 1999) to soften meats 
and dehydrated eggs (Bailey and Light 1989; Lawrie 1985; Miller 1982), and for the 
production of emulsifiers, among other uses (Pardo et al. 2000). Uses in other indus-
tries include culture medium formulation (Headon and Walsh 1994), isolation of 
genetic material (Genelhu et  al. 1998), and the use of keratinases in the leather 
industry for dehairing and bating of hides to substitute toxic chemicals (Foroughi 
et al. 2006). Also, they are used in the production of essential amino acids such as 
lysine and for the prevention of clogging of wastewater systems (Rao et al. 1998). 
Proteases also have an important application in the pharmaceutical industry. Plant 
extracts with a high content of proteolytic enzymes have been used in traditional 
medicine for a long time. They have been used for the treatment of cancer (Batkin 
et al. 1988; Targoni et al. 1999), as antitumorals (Guimarães-Ferreira et al. 2007; 
Otsuki et  al. 2010), for digestion disorders (Kelly 1996; Mello et  al. 2008), and 
swelling and immune-modulation problems (Leipner et al. 2001; Lotti et al. 1993; 
Melis 1990; Otsuki et  al. 2010). A good example is bromelain, derived from 
pineapple, which has been shown to be capable of preventing edema, platelet aggre-
gation, and metastasis due to its capacity of modifying cell surface structures by 
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peptide cleavage. Salas et al. (2008) reviewed the pharmacological activity of plant 
cysteine proteases, emphasizing their role in mammalian wound healing, immuno-
modulation, digestive conditions, and neoplastic alterations.

1.3.2  �Plant Aspartic Proteases

Aspartic proteases (APs, EC 3.4.23) are a family of proteolytic enzymes widely 
distributed among living organisms and are found in vertebrates, plants, yeast, nem-
atodes, parasites, fungi, and viruses (Rawlings and Salvesen 2013). Aspartic prote-
ases differ from the serine and cysteine peptidases in the way that the nucleophile 
that attacks the scissile peptide bond is an activated water molecule rather than the 
nucleophilic side chain of an amino acid (Domsalla and Melzig 2008).

Plant APs have been characterized and purified from a variety of tissues such as 
seeds, flowers, and leaves: (1) seeds of Arabidopsis thaliana (Mutlu et al. 1999), 
rice (Asakura et al. 1997; Doi et al. 1980), barley (Kervinen et al. 1999; Runeberg-
Roos et al. 1991; Sarkkinen et al. 1992), hempseed (St. Angelo et al. 1969, 1970), 
cucumber, and squash (Polanowski et  al. 1985); (2) leaves of the tomato plant 
(Rodrigo et al. 1989); (3) leaves and tubers of the potato plant (Guevara et al. 2001, 
2004); (4) maize pollen (Radlowski et  al. 1996); and (5) flowers of thistle 
(Heimgartner et al. 1990; Verissimo et al. 1996), among others. Some of these APs, 
like the ones found in barley, resemble mammalian cathepsin D. It has been sug-
gested that plant APs are involved in the digestion of insects in carnivorous plants 
(Garcia-Martinez and Moreno 1986; Takahashi et al. 2009; Tökés et al. 1974), in the 
degradation of plant proteins in response to pathogens (Rodrigo et al. 1989, 1991), 
during development processes (Asakura et al. 1997; Runeberg-Roos et al. 1994), 
protein-storage processing mechanisms (Doi et al. 1980; Hiraiwa et al. 1997), stress 
responses (de Carvalho et  al. 2001; Guevara et  al. 1999, 2001), and senescence 
(Bhalerao et al. 2003; Buchanan-Wollaston 1997; Cordeiro et al. 1994; Lindholm 
et al. 2000; Panavas et al. 1999). These enzymes are distributed among families A1, 
A3, A11, and A12 of clan AA and family 22 of clan AD (Faro and Gal 2005; Mutlu 
et al. 1999; Rawlings et al. 2014; Simões and Faro 2004). The majority of plant APs 
have common characteristics as that of AP A1 family, are active at acidic pH, are 
specifically inhibited by pepstatin A, and have two aspartic acid residues responsible 
for the catalytic activity (Simões and Faro 2004).

Plant APs are classified into three categories: typical, nucellin-like, and atypical 
(Faro and Gal 2005). The swaposin domain is only present in typical plant APs 
inserted into the C-terminal domain as an extra region of approximately 100 amino 
acids known as “plant-specific insert” (PSI) (Simões and Faro 2004). The PSI 
domain has a high structural homology with saposin-like proteins (SAPLIPs), a 
large protein superfamily widely distributed from primitive eukaryotes to mamma-
lians (Bruhn 2005; Michalek and Leippe 2015). Individual SAPLIPs generally 
share little amino acid sequence identity. However, SAPLIP protein sequences 
include highly conserved cysteine residues that form disulfide bonds and give 
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SAPLIPs a stable structure; secondary protein structure consists mainly of α-helices 
joined by loops (Andreu et  al. 1999; Bruhn 2005; Munford et  al. 1995). The 
SAPLIPs or Sap domains may exist for itself independently as a functional unit or 
as a part of a multidomain protein; they are autonomous domains with a variety of 
different cellular functions, all of them associated with lipid interaction. SAPLIP 
activities are classified into three major groups: (1) membrane targeting by the 
SAPLIP domain; (2) presentation of lipids as substrate for an independent enzyme, 
either by extraction from the membrane or by disturbance of the well-packed lipid 
order; and (3) membrane permeabilization by perturbation owing to single mole-
cules or by pore formation of oligomeric proteins (Bruhn 2005). The SAPLIP fam-
ily includes saposins, which are lysosomal sphingolipid-activator proteins (O’Brien 
and Kishimoto 1991), NK-lysin, granulysin, surfactant protein B, amoebapores, 
domains of acid sphingomyelinase and acyloxyacyl hydrolase, and the PSI domain 
of plant APs (Munford et al. 1995; Stenger et al. 1998; Vaccaro et al. 1999).

The PSI domains of plant APs are named swaposins since they arise from the 
exchange (swap) of the N- and C-terminal portions of the saposin-like domain, 
where the C-terminal portion of one saposin is linked to the N-terminal portion of 
the other saposins (Simões and Faro 2004). This segment is usually removed during 
the proteolytic maturation of the heterodimeric typical plant APs (Davies 1990; 
Domingos et al. 2000; Faro and Gal 2005; Glathe et al. 1998; Mutlu et al. 1999; 
Ramalho-Santos et al. 1997; Törmäkangas et al. 2001; White et al. 1999). However, 
in monomeric typical plant APs, the PSI domain is present in the mature protein 
(Guevara et al. 2005; Mendieta et al. 2006). Solanum tuberosum APs 1 and 3 (StAPs 
1 and 3) are included into the group of monomeric typical plant APs (Guevara et al. 
1999, 2001, 2005).

All enzymes employed commercially in milk coagulation are APs, with acidic 
optima pH, and high levels of homology between their primary structures and simi-
larity between their catalytic mechanisms (Silva and Malcata 2005).

The most widely used AP is rennet, which has chymosin as its active component 
(Vioque et al. 2000). Rennet is obtained from the stomach of calves but it is costly 
and scarce. Most companies produce recombinant rennet of calf origin in different 
microbial hosts (Seker et al. 1999). Some plant APs have shown to possess similar 
characteristics to calf-derived rennet and hence have attracted attention in the food 
industry. In Portugal and some regions of Spain, the use of extracts from dried flow-
ers of C. cardunculus L. has been successfully maintained since ancient times for 
the production of many traditional varieties of sheep and goat cheeses, further 
strengthening the suitability of this rennet for the production of high-quality cheeses 
(Reis and Malcata 2011; Roseiro et  al. 2003a, b; Sousa and Malcata 2002). 
Therefore, over the last decades, much effort has been made in understanding the 
properties of this unique plant coagulant. Several authors have dedicated their 
research efforts to characterize the milk-clotting enzymes present in cardoon 
flowers, their role in the hydrolysis of caseins in vitro, and their effect in the prote-
olysis process during ripening (Agboola et al. 2004; Brodelius et al. 1995; Esteves 
et  al. 2001; Esteves et  al. 2003; Faro et  al. 1992; Ramalho-Santos et  al. 1996; 
Roseiro et al. 2003a, b; Silva et al. 2003; Silva and Xavier Malcata 1998; Silva and 

D. Sebastián et al.



7

Malcata 1999, 2000, 2005; Sousa and Malcata 1997, 1998, 2002). Due to the potential 
of these cardoon enzymes to serve as alternative rennets in larger-scale production 
processes, several strategies have also been undertaken in more recent years to 
either develop more standardized formulations of the native enzymes or explore 
their production in heterologous systems to generate synthetic versions of these 
proteases (Almeida and Simões 2018).

Several APs from Cynara sp. have been cloned and expressed successfully in 
bacterial and eukaryotic expression systems. The production by yeast of the cypro-
sin B (cynarase 3) has been patented (Planta et al. 2000). This was the first clotting 
protease of plant origin produced by fermentation technology (Sampaio et al. 2008). 
Recombinant cyprosin produces a proteolysis similar to that obtained with natural 
enzymes present in the crude extract from C. cardunculus (Fernández-Salguero 
et al. 2003).

In this regard, studies with APs from Solanum tuberosum have revealed their 
antimicrobial activity (Guevara et al. 2002) including antifungal activity (Mendieta 
et al. 2006). The authors cloned, expressed, and purified PSI (swaposin domain) 
from StAPs (StAsp-PSI) and found that the recombinant protein still maintained its 
cytotoxic activity (Muñoz et al. 2010). Both StAPs and StAsp-PSI were able to kill 
human pathogenic bacteria in a dose-dependent manner but were not toxic to human 
red blood cells under the experimental conditions tested. Therefore, StAPs and 
StAsp-PSI could contribute to the generation of new tools to solve the growing 
problem of resistance to conventional antibiotics (Zasloff 2002).

1.3.3  �Plant Serine Proteases

Serine proteases (SPs)  use the active site Ser as a nucleophile. The catalytic mecha-
nism is very similar to that of cysteine proteases, and some serine proteases are even 
evolutionarily related to cysteine proteases. With more than 200 members, serine 
proteases are the largest class of proteolytic enzymes in plants. Plant serine prote-
ases are divided into 14 families. These families belong to nine clans that are evolu-
tionarily unrelated to each other. Families S8, S9, S10, and S33 are the largest serine 
protease families in plants, with each containing approximately 60 members. 
Biological functions for serine proteases have been described for some of the subti-
lases (SDD1 and ALE1; family S8, clan SB), carboxypeptidases (BRS1 and 
SNG1/2; family S10, clan SC), and plastid-localized members of the S1, S26, and 
S14 families (DegPs, Plsp1, and ClpPs) (van der Hoorn 2008).

Feijoo-Siota and Villa (2011) have reviewed several origins to SPs. These enzymes 
have been found and extracted from the seeds of barley (Hordeum vulgare), soybean 
(Glycine max), and rice (Oryza sativa), from the latex of Euphorbia supina, Wrightia 
tinctoria, dandelion (Taraxacum officinale), African milkbush (Synadenium grantii), 
and jackfruit (Artocarpus heterophyllus); from the flowers, stems, leaves, and roots 
of Arabidopsis thaliana; from the storage roots of sweet potato (I. batatas) and corn 
(Zea mays); from the sprouts of bamboo (Pleioblastus hindsii); from the leaves of 
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tobacco (Nicotiana tabacum), lettuce (Lactuca sativa), common bean (Phaseolus 
vulgaris), and tomato (Lycopersicon esculentum); and from the fruits of melon 
(Cucumis melo), Cucurbita ficifolia, osage orange (Maclura pomifera), suzumeuri 
(Melothria japonica), “Ryukyu white gourd” (Benincasa hispida), Japanese large 
snake gourd (Trichosanthes bracteata), and yellow snake gourd (Trichosanthes 
kirilowii) (Antão and Malcata 2005).

SPs are usually considered to act principally as degradative enzymes. Plant 
subtilases (subtilisin-like SPs), however, have been documented to be involved in 
several physiological processes including symbiosis (Takeda et al. 2007), hypersen-
sitive response, the infection of plant cells (Laplaze et al. 2000), pathogenesis in 
virus infected plants (Tornero et al. 1997), germination (Sutoh et al. 1999), signal-
ing (Déry et al. 1998), tissue differentiation (Groover and Jones 1999), xylogenesis 
(Ye and Varner 1996), senescence (Distefano et  al. 1999; Huffaker 1990), pro-
grammed cell death (Beers et al. 2000), and protein degradation/processing (Antão 
and Malcata 2005).

Cucumisin, an enzyme derived from melon, remains the best plant SP character-
ized to date (Antão and Malcata 2005), purified from Cucumis melo (Kaneda and 
Tominaga 1975). Plant subtilisins, also referred to as cucumisin-like proteases (in 
recognition of the first subtilisin isolated from a plant (Yamagata et al. 1994)), have 
been isolated from Cucumis melo (Yamagata et al. 1994), Solanum lycopersicum 
(Meichtry et al. 1999), Alnus glutinosa (Ribeiro et al. 1995), and Arabidopsis (Zhao 
et al. 2000). Cucumisin-like SPs have also been isolated from other sources, like the 
latex of E. supina (Arima et al. 2000a; Taylor et al. 1997), the sprouts of bamboo 
(Pleioblastus hindsii Nakai) (Arima et al. 2000b), and the fruits of Melothria japon-
ica (Uchikoba et al. 2001). A cucumisin-like protease from kachri fruit (Cucumis 
trigonus Roxburghi) is used as a meat tenderizer in the Indian subcontinent (Asif-
Ullah et al. 2006).

Macluralisin, from the fruits of M. pomifera (Raf.) Schneid (Rudenskaya et al. 
1995), taraxilisin, from the latex of dandelion (T. officinale Webb s. I.) roots 
(Rudenskaya et al. 1998), SP A and B, from the sarcocarp of yellow snake gourd 
(Trichosanthes kirilowii) (Uchikoba et al. 1990), an SP from the seeds of tropical 
squash (C. ficifolia) (Dryjanski et  al. 1990), and several other SPs from barley 
(Fontanini and Jones 2002), oat (Coffeen and Wolpert 2004), soybean (Tan-Wilson 
et al. 1996), and common bean (Popovič et al. 2002) are other SPs isolated from plants.

Some SPs have been studied for their medicinal properties (Andallu and 
Varadacharyulu 2003; Andallu et al. 2001; Doi et al. 2000; Jang et al. 2002; Andallu 
and Varadacharyulu 2003; Andallu et al. 2001; Doi et al. 2000; Jang et al. 2002), 
examples of these are the a subtilisin-like SP, named as indicain, isolated from the 
latex of Morus indica by Singh et al. (2008) and milin, an SP purified from the 
latex of Euphorbia milii (Yadav et al. 2006). Many of the medicinal applications 
have been proved by clinical studies (Asano et al. 2001; Cheon et al. 2000; Doi 
et al. 2001; Nomura 1999). Milin, another SP of plant origin, isolated from E. milii, 
is a good candidate for applications in the food industry (Souza et al. 1997; Schall 
et al. 2001).
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1.3.4  �Plant Metalloproteases

Metalloproteases contain catalytic metal ions that activate water for nucleophilic 
attack while stabilizing the oxyanion hole. Of the different types of proteases, 
metalloproteases are the most diverse in terms of both structure and function. More 
than 50 families have been identified in 24 clans. MPs in plants include exo- and 
endoproteases in many different subcellular locations, with degradative or highly 
specific processing function (Schaller 2004).

In plants, MPs are involved in nodulation, plastid differentiation, thermotoler-
ance, regulation of root and shoot meristem size, sensitivity to auxin conjugates, and 
meiosis (Casamitjana-Martı́nez et al. 2003; Bartel and Fink 1995; Bölter et al. 2006; 
Chen et al. 2000, 2005, 2006; Combier et al. 2007; Davies et al. 1999; Golldack 
et al. 2002; Helliwell et al. 2001; Sakamoto et al. 2002; Sanchez-Moran et al. 2004; 
Sjögren et al. 2006).

Leucine aminopeptidases (LAPs)  are ubiquitous MPs, thought to be involved 
in the regulation of protein half-life in plants, which is largely influenced by the 
N-terminal amino acid residue (Varshavsky 1996). In addition to the common 
LAP, which is constitutively present in all plant species (Bartling and Nosek 1994; 
Chao et al. 2000), some plants of the nightshade family (Solanaceae) have addi-
tional LAPs expressed in the reproductive organs upregulated under several stress 
conditions, including osmotic stress, wounding, and pathogen infection (Chao 
et al. 1999; Gu et al. 1999; Hildmann et al. 1992; Pautot et al. 1993, 2001; Schaller 
et al. 1995).

Matrix metalloproteinases (MMPs)  are a family of zinc- and calcium-dependent 
proteases belonging to the metzincin clan of metalloendopeptidases, EC subclass 
3.4.24, MA (M) clan according to the MEROPS database (Rawlings et al. 2010). 
This family is characterized by a highly conserved catalytic domain containing an 
HEXXHXX GXX(H/D) zinc-binding sequence followed by a conserved methio-
nine that forms a tight 1,4-β turn called “Met-turn” (Rawlings et al. 2014).

Members of this family have mainly been studied in mammals but have also been 
found in simpler animals and plants (Massova et al. 1998). Members of the MMP 
family have been also identified in plants, but only few of them have been character-
ized. Ragster and Chrispeels (1979) described the first MMP in higher plants, and 
ethylenediaminetetraacetic acid (EDTA)-sensitive Azocoll-degrading enzyme in 
leaves of soybean (Glycine max). This protein was purified and characterized only 
in 1991 and was named soybean metalloendoproteinase-1 (SMEP-1) because of 
structural and biochemical similarities to vertebrate MMPs (Graham et al. 1991; 
McGeehan et  al. 1992; Pak et  al. 1997). Other MMPs were then studied in 
Arabidopsis (Maidment et al. 1999; Golldack et al. 2002), cucumber (Delorme et al. 
2000), Medicago (Combier et  al. 2007), soybean (Liu et  al. 2001), tobacco 
(Schiermeyer et al. 2009; Mandal et al. 2010), and loblolly pine (Ratnaparkhe et al. 
2009). Members of the MMP family have been identified in plants, but only few of 
them have been characterized.
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