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1. Introduction 

In the present work, DFT calculations were performed to study structures and vibrational properties of 

two enantiomeric S(-) and R(+) forms of camphor because, so far, these properties are no reported. It 

cyclic monoterpene ketone is the main component of oil extracted from the wood of the camphor tree 

Cinnamomum Camphora (Linne) Nees et Ebermaier, family and is used in the medicinal chemistry due 

to its anti-inflammatory and analgesic properties among other multiple uses [1-33]. Camphor is known 

and investigated from long time and even today it is studied due to the side effects of its therapeutics 

uses and to its additional applications [26-33]. Moreover, studies related to the structural, electronic, 

topological and vibrational properties were no found in the literature and only studies on structure and 

electric dipole moment of camphor were determined by rotational spectroscopy [6] while camphor in 

CDCl3 was studied by VCD by Debie et al. [10]. Structurally, four enantiomers are expected for 

camphor due to its two chirals centers but only the cis forms are possible because the two trans forms 

are impossible from structural point of view [3]. Camphor is the generic name while its IUPAC name is 
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Abstract 

B3LYP/6-311++G** calculations were performed to study structures and vibrational 

properties of Cis S(-) and R(+) forms of camphor. Comparisons between calculated 

geometrical parameters of both forms of Camphor in gas phase and aqueous solution 

show very good concordances with the experimental ones corresponding to (+)-3-

bromocamphor. NBO calculations predict only →*, →* and n→* interactions 

althougth the expected n→* transitions due to ketone groups C=O were no predicted. 

Gap and electrophilicity index (ω) values of both forms of camphor are close to the value 

observed in antiviral thymidine. Such observations could be explained by the proximities 

between the acceptor groups H bonds (C=O) and the CH3 groups present in both camphor 

and thymidine species. Reasonable concordances were found among the predicted 1H- 

and 13C-NMR, UV-visible, ECD, IR and Raman spectra with the corresponding 

experimental ones. Complete vibrational assignments and scaled force constants for both 

forms camphor are reported for first time.                                              
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1,7,7-trimethylbicyclo[2.2.1]heptan-2-one. Both cis S(-) and R(+) structures of camphor showing the 

different positions of ketone group can be easily seen in Figure 1.  
 
 

 
 
 

Figure 1: Enantiomeric R(+) and S(-) structures of camphor.  

Taking into account the numerous studies reported on biological activities and few related with structural 

and vibrational studies, the aims of this work are:  

(i) to perform the complete vibrational study of the two cis S(-) and R(+) forms of camphor 

combining the experimental available Attenuated Total Reflectance Infrared (ATR-IR) Spectrum 

and Raman spectra, the normal internal coordinates and DFT calculations with the SQMFF 

methodology and Molvib program [34-36],  

(ii) (ii) to optimize the two enantiomers of camphor in gas phase and aqueous solution by using 

B3LYP/6-311++G** level of theory [37-41],  

(iii) (iii) to compute the structural, electronic, topological and vibrational properties of both forms of 

camphor in the two media at the same level of theory, and finally,  

(iv) (iii) to predict reactivities and behaviors of both cis S(-) and R(+) structures of camphor in the 

two media studied [42-45]. The reproducibility of theoretical optimized two cis S(-) and R(+) 

structures of camphor were verified comparing the predicted 1H- and 13C-NMR and UV-Vis 

spectra with the corresponding experimental ones available from the literature [3,4,46]. 

2. Material and Methods 

The two cis S(-) and R(+) structures of camphor were modeled with the GaussView program [47] and, 

later, they were optimized in gas phase and aqueous solution by using the functional hybrid B3LYP/6-

311++G** level of theory with the Revision A.02 of Gaussian 09 program [37,38,48]. Here, the integral 

equation formalism variant polarised continuum model (IEFPCM) method was used to optimize both 

forms in solution while with the universal solvation methods were predicted the solvation energies [39-

41]. The properties in solution were studied with the self-consistent reaction field (SCRF) method and 

the volume variations that experiment both forms in aqueous solution were calculated with the Moldraw 

program [49]. The intra- molecular interactions were investigated by using the natural bond orbital 

(NBO) and atoms in molecules (AIM) 2000 programs [50-52] while the molecular electrostatic 

potentials were computed with the Merz-Kollman scheme [53]. The energy gap values for both forms 

were calculated with the frontier orbitals and, then, with these values were also calculated the chemical 

potential (μ), electronegativity (χ), global hardness (η), global softness (S), global electrophilicity index 

(ω) and global nucleophilicity index (E) descriptors [42-45]. Time-dependent DFT calculations (TD-
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DFT) together with the GIAO method were employed to predict the ultraviolet-Visible and 1H and 13C 

NMR spectra in aqueous solution at the same level of theory [54]. Here, the scaled mechanical force 

field (SQMFF) procedure with the Molvib program were used to perform the complete vibrational 

assignments of those two forms of camphor. In the determination of force fields in both media, the 

normal internal coordinates and transferable scaling factors were employed considering potential energy 

distribution (PED) contributions  10 % [35]. Finally, known equations were used to transform the 

Raman spectra from activities to intensities [55,56]. 

 

3. Results and Discussion 

3.1. Optimizations and properties in both media 

Figure 2 shows the optimized structures of both S(-) and R(+) forms of camphor together with the atoms 

labelling. In both structures of camphor the C3 and C4 atoms are chirals centers but only the cis 

conformations S(-) and R(+) can exist with the cyclohexane ring (C8-C3-C5-C6-C4-C7) in boat form 

because the gem-dimethyl bridge formed by the C3-C2-C4 atoms should necessarily be cis. Hence, in 

Figure 3 it is possible to see that the fundamental skeleton of camphor is bicyclic with a six membered 

carbon-ring and two five members’ rings together with the involved atoms.  

 
Figure 2. Optimized structures of both S(-) and R(+) forms of camphor with the atoms labelling. 

 

The definitions of three rings are presented in Figure 3 where R1 is the ring of five members observed 

in green colour (C2-C4-C7-C8-C3), R2 is the other five members ring formed by the C2-C4-C6-C5-C3 

atoms and R3 is the cyclohexane ring in boat form observed in yellow colour in Fig. 4. The atoms in R3 

are: C8-C3-C5-C6-C4-C7.  

 
Figure 3. Definitions of three rings in both S(-) and R(+) forms of camphor with the involved atoms. 

 

Calculated geometrical parameters of both S(-) and R(+) forms of Camphor in gas phase and aqueous 

solution by using hybrid B3LYP/6-311++G** method are presented in Table 1 compared with the 

experimental values corresponding to crystal structure of (+)-3-bromocamphor determined by Allen and 

Rogers [2].  
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Table 1. Comparison of calculated geometrical parameters of S(-) and R(+) forms of Camphor in gas phase and aqueous 

solution by using the B3LYP/6-311++G** method with the corresponding experimental ones taken from Ref [2]. Very 
 

B3LYP/6-31G* Method  

Parameters 
R(+) S(-) 

Experimentalb 
Gas Water Gas Water 

Bond lengths (Å) 

O1-C8 1.207 1.222 1.207 1.222 1.20 

C8-C3 1.534 1.520 1.534 1.520 1.54 

C3-C11 1.516 1.515 1.516 1.515 1.52 

C3-C5 1.566 1.571 1.566 1.571 1.49 

C5-C6 1.558 1.556 1.558 1.556 1.56 

C6-C4 1.546 1.545 1.546 1.545 1.57 

C4-C7 1.541 1.542 1.541 1.542 1.46 

C7-C8 1.535 1.522 1.535 1.522 1.54 

C3-C2 1.573 1.575 1.573 1.575 1.53 

C2-C4 1.565 1.564 1.565 1.564 1.54 

C2-C9 1.536 1.534 1.536 1.534 1.55 

C2-C10 1.539 1.538 1.539 1.538 1.54 

RMSDb 0.036 0.039 0.036 0.039  

O1-C8-C3 126.99 126.70 126.99 126.71 127.7 

O1-C8-C7 126.48 126.05 126.48 126.05 126.6 

C8-C3-C11 114.54 115.44 114.54 115.43 112.3 

C8-C3-C5 102.92 102.49 102.92 102.47 102.8 

C8-C3-C2 100.47 100.38 100.47 100.38 100.8 

C8-C7-C4 101.96 101.90 101.96 101.91 102.0 

C3-C5-C6 104.44 104.54 104.44 104.54 104.1 

C3-C2-C4 93.81 93.78 93.81 93.78 94.9 

C5-C6-C4 102.73 102.66 102.73 102.67 104.1 

C6-C4-C7 106.57 106.45 106.57 106.47 111.4 

C7-C8-C3 106.53 107.23 106.53 107.22 105.6 

C6-C4-C2 102.74 102.81 102.74 102.80 98.3 

C7-C4-C2 102.66 102.46 102.66 102.46 103.2 

C4-C2-C9 113.65 113.85 113.65 113.84 113.8 

C4-C2-C10 114.11 114.31 114.11 114.30 112.6 

C3-C2-C9 114.27 113.93 114.27 113.95 112.2 

C3-C2-C10 113.36 113.26 113.36 113.27 112.3 

C9-C2-C10 107.41 107.47 107.41 107.47 110.3 

C5-C3-C2 101.92 101.78 101.92 101.79 102.6 

C5-C3-C11 114.99 114.91 114.99 114.90 115.7 

C2-C3-C11 119.56 119.30 119.56 119.30 120.5 

RMSDb 1.820 1.934 1.820 1.929  

O1- C8-C3-C11 16.99 17.06 -17.01 -17.06  

O1- C8-C7-C4 178.86 178.79 -178.85 -178.78  

C11-C3-C2-C10 61.01 61.47 62.53 61.79  

C11-C3-C5-C6 162.96 162.05 -162.98 -162.06  

C11-C3-C2-C4 179.36 -179.99 -179.35 179.99  

aThis work, bRef [2] 

These comparisons are presented in the same table in terms of root-mean-square deviation (RMSD) 

values. Very good correlations are observed in the bond lengths and angles of both enantiomers showing 
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the same RMSD values in both media (0.036 Å and 1.820º in gas phase and 0.039 Å and 1.929º in 

aqueous solution). However, the only differences expected between both forms are in the dihedral angles 

because the O1-C8-C3-C11, O1-C8-C7-C4 and C11-C3-C5-C6 angles present positive signs in R(+) 

while negative signs in S(-). Moreover, the dihedral C11-C3-C2-C4 angles in both forms have different 

signs in the two media; hence, in gas phase that angle has positive sign in R(+) while in solution negative. 

A contrary resulted it is observed for the S(-) form, as can be seen in Table 1. Evidently, the presence of 

CH3 groups closer the C8=O1 bonds could have some influence in the hydration of the two forms in 

aqueous solution because the C=O group is acceptor of H bonds. For these reasons, the studies for both 

forms in solution are necessaries in order to understand why those dihedral angles in the R(+) and S(-) 

forms change of signs in this medium. In Table 2 are presented the C11···O1 and O1···H distances 

between the H26 and H27 atoms of CH3 groups (C11) more closer to O1 atoms in both forms and in the 

two media by using the hybrid B3LYP/6-311++G** method. Analyzing the results we can see clear 

differences in the O1···H26 and O1···H27 distances of both forms in the two media between the H26 

and H27 atoms of CH3 groups (C11) more closer to O1 atoms by using the hybrid B3LYP/6-311++G** 

method. The positions of H26 and H27 atoms in the R(+) form is different from the S(-) one and, hence, 

the change of signs observed in both media. 

Table 2. Distances between the H26 and H27 atoms of CH3 groups (C11) more near to O1 atoms in both S(-) and R(+) forms 

by using the the hybrid B3LYP/6-311++G** method. 

B3LYP/6-311++G** methoda 

Distances 
R(+) S(-) 

Gas PCM Gas PCM 

C11···O1 2.940 2.948 2.940 2.948 

O1···H26 3.047 3.026 2.807 2.867 

O1···H27 2.807 2.869 3.047 3.028 
aThis work 

 

Calculated total uncorrected and corrected by zero point vibrational energy (ZPVE) energies, dipole 

moments and volumes of S(-) and R(+) forms of camphor in gas phase and aqueous solution by using 

the B3LYP/6-311++G** method are observed in Table 3 while the solvation energies for both forms in 

aqueous solution can be seen in Table 4.  

Table 3. Calculated total uncorrected and corrected by ZPVE energies (E), dipole moments (µ) and volumes (V) of S(-) and 

R(+) forms of Camphor in gas phase and aqueous solution by using the B3LYP/6-311++G** method. 
 

B3LYP/6-311++G** Method 

Medium E (Hartrees) EZPVE (Hartrees) µ (D) V (Å3) ΔV 

Conformacion R(+)  

GAS -466.0523 -465.8124 3.29 181.5 
0.3 

PCM/Water -466.0594 -465.8202 5.10 181.8 

Conformacion S(-)  

GAS -466.0523 -465.8124 3.29 182.5 
-0.5 

PCM/Water -466.0594 -465.8202 5.10 182.0 
 

The results from Table 3 show the same energy values for both forms in the two media, an unexpected 

result considering that both conformations are enantiomers and the images are not superimposable. Only 

differences in the dipole moment values for the two forms in solution and a slight variation in the 

volumes in this medium are observed. Note that the dipole moment values calculated in gas phase for 

both forms are in agreement with that determined for camphor from Stark effect measurements 

μtot = 3.0821(22) D by Kisiel et al. [6]. Here, the S(-) form shows expansion of volume in solution while 
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the R(+) one evidence a slight contraction in the volume. Hence, differences between both forms can be 

observed in solution in the solvation energy values shown in Table 4 where the R(+) form (-39.65 

kJ/mol) presents a higher value than the other one (-37.56 kJ/mol). The changes of signs predicted in the 

dihedral C11-C3-C2-C4 angles of both forms in the two media could explain the different solvation 

energy values and the different positions of H atoms of CH3 groups in relation to O1 atoms of C8=O1 

bonds.  

Table 4. Corrected and uncorrected solvation energies by the total non-electrostatic terms and by zero point vibrational 

energy (ZPVE) of S(-) and R(+) forms of Camphor in gas phase and aqueous solution by using the B3LYP/6-311++G** 

method.  
 

B3LYP/6-311++G** methoda 

Solvation energy (kJ/mol) 

Medium Gun
# Gne Gc 

Conformacion R(+) 

PCM/Water -20.46 19.19 -39.65 

Conformacion S(-) 

PCM/Water -18.62 18.94 -37.56 

Gun
#= uncorrected solvation energy, Gne= total non electrostatic terms, Gc= corrected solvation energies. 

The Gun
# uncorrected solvation energy value is defined as the difference between the total energies in 

aqueous solutions and the values in gas phase, the Gne values correspond to total energy non 

electrostatic terms due to the cavitation, dispersion and repulsion energies while the corrected Gc values 

solvation energies are those calculated as the difference between the uncorrected and non-electrostatic 

solvation energies. When the dipole moments vectors of both forms in gas phase are graphed in Figure 

4 we observed practically the same magnitudes, orientations and directions of both vectors. Hence, 

probably the differences in the volumes in addition to different dihedral C11-C3-C2-C4 angles in both 

forms could justify the different Gc values observed in both enantiomers. 

 
Figure 4. Magnitudes and positions of dipole moments vectors of the two enantiomeric S(-) and R(+) forms of Camphor in 

gas phase by using hybrid B3LYP/6-311++G** method. 

 

3.2. Atomic charges, molecular electrostatic potentials (MEP) and bond orders (BO) studies 

Atomic Merz-Kollman (MK), Mulliken and natural population atomic (NPA) charges were studied in 

both R(+) and S(-) forms of camphor in gas phase and aqueous solution by using the B3LYP/6-

311++G** method because the dihedral angles and the solvation energies have evidenced different 

behaviours between both enantiomers in solution. Besides, it is very important to undestand the conexion 

existent between the only acceptor H bonds group (O) in both R(+) and S(-) forms and the different 

properties attributed from long time to camphor [3,7,8,11-15,17-21,23-29]. Hence, atomic Merz-

Kollman (MK), Mulliken and natural population atomic (NPA) charges were studied together with the 
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molecular electrostatic potentials (MEP) and bond orders (BO) for both forms of camphor in both media 

by using the the B3LYP/6-311++G** method. These properties are presented in Tables S1 and S2 of 

supporting material. In the analyses of these properties only the O1, C11, H25, H26 and H27 atoms were 

considered because the above studies have suggested that the proximities between the CH3 and C8=O1 

groups justify the variations observed in the solvation energies and dihedral C11-C3-C2-C4 angles of 

two R(+) and S(-) forms. Figure 5 shows the behaviours of three charges on those five atoms of two 

enantiomeric R(+) and S(-) forms of camphor in aqueous solution by using hybrid B3LYP/6-311++G** 

method. Regarding Fig. 5 it is observed similar behaviours on five atoms of both forms in solution 

although the three types of charges for a same atom evidence different values.  
 
 

 

Figure 5. Variations in the atomic Merz-Kollman (MK), Mulliken and natural population atomic (NPA) charges of the two 

enantiomeric: (a) R(+) and (b) S(-) forms of Camphor in aqueous solution by using hybrid B3LYP/6-311++G** method. 

 

Hence, the MK, Mulliken and NPA charges on the H atoms present the higher positive values while the 

higher negative values are evidenced in the MK charges on O1 atoms of both forms (blue lines). On the 

contrary, the Mulliken and NPA charges show higher negative values on C11 atoms (red and green lines, 

respectively), as compared with the observed on O1 atoms. The MK charges on the three H atoms present 

the lower values in relation to the other ones while the higher values are observed in the NPA charges 

on those three H25, H26 and H27 atoms. 

Molecular electrostatic potentials (MEP) values calculated from MK charges for both R(+) and S(-) 

forms of camphor in the two media by using hybrid B3LYP/6-311++G** method are observed in Tables 

S1 and S2 [53]. Analyzing particularly these MEP surfaces only on the five O1, C11, H25, H26 and H27 

atoms we observed the same values on the O1, C11 and H25 atoms of both forms in the two media but, 

the MEPs values on the H26 and H27 atoms show different values in both forms and in the two studied 

media. Hence, these results are in agreement with the differences observed in both forms in the values 

of solvations energies and in the dihedral C11-C3-C2-C4 angles. These mapped MEP surfaces of R(+) 

and S(-) forms are also interesting to see the nucleophilic and electrophilic sites where the reaction with 

electrophils and nucleophils potential biological reactive take place. The mapped MEP surfaces of R(+) 

and S(-) forms in gas phase are presented in Figure S1. As expected, due to only acceptor H bonds (O1 

atoms) in both forms strong red colours are observed on the C8=O1 bonds in both forms while on the H 

atoms of CH3 groups slight light blue colours are observed. Evidently, the strong red colours are 

nucleophilic sites, the soft blue colours electrophilic places while the green colours are inert regions. 

Other interesting property studied in both R(+) and S(-) forms of camphor in gas phase and aqueous 

solution by using the B3LYP/6-311++G** method are the bond orders, expressed as Wiberg indexes. 

In Tables S1 and S2 are presented these results for all atoms of two species of camphor. When the BOs 
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values are analyzed only for the O1, C11, H25, H26 and H27 atoms it is observed that the O1, C11 and 

H25 atoms of both forms in the two media present the same values but, the BOs values on the H26 and 

H27 atoms show different values in both R(+) and S(-) forms and in the two studied media, as as 

previously observed in studies of atomic charges and electrostatic potentials. Hence, the three properties 

studied in this section justify the differences observed between both forms in the values of solvations 

energies and in the dihedral C11-C3-C2-C4 angles.  
 

3.3. NBO and AIM studies 

Calculations of Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis by using the 

NBO programa are of great interest to investigate donor-acceptor energy interactions while the 

topological properties calculated from the Bader’theory of atoms in molecules (AIM) allows to predict 

intra-molecular or H bonds interactions [50-52]. These two type of calculations were performed for both 

R(+) and S(-) forms of camphor in gas phase and aqueous solution by using the B3LYP/6-311++G** 

method. Hence, in Table S3 are summarized the main delocalization energies (in kJ/mol) of R(+) and 

S(-) forms of camphor in gas phase and aqueous solution by using B3LYP/6-311++G** calculations. 

The analyses of results show the same three interactions in both forms which are the →*, →* 

and n→* interactions where the former interactions are performed from bonding  C-C and C-H 

orbitals to antibonding  C=O, C-C and C-H orbitals, the second ones from bonding C-C and C-H 

orbitals to antibonding C=O orbitals and, the latter interactions are performed from lone pairs of O1 

atoms to antibonding C-C orbitals. Note that the interactions of higher energies in both forms are the 

→* interactions. The higher values observed in total energies of both forms evidence higher stabilites 

of two forms of camphor in gas phase (542.49 kJ/mol), as compared with the values obtained in aqueous 

solution (536.94 kJ/mol).  

Other studied properties in this section to investigate different intra-molecular or H bonds interactions 

in the two forms of camphor are the topological properties according to the Bader’s theory of atoms in 

molecules (AIM) with the AIM 2000 program [51,52]. Hence, the electron density distribution, (r), the 

Laplacian values, 2(r), the eigenvalues (1, 2, 3) of the Hessian matrix and the 1/3 ratio were 

computed for both R(+) and S(-) forms of camphor in gas phase and aqueous solution by using the 

B3LYP/6-311++G** method. These properties should be calculated in the bond critical points (BCPs) 

and in the ring critical points (RCPs) and are presented for both R(+) and S(-) forms of camphor in the 

two media in Table S4. Here, the results for both forms have not evidenced new BCPs with values of 

1/3 < 1 and 2(r) > 0 and, for these reasons, only the RCPs are presented in Table S4. These RCPs 

are observed only in the two five members rings, where RCP1 correspond to R1 ring and RCP2 

correspond to R2 ring. In Figure S2 can be observed the molecular graphics of R(+) and S(-) forms of 

camphor in gas phase showing only those two ring critical points (RCPs). The properties presented in 

Table S4 show the same values for the R(+) and S(-) forms in both media but slightly different in 

solution, as was also observed in the above studies. RCP1 and RCP2 present different topological 

properties in R(+) and S(-) forms in the two media but the same values in gas phase and in aqueous 

solution. 
 

3.4. Frontier orbitals and global descriptors 

The knowledge of the energies gap and of some typical descriptors in the two R(+) and S(-) forms of 

camphor are essential to predict their reactivities and behaviours in different media taking into account 

the diverse medicinal and biological properties attributed to camphor [3,7,8,11-15,17-21,23-29]. Hence, 

the frontier orbitals and the chemical potential (μ), electronegativity (χ), global hardness (η), global 
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softness (S), global electrophilicity index (ω) and nucleophilicity indexes () descriptors were calculated 

for the two R(+) and S(-) forms of camphor in gas phase and aqueous solution by using the hybrid 

B3LYP/6-311++G** method [42-45]. Therefore, the calculated HOMO and LUMO, energy band gaps 

and those mentioned descriptors are presented for both forms of camphor in gas phase and aqueous 

solution in Table S5 together with the equations used to compute the descriptors. Analyses of gap values 

show that both forms are less reactive in gas phase because they have high energy values, however, the 

energy gaps slightly decrease in both forms in solution increasing their reactivities from 5.9006 eV gas 

phase to 5.8535 eV in solution. The same energy gap values observed for both forms in the two studied 

media show that there are no differences in the reactivities between both enantiomers and that the two 

can exist in both media. These gap values for both forms of camphor in solution are compared with those 

reported for antiviral isothiazol, thymidine and chloroquine and anti-histaminic promethazine agent 

[44,45,57,58] in Table S6 while in Figure S3 can be observed the molecular structures of all compared 

compounds. Comparing the gap values, we observed that the two forms of camphor are less reactive 

than the other ones while the most reactive species with low gap value is the S(-) form of chloroquine 

(4.2994 eV). Note that the gap values for both forms of camphor are close to the value observed in 

thymidine (5.4748 eV). If now the the electrophilicity index (ω) are compared among all species it is 

observed that the values of two forms of camphor (2.3229 eV) are close to that observed for thymidine 

(2.0728 eV). The proximity between the acceptor groups H bonds (C=O) and the CH3 groups in both 

camphor and thymidine species (see Fig. S3) probably justifies the close gap and ω values. Whereas if 

the the nucleophilicity indexes () of all species are compared the values for camphor (-10.7920 eV) are 

close to value of isothiazol (-10.0022 eV). This observation could possibly be justified by the absence 

of donors H bonds in camphor and isothiazol (S-H is very weak) or maybe by the fused six and five 

members rings. 

3.5. NMR studies 

To perform the vibrational study it is necessary to known the reproducibility of both structures and, for 

these reasons, the theoretical 1H and 13C NMR spectra were predicted for the two R(+) and S(-) forms 

of camphor and compared with the experimental available from the literature by using the root-mean-

square deviation (RMSD) values. The predicted 1H and 13C NMR spectra of both R(+) and S(-) forms 

of camphor were obtained by using by using the B3LYP/6-311++G** and GIAO methods [54] and they 

are compared with the corresponding experimental ones available from Refs [3,4] in CDCl3 solution. 

Comparisons of chemical shifts for both forms can be seen in Tables S7 and S8 by using RMSD values. 

Low RMSD values and very good correlations for both forms in gas phase and aqueous solution are 

observed in the chemical shifts of H atoms with similar values (0.25-0.24 ppm). However, when the 

chemical shifts of C atoms are compared reasonable correlations are obtained (10.59-10.29 ppm). These 

differences can be attributed to the calculations because the B3LYP/6-311++G** method perform better 

calculations for the H nuclei than the C ones, as observed in other species [59-61]. The similar values 

observed in the chemical shifts of H and C atoms of both forms of camphor in solution probably suggest 

the presence of both enantiomers in solution and, hence, both forms could be present as a racemic 

structure in the solid phase. Hence, the vibrational studies should be performed for the two R(+) and S(-) 

forms of camphor. 

 

3.6. Vibrational study 

Both structures R(+) and S(-) forms of camphor were optimized by using B3LYP/6-311++G** 

calculations with C1 symmetries and due to the presence of 27 atoms the number of expected vibration 
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modes are 75. All these modes present activity in both infrared and Raman spectra. The normal internal 

coordinates of three rings, two of them are five members rings (R1 and R2) and the other one of six 

members (R3) were built according to the definitions presented in Figure 3. Experimental available 

infrared in transmittance mode, attenuated total reflectance (ATR) and Raman spectra of camphor in the 

solid phase were taken from the literature [46] and they are compared in Figures 6 and 7 with the 

corresponding predicted for the R(+) and S(-) forms of camphor in gas phase.  

 
Figure 6. Experimental available Infrared spectra of camphor in 

solid phase [46] compared with the predicted for the S(-) and R(+) 

forms in gas phase by using the hybrid B3LYP/6-311++G** 

method. 

 
Figure 7. Experimental available Raman spectra [46] 

compared with the predicted for the S(-) and R(+) forms 

in gas phase by using the hybrid B3LYP/6-311++G** 

method. 

 

Very good correlations were found in the positions and intensities of observed bands between 

experimental and theoretical ones, as can be seen in those two figures. The predicted Raman spectra of 

both froms were corrected to intensities for a better correlation [55,56]. The harmonic force fields for 

both species of camphor were calculated by using the scaled quantum mechanical force field (SQMFF) 

methodology, normal internla coodinates, scaling factors and the Molvib program [34-36]. Potential 

energy distribution (PED) contributions  10% were considered in the assignments of bands observed 

to the normal vibration modes. In Table 5 are presented observed and calculated wavenumbers for the 

R(+) and S(-) forms of camphor in gas phase by using B3LYP/6-311++G** calculations together with 

their corresponding assignments. Discussions on some important assignments are presented below. 

3.6.1. Band Assignments 

3.6.1.1. 4000-2000 cm-1 region. Both R(+) and S(-) forms of camphor have three CH3 (C9, C10 and 

C11) and three CH2 (C5, C6 and C7) groups and, for these reasons, the antisymmetric and symmetric 

stretching modes corresponding to these groups, in addition to aliphatic C4-H12 groups, are expected in 

this region. In compounds containing these groups, the stretching modes of CH3 and CH2 groups are 

assigned between 3090/2914 and 2970/2842 cm-1, respectively [43-45,57-61]. Hence, the antisymmetric 

and symmetric stretching modes of CH3 and CH2 are assigned as predicted by SQM calculations between 

2988/2899 and 2969/2921 cm-1, respectively. Note that the complete vibrational assignments are 

practically the same for both forms while the only differences predicted by SQM calculations correspond 
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to the antisymmetric and symmetric stretching modes of gem-dimethyl bridge (C9 and C10 atoms) in 

both R(+) and S(-) forms which are predicted exchanged, as can be seen in Table 5. The aliphatic C4-

H12 groups of both forms is assigned as predicted by calculations to the intense IR band at 2948 cm-1. 

Table 5. Observed and calculated wavenumbers (cm-1) and assignments for R(+) and S(-) forms of Camphor in gas phase by 

using the B3LYP/6-311++G** method.  

Expb 
B3LYP/6-311++G** methoda 

R(+) S(-) 

IR Raman SQMc Assignmentsa SQMc Assignmentsa 

2961s 2988vs 2988 aCH3(C10) 2988 aCH3(C9) 
2941sh  2976 aCH3(C9) 2976 aCH3(C10) 

 2972sh 2969 aCH2(C6) 2969 aCH2(C6) 

  2968 aCH3(C11) 2968 aCH3(C11) 

  2964 aCH3(C11) 2964 aCH3(C11) 

  2961 aCH2(C7) 2961 aCH2(C7) 
 2953s 2955 aCH3(C9) 2955 aCH3(C10) 
  2951 aCH2(C5) 2951 aCH2(C5) 

2948s  2948 C4-H12 2948 C4-H12 
  2948 aCH3(C10) 2948 aCH3(C9) 
 2929sh 2930 sCH2(C6) 2930 sCH2(C6) 

  2927 sCH2(C7) 2927 sCH2(C7) 

2917sh  2921 sCH2(C5) 2921 sCH2(C5) 
  2906 sCH3(C10) 2906 sCH3(C9) 
  2903 sCH3(C11) 2903 sCH3(C11) 

2877w 2889s 2899 sCH3(C9) 2899 sCH3(C10) 
1743vs 1751m 1737 C8=O1 1737 C8=O1 
1471w 1476m 1464 δCH2(C6) 1464 δCH2(C6) 
1453sh 1452m 1453 δCH2(C5), δaCH3(C9) 1453 δCH2(C5), δaCH3(C9) 
1445m 1444sh 1449 δaCH3(C9) 1449 δaCH3(C10) 

1439sh  1438 δCH2(C5) δaCH3(C9) 1438 δaCH3(C10) 

  1434 δaCH3(C11) 1434 δaCH3(C11) 
1422sh  1428 δaCH3(C10) 1428 δaCH3(C11) 

  1423 δaCH3(C11) 1423 δaCH3(C11), δaCH3(C11) 

1418m 1420m 1420 δaCH3(C10) 1420 δaCH3(C9) 

1390m 1392vw 1395 δCH2(C7) 1395 δCH2(C7) 
1372m 1378vw 1364 δsCH3(C9) 1364 δsCH3(C10) 

  1349 δsCH3(C11) 1349 δsCH3(C11) 
1332sh 1326w 1343 δsCH3(C10) 1343 δsCH3(C9) 
1324m  1313 wagCH2(C5) 1313 wagCH2(C5) 
1318sh 1204sh 1305 wagCH2(C6) 1305 wagCH2(C6) 
1280w 1298w 1289 ’C4-H12 1289 ’C4-H12 
1247w 1276vw 1258 C4-H12 1258 C4-H12 

1240sh 1248w 1240 
wagCH2(C7), C4-C7  

ρCH2(C5) 
1240 

wagCH2(C7),C4-C7  

ρCH2(C5) 
1222w 1221w 1233 R1(A1) 1233 R1(A1) 
1197w 1199w 1209 ρCH2(C6) 1209 ρCH2(C6) 

 1193w 1188 R2(A1) 1188 R2(A1) 
1169w 1169w 1174 R3(A3),R2(A1) 1174 R3(A3),R2(A1) 

1163sh 1152w 1153 
ρCH2(C7),C4-H12 

CH3(C11) 
1153 R2(A3) C3-C11 

1127w 1131vw 1120 R2(A1), R1(A2) 1120 
R2(A1), R1(A2)  

’CH3(C11) 
1095w 1093w 1109 R3(A3), R1(A2) 1109 R3(A3), R1(A2) 
1075w 1079w 1087 ’CH3(C11) 1087 CH3(C11) 
1047s 1047vw 1066 R1(A2) 1066 R1(A2) 
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1022m 1022w 1014 R1(A2),R2(A1) 1014 R1(A2), R2(A2) 

990vw 1011w 997 CH3(C10) 997 ’CH3(C9),’CH3(C10) 
960sh 986w 982 R1(A2),R2(A1) 982 R1(A2), R2(A2) 

952w 950m 963 R3(A3), R1(A2) 963 R3(A3), R1(A2) 

934w 934w 929 
’CH3(C9), C2-C10 

’CH3(C10) CH3(C9) 
930 

CH3(C10), C2-C9 

CH3(C9) 
926w 926sh 924 C2-C9 924 C2-C10 
915w 914w 907 C5-C6 907 C5-C6 
858sh 862s 888 R3(A3), R1(A2) 888 R3(A3), R1(A2) 
855w 850s 874 R3(A3),R2(A1) 874 R3(A3), R2(A1) 
848sh 846sh 831 C4-C6 831 C4-C6 
829w 822w 822 C3-C5 822 C3-C5 

751m 772vw 776 R2(A3),wCH2(C6) 776 R2(A3), wCH2(C6) 

709vw 
747w 

706w 
703 

wCH2(C5), C2-C3 

C3-C8 
703 

wCH2(C5), C2-C3 

C3-C8,wCH2(C7) 

647w 648vs 678 C2-C4 678 C2-C4 

610w 604w 622 
C3-C11,C7-C8  

βC8=O1 
622 

C3-C11,C7-C8 

βC8=O1 
574w 568w 588 R2(A1), C8=O1 588 R2(A1), C8=O1 
552w 549s 553 R3(A3),R2(A1) 553 R3(A3),R2(A1) 
521s 530vw 538 R1(A2), R1(A1) 538 R1(A2), R1(A1) 

514sh 515w 511 R1(A2) 511 R1(A2) 

472w 468m 464 R2(A2) 464 R2(A2) 

415w 410w 402 R1(A3) 402 R1(A2),R2(A1) 

 386w 389 

C10C2C9,C9C2C3 

C10C2C4 

C9C2C4 

389 

C9C2C3,C10C2C9 

C9C2C4 

C10C2C4 

 375sh 373 R1(A2)R2(A1) C11C3C5 373 
R1(A2)R2(A1) 

C11C3C5 
 292w 292 R1(A2),R3(A3) 292 R1(A2),R3(A3) 
 281w 284 R1(A2) 284 R3(A3), R1(A2) 
 254m 256 R3(A3) 256 R3(A3), R1(A2) 

 237w 236 
R1(A2),R3(A3) 

C11C3C2 
236 

R1(A2),R3(A3) 

C11C3C2 
 210w 209 R3(A3), R1(A2) 209 R3(A3) 

 197sh 200 
wCH3(C9),wCH3(C10) 

 wCH3(C11) 
200 wCH3(C10), wCH3(C9) 

  156 R3(A3), R1(A2) 156 
R3(A3), R1(A2) 

 wCH3(C11) 
  150 R1(A2),R3(A3) 150 R1(A2),R3(A3) 
  106 R3(A3),R2(A1) 106 R3(A3) 

Abbreviations: , stretching;   deformation in the plane;   deformation out of plane; wag, wagging;   torsion; R, 

deformation ring R, torsion ring; , rocking; w, twisting; , deformation; a, antisymmetric; s, symmetric; (A1), Ring 1; (A2), 

Ring 2; (A3), Ring 3; aThis work, bFrom Ref [46], cFrom scaled quantum mechanics force field. 

 

3.6.1.2. 2000-1000 cm-1 region. Both forms of camphor predict a very intense band typical of C8=O1 

stretching modes and, for these reasons, the very strong IR band at 1743 is clearly assigned to those 

vibration modes of R(+) and S(-) forms. Then, the deformation, wagging and rocking modes of CH3 and 

CH2 groups are also predicted in this region. Hence, the groups of IR and Raman bands between 1476 

and 1075 cm-1 are assigned to antisymmetric and symmetric deformation and rocking modes of CH3 and 

to deformation, wagging and rocking modes of CH2 groups, as predicted by calculations and, as detailed 

in Table 5. The two rocking modes of aliphatic C4-H12 groups are predicted in the same regions for 

both forms of camphor and, hence, they are assigned to the weak IR bands at 1280 and 1247 cm-1. Note 

that some vibrations corresponding to torsions of three rings are also predicted in this region. Other 
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important observation is that the C4-C7 stretching modes are the only C-C stretching predicted in this 

region which is assigned to the weak Raman band at 1248 cm-1. 

  

3.6.1.3. 1000-20 cm-1 region. In this region, the very strong Raman band at 648 cm-1 is assigned to the 

C2-C4 stretching modes, as predicted the SQM calculations for the R(+) and S(-) forms of camphor. On 

the other hand, some CH3 rocking and twisting modes are predicted in this region together with the other 

C-C stretching modes, deformations and torsions modes of three rings and skeletal modes corresponding 

to C8=O1 groups. All these vibration mode are assigned according the SQM calculations performed here 

and, taking into account assignments of compounds with similar groups [43-45,57-61]. 

 

4. Force fields 

The SQMFF methodology and the Molvib program have allowed the determination of harmonic force 

fields for both R(+) and S(-) forms of camphor and, also, of the corresponding scaled force constants 

[34-36]. These parameters are necessary to predict the force of bonds and, for these reasons, they were 

calculated for both forms of camphor in gas phase and aqueous solution by using the B3LYP/6-

311++G** method. The results for both forms in the two studied media are presented in Table 6. We 

can see that the scaled force constants values are the same for both forms and in the two media and, only 

a slight difference in the f(C-C) force constants are observed in solution between the R(+) and S(-) 

forms. Besides, in solution the C8=O1 bonds in both forms are hydrated because the corresponding force 

constants values present a diminishing in solution, as expected because these groups are acceptors H 

bonds. These studies show clearly that both forms can exist in solution, as also suggest the above studies 

performed in this work. Comparisons between the f(CH3) and f(CH2) force constants of both forms of 

camphor with those calculated for promethazine (4.90/4.82 and 4.85/4.74 mdyn Å-1) and chloroquine 

(4.78 and 4.63/4.57 mdyn Å-1) show good concordances [44,58]. 

 

Table 6. Scaled internal force constants for both R(+) and S(-) forms of Camphor in gas phase and aqueous solution by using 

the B3LYP/6-311++G** method. 

 

Force 

constant 

B3LYP/6-311++G** methoda 

Camphor 

Gas Phase Aqueous Solution 

R(+) S(-) R(+) S(-) 

f(C-H) 4.80 4.80 4.80 4.80 

f(C=O) 12.0 12.0 10.7 10.7 

f(C-C) 4.06 4.06 4.14 4.12 

f(CH2) 4.75 4.75 4.75 4.75 

f(CH3) 4.79 4.80 4.78 4.80 

f(CH2) 0.70 0.70 0.70 0.70 

f(CH3) 0.53 0.53 0.52 0.52 

Units are mdyn Å-1 for stretching and mdyn Å rad-2 for angle deformations; aThis work  

5. Ultraviolet-visible spectra  

The electronic spectra of both R(+) and S(-) forms of camphor were predicted in aqueous solution by 

using the B3LYP/6-311++G** method and TD-DFT calculations with the Gaussian 09 program [48]. 

Comparisons between the predicted spectra of R(+) and S(-) forms with the corresponding experimental 

available from Ref [3] are given in Figure 8. A maximum it is observed at 289 nm in the experimental 

available UV-Vis spectrum of camphor in methanol solution taken form Ref [3] while in the 

experimental UV-Vis spectrum recorded for camphor in ethanol solution the position of maximun it is 
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observed at 296 nm [62]. In the predicted UV-Vis spectra for both R(+) and S(-) forms of camphor are 

observed three bands, two intense at 152 and 169 nm while other two at 190 and a very weak at c.a. 300 

nm. Obviously, the predicted bands between 150 and 200 nm are not observed in the experimental 

spectrum because it was recorded between 200 and 400 nm. The low intensity of band predicted for both 

forms of camphor at 300 nm can be atributted to the symmetry forbidden n→π* transition in ketones 

and, hence, camphor has extremely low capacity of UV absorption, as reported by L. Sousa et al. [62]. 

NBO calculations have predicted for both forms of camphor the →* transitions with higher intensities 

(305-302 kJ/mol) while the n→* (182-169 kJ/mol) and →* transitions present lower intensities (62-

58 kJ/mol). Evidently, both UV-Vis spectra predicted for the R(+) and S(-) forms of camphor can be 

present in solution, as also suggest the 1H- and 13C-NMR spectra. 

 
Figure 8. Predicted UV-visible spectra of both R(+) and S(-) forms of camphor in aqueous solution by using the B3LYP/6-

311++G** method compared with the corresponding experimental one taken from Ref [3].  

 

6. Electronic circular dichroism (ECD) 

The ECD spectra of both R(+) and S(-) forms of camphor were predicted in aqueous solution by using 

the B3LYP/6-311++G** method and TD-DFT calculations with the Gaussian 09 program [48]. In 

Figure 9 can be seen comparisons between the predicted spectra of R(+) and S(-) forms with the 

corresponding experimental available from Ref [62].  

 
Figure 9. Predicted ECD spectra of both R(+) and S(-) forms of camphor in aqueous solution by using the B3LYP/6-

311++G** method compared with the corresponding experimental one for the S(-) form of camphor taken from Ref [62].  
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The negative band observed in the predicted ECD spectrum of S(-) form is in accordance with that 

experimental reported for S-camphor at c.a. 300 nm by L. Sousa et al. [62]. The ECD spectrum predicted 

for the R(+) form of camphor is observed a positive band at 300 nm different from the experimental one 

recorded for the S(-) form of camphor, as expected. The graphic for the S(-) form shows an ECD 

spectrum similar to the experimental one (negative value). 

 

Conclusion 

In this work, the structures of two enantiomeric Cis S(-) and R(+) forms of camphor were theoretically 

determined by using hybrid B3LYP/6-311++G** calculations in gas phase and aqueous solution. Very 

good concordances were observed in the geometrical parameters as compared with the corresponding 

experimental of (+)-3-bromocamphor. The properties in solution and the solvation energies were studied 

with the SCRF methods together with IEFPCM and universal solvation methods. Differences in 

solvation energy values of both forms are predicted at the same level of theory having the R(+) form (-

39.65 kJ/mol) a higher value than the other one (-37.56 kJ/mol). Probably, the changes of signs predicted 

in the dihedral C11-C3-C2-C4 angles of both forms in the two media could explain the different 

solvation energy values and the different positions of H atoms of CH3 groups in relation to O1 atoms of 

C8=O1 bonds. Nucleophilic sites are observed on only acceptor H bonds (O1 atoms) in both forms. 

NBO calculations predict only →*, →* and n→* interactions althougth the expected n→* 

transitions due to ketone groups C=O were no predicted. Gap and electrophilicity index (ω) values of 

both forms of camphor are close to the value observed in antiviral thymidine. Such observations could 

be explained by the proximities between the acceptor groups H bonds (C=O) and the CH3 groups present 

in both camphor and thymidine species. Reasonable concordances were found among the predicted 1H- 

and 13C-NMR, UV-visible, ECD, IR and Raman spectra with the corresponding experimental ones. The 

complete vibrational assignments and scaled force constants for both forms camphor are reported for 

first time. 
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