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Abstract

Given two means M and N , the operator MM;N asigning to a given
mean � the mean

MM;N (�)(x; y) =M(�(x;N(x; y)); �(N(x; y); y))

has been de�ned in [7] in connection with Cauchy means: the Cauchy
mean generated by the pair f , g of continuous and strictly monotonic
functions is the unique solution � to the �xed point equation

MA(f);A(g)(�) = �;

where A(f) and A(g) are the quasiarithmetic means respectively generated
by f and g. In this article, the operator MM;N is studied under less
restrictive conditions and a general �xed point point theorem is derived
from an explicit formula for the iterates Mn

M;N . The concept of class of
generalized Cauchy means associated to a given family of mixing pairs of
means is introduced and some distinguished families of pairs are presented.
The question of equality in these classes of means remains a challenging
open problem.

AMSMathematical Subject Classi�cation (2010): 26E60; 47H10.

1 Introduction and preliminaries

Given a real interval I, a function M : In ! I de�ned on I is a mean when it
is internal ; i.e., when it satis�es the property

minfx1; : : : ; xng �M(x1; : : : ; xn) � maxfx1; : : : ; xng; x1; : : : ; xn 2 I: (1)

The mean is said to be strict when the inequalities in (1) are strict provided
that xi 6= xj for a pair i 6= j (strict internality). As a consequence of (1), the
points in the diagonal �(In) = f(x; x; : : : ; x) : x 2 Ig play a special role: on
one hand, the equality

M(x; : : : ; x) = x; x 2 I; (2)
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holds for every mean M , so that means are re�exive functions; on the other, a
mean M turns out to be continuous on every point of �(In). A mean M is said
to be symmetric when

M(x�1 ; : : : ; x�n) =M(x1; : : : ; xn); (3)

for every permutation � = (�1; �2; : : : ; �n) of the set of indexes Sn = f1; : : : ; ng.
The linear means L�(x1; : : : ; xn) =

Pn
i=1 �ixi (�i � 0;

Pn
i=1 �i = 1) as well

as the linear symmetric two-variables mean M�(x; y) = (1 � �)min fx; yg +
�max fx; yg allow making useful explicit computations.
The product order in In is de�ned by

(x1; : : : ; xn) � (y1; : : : ; yn) if and only if xi � yi; i = 1; 2; : : : ; n;

and it will be written (x1; : : : ; xn) � (y1; : : : ; yn) when xi < yi; i = 1; 2; : : : ; n.
A mean M is said to be isotone when preserves the product order in In; i.e.,
when M(x1; : : : ; xn) �M(y1; : : : ; yn) provided that (x1; : : : ; xn) � (y1; : : : ; yn).
M is said to be strictly isotone when M(x1; : : : ; xn) < M(y1; : : : ; yn) provided
that (x1; : : : ; xn) � (y1; : : : ; yn).
If M is a continuous mean and f : I ! R is a strictly monotonic and

continuous function (i.e., a homeomorphism from I onto f(I)), the f-conjugated
Mf of M is the (continuous) mean de�ned on f(I) by

Mf = f �M � (

n timesz }| {
f�1 � � � � � f�1);

i.e.,

Mf (y1; : : : ; yn) = f(M(f
�1(y1); : : : ; f

�1(yn)); y1; : : : ; yn 2 f(I):

WhenM is a given mean and f varies on the set of homeomorphism from I onto
f(I), then Mf runs along the entire class of conjugation of M . For example,
the class of conjugation of the arithmetic mean in n variables A(x1; : : : ; xn) =
(x1 + � � �+ xn) =n is the family of quasiarithmetic means in n-variablesQAn(I) =�
A(f) : f : I ! R homeomorphism

	
, where

A(f)(x1; : : : ; xn) = f
�1
�
f(x1) + � � �+ f(xn)

n

�
= Af�1(x1; : : : ; xn):

The means considered throughout this paper will be continuous means; i.e.,
means that are continuous functions. A mean M satisfying the inequality

jM(y1; : : : ; yn)�M(x1; : : : ; xn)j � max
i=1;2;:::;n

jyi � xij ; (4)

for every pair (x1; : : : ; xn); (y1; : : : ; yn) 2 In is said to be a nonexpansive mean;
while it is said (C)-nonexpansive when the class of conjugation of M contains
a nonexpansive mean; i.e., when there exists a homeomorphism f : I ! R
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such that Mf is nonexpansive. In this paper, a crucial role is reserved for
(C)-nonexpansive means.
After reminding these elementary notions, let us pay attention to the main

subject of this paper. Given a pair of two variables meansM and N on an inter-
val I, the mixing operator MM;N assigns to a mean � another meanMM;N (�)
de�ned by

MM;N (�)(x; y) =M(�(x;N(x; y)); �(N(x; y); y)); x; y 2 I; (5)

the relevant question being that of solving the �xed point equation

MM;N (�) = �: (6)

The mixing operator was considered for the �rst time in [7]. A mean � solving
equation (6) was named there a mixing mean of the pair (M;N) and, in order to
show the existence of mixing means, the Knaster-Tarski Fixed Point Theorem
was applied toMM;N when de�ned on the family of pairs (M;N) composed by
two generalized symmetric means M; N ; i.e., re�exive, symmetric and isotone
functionsM; N : I�I ! I. For a pair (M;N) belonging to this family of means
there are, in general, more that one mixing mean. An extreme case of multi-
plicity is furnished by the pair (max;min), since the equationMmax;min(�) = �
is satis�ed by every generalized symmetric mean.
Even if the uniqueness of mixing means is, in the above context, a hopeless

question, it turns out to be that a unique solution to equation (6) exists when
(M;N) belong to certain families of pairs of means. A relevant family of pairs
is identi�ed in the following ([7], Theor. 2):

Theorem 1 If M = A(f) and N = A(g); then the equation

MA(f);A(g)
(�) = �

has a unique solution � given by

�(x; y) =

(
f�1

�
1

g(y)�g(x)
R y
x
f(�) dg(�)

�
; x 6= y

x; x = y
: (7)

The mean de�ned by (7) is known as Cauchy mean generated by f and g
(cf. [7] and [8], pg. 405 and ¤.) by its connections with the Cauchy Mean Value
Theorem. Indeed, if g is di¤erentiable and F (x) =

R x
x0
f(�) dg(�) for a certain

x0 2 I; then (7) can be rewritten as

F (y)� F (x)
g(y)� g(x) = f(�(x; y)) =

F 0(�(x; y))

g0(�(x; y))
: (8)

Cauchy means generalize Lagrangian means (which are related to the Lagrange
Mean Value Theorem): the Lagrangian mean generated by f is the Cauchy
mean generated by f and g = id. More precisely, the class of Cauchy means
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is the smallest closed under conjugacy class of means containing the class of
Lagrangian means ([7]).
Now, let us consider a family of pairs of means F such that, for every

(M;N) 2 F , there exists a unique solution to the �xed point equation (6).
Throughout this paper, a family F with this property is named a mixing fam-
ily of pairs, while the unique mean � satisfying MM;N (�) = � for a given
(M;N) 2 F is said to be the generalized Cauchy mean corresponding to the
pair (M;N). In generalizing the notation

�
f
g

�
used in [7] to denote the Cauchy

mean generated by f and g, the symbol
�
M
N

�
will be employed for the generalized

Cauchy mean corresponding to the pair (M;N). The class GC(F) of generalized
Cauchy means associated to a mixing family of pairs F is de�ned by

GC(F) =
��
M

N

�
: (M;N) 2 F

�
:

The identi�cation of non trivial mixing families of pairs constitutes, in this
approach, a question of capital importance. A general response to this question
is o¤ered in the subsequent sections of this paper. In Section 2, Dyadic iteration
and binary tree expansion, two iterative algorithms involving means, enable
us to write a formula for the iterates of the mixing operator MM;N . Based
on this formula, a class of pairs FG with unique mixing mean is presented in
Section 3: the class of pairs (A(f); A(g)) composed by quasiarithmetic means
is far exceeding by FG. Examples and commentaries are gather together in
Section 4, while the �nal Section 5 is devoted to study the basic properties of
generalized Cauchy means. At the end of this section, the challenging problem
of representation of generalized Cauchy means is commented.

2 A closed form expression for Mn
M;N

In order to derive a closed form expression for the iterations Mn
M;N of the

operatorMM;N de�ned by (5), two general algorithms involving compositions
of a two variables function F : I � I ! I are now presented. The �rst one,
named dyadic iteration, inductively de�nes a family fF d(x; y) : d 2 D([0; 1])g
of dyadic iterates on [x; y] of F as follows (cf. [5], [4]): the �rst step consists in
setting

F 0(x; y) � x; F 1(x; y) � y; (9)

then, assuming that F
j
2n (x; y) is known for n � 0 and for every 0 � j � 2n, the

inductive step establishes that

F
k

2n+1 (x; y) =

8><>:
F

h
2n (x; y); if k = 2h; 0 � h � 2n

F
�
F

h
2n (x; y); F

h+1
2n (x; y)

�
; if k = 2h+ 1; 0 � h � 2n � 1

:

(10)
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Two dyadic fractions p; q 2 D[0; 1] are said to be consecutive dyadic fractions
when there exist m 2 N0 and 1 � k � 2m, such that

p =
k � 1
2m

and q =
k

2m
: (11)

A useful property of dyadic iterations is stated by the following:

Lemma 2 If p; q 2 D[0; 1] are consecutive dyadic fractions; then, the equality

F r(F p(x; y); F q(x; y)) = F (1�r)p+rq (12)

holds for every dyadic fraction r 2 D[0; 1].

Proof. Assume that the fractions p; q are given by (11) and that r = j=2n.
Let us prove the lemma by induction on n. If n = 0 or n = 1, the equality (12)
reduces to trivial identities. In fact, for n = 0, the equality

F j(F p; F q) = F (1�j)p+jq

is true by (9) whichever be j = 0; 1. Analogously, if n = 1; then,

F
j
2 (F p; F q) = F (1�

j
2 )p+

j
2 q

is a consequence of (9) for j = 0; 2 while, taking into account that p and q are
consecutive dyadic fractions, it is immediately derived from (10) for j = 1.
Now, suppose that the lemma is true for r = j=2n with n � 1 and every

j = 0; 1; : : : ; 2n; let us prove that it is true also for j=2n+1with j = 0; 1; : : : ; 2n+1.
Indeed, if j is even, that is if j = 2i, then j=2n+1 = i=2n and (12) is true by the
inductive hypothesis. On the other hand, if j = 2i� 1 is odd, then, by (10) and
the inductive hypothesis, it can be written

F
2i�1
2n+1 (F p; F q) = F (F

i�1
2n (F p; F q); F

i
2n (F p; F q))

= F (F (1�
i�1
2n )p+

i�1
2n q; F (1�

i
2n )p+

i
2n q); (13)

and, in view of�
1� i� 1

2n

�
k

2m
+
i� 1
2n

k + 1

2m
=

2nk + i� 1
2m+n

;�
1� i

2n

�
k � 1
2m

+
i

2n
k + 1

2m
=

2nk + i

2m+n
;

are consecutive dyadic fractions,

F (F (1�
i�1
2n )p+

i�1
2n q; F (1�

i
2n )p+

i
2n q) = F

(1� i�1
2n )p+

i�1
2n

q+(1� i
2n )p+ i

2n
q

2 = F
(1� 2i�1

2n+1
)p+ 2i�1

2n+1
q
:

(14)
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From (13) and (14) it is obtained

F
2i�1
2n+1 (F p; F q) = F

(1� 2i�1
2n+1

)p+ 2i�1
2n+1

q
;

which completes the inductive proof.
In general, dyadic iterations of a symmetric mean are not symmetric; rather,

one have the following:

Lemma 3 For every d 2 D ([0; 1]),

Md(y; x) =M1�d(x; y); x; y 2 I:

Proof. The simple inductive proof of this lemma can be found in [4].
It should be observed that the dyadic iterationsMd of a meanM are means.

Furthermore, for a strict continuous mean M , the dyadic iterations Md can be
extended from D([0; 1]) to the whole interval [0; 1] by taking limits: for a given
� 2 (0; 1), there exists an increasing sequence fdng1n=1 � D([0; 1]) such that
dn " � when n " +1, and M �(x; y) is de�ned by

M �(x; y) = lim
n"+1

Mdn(x; y): (15)

Namely, the following result, whose proof can be found in [4] (see also [5]), holds.

Theorem 4 For a strictly internal and re�exive function M , the function d 7!
Md(x; y) de�ned on D([0; 1]) is monotonically extended by (15) to the interval
[0; 1]. The extension � 7! M �(x; y) is a continuous function provided that M
is a continuous mean. � 7! M �(x; y) is a monotonic function; increasing when
x < y and decreasing when x > y. Furthermore, M � is a continuous mean when
0 < � < 1 and M0(x; y) = x; M1(x; y) = y.

The second algorithm also applies to a function F : I � I ! I, but this time
the outcome is a family fF (n) : I2n ! Ig in an increasing number of variables.
Concretely, the binary tree extension F (n) of F is inductively de�ned by

F (1)(x 1; x2) = F (x 1; x2) (16)

and

F (n)(x1; : : : ; x2n) = F (F
(n�1)(x1; : : : ; x2n�1); F

(n�1)(x2n�1+1; : : : ; x2n)); n > 1:
(17)

The simple inductive proof of the following result will be omitted.

Lemma 5 The equality

F (n)(x1; : : : ; x2n) = F
(n�k)(F (k)(wk1 ; : : : ; w

k
n�k));

where

wk1 = (x1; : : : ; x2k); w
k
2 = (x2k+1; : : : ; x2k+2k); : : : ; w

k
n�k = (x2n�2k+1; : : : ; x2n);

holds for every 1 � k � n� 1.
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Particularly useful is the case k = 1:

F (n)(x1; : : : ; x2n) = F
(n�1)((F (x2j�1; x2j))

2n�1

j=1 ):

Note that a repeated application of Lemma 5 gives

F (n) = F (n1)(F (n2)(: : : (F (nk); : : : ; F (nk));

provided that n1 + n2 + : : :+ nk = n.
The algorithms de�ned in the precedent paragraphs have a common char-

acteristic: when F = A(f) is a quasiarithmetic mean, Ad(f); d 2 D ([0; 1]), as
well as A(n)(f); n 2 N, can be computed in a closed form. As an easy inductive
reasoning shows, the dyadic iteration Ad(f) of the quasiarithmetic mean A(f) are
given by

Ad(f)(x; y) = f
�1 ((1� d)f(x) + df(y)) ; (18)

thus coinciding with the weighted quasiarithmetic mean with weight d (and same
generator f). In its turn, the binary tree extension A(n)(f) takes the form

A
(n)
(f)(x1; : : : ; x2n) = f

�1

0@ 1

2n

2nX
j=1

f(xj)

1A ; (19)

so thatA(n)(f)(x1; : : : ; x2n) coincides with the quasiarithmetic meanA(f)(x1; : : : ; x2n)
in 2n variables.
Many properties of a mean M are preserved by dyadic iteration or binary

tree extension. Some of them are collected in the following result.

Lemma 6 Let M be a two variables mean; then Md; d 2 D ([0; 1]), and
M (n); n 2 N, are strict, continuous, (strictly) isotone, homogeneous or (C)-
nonexpansive means provided that M is strict, continuous, (strictly) isotone,
homogeneous or (C)-nonexpansive, respectively.

Proof. Let us prove only the preservation of (C)-nonexpansiveness. Clearly,
dyadic iterations and binary tree extensions commutes with conjugations; i.e.,
(Mf )

d
=
�
Md
�
f
and (Mf )

(n)
=
�
M (n)

�
f
for every homeomorphism f and

every d 2 D ([0; 1]) and n 2 N. In this way, it will be enough to prove that
Md or M (n) are nonexpansive when M provided that M is nonexpansive, but
these follow by an inductive reasoning based respectively on (10) and (17). For
instance, assuming that M (n�1) is nonexpansive for a certain n � 2, from (17)
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it is obtained���M (n)((yi)
2n

i=1)�M (n)((xi)
2n

i=1)
���

=
���M(M (n�1)((yi)

2n�1

i=1 );M
(n�1)((yi)

2n

i=2n�1+1))�M(M (n�1)((xi)
2n�1

i=1 );M
(n�1)((xi)

2n

i=2n�1+1))
���

� max
n���M (n�1)((yi)

2n�1

i=1 )�M (n�1)((xi)
2n�1

i=1 )
��� ; ���M (n�1)((yi)

2n

i=2n�1+1)�M (n�1)((xi)
2n

i=2n�1+1)
���o

� max

�
max

i=1;:::;2n�1
jyi � xij ; max

i=2n�1+1;:::;2n
jyi � xij

�
= max

i=1;:::;2n
jyi � xij :

Symmetry of a mean M is a property generally lost by its binary tree exten-
sions M (n). This fact is already manifested for n = 2, since M (2)(x1; x2; x3; x4)
is a symmetric mean if and only, besides of the symmetry condition, the bisym-
metry equation

M(M(x 1; x2);M(x 3; x4)) =M(M(x 1; x3);M(x 2; x4)); (20)

is satis�ed by M . Indeed, the following result holds.

Theorem 7 Assume that M is a symmetric mean; then

i) M (n) is symmetric for every n 2 N if and only if the equation (20) is
satis�ed by M ; moreover,

ii) if M is continuous and strictly isotone, M (n) is symmetric for every
n 2 N if and only if M is quasiarithmetic.

Proof. The proof of this theorem will be only sketched here. The necessity and
su¢ ciency of (20) is immediate for n = 2 and the proof of i) is completed by
induction. To prove ii), the Aczél´s characterization of quasiarithmetic means
as symmetric, continuous and strictly isotone solutions to equation (20) ([1],
Sect. 6.4) is employed.
Now, the iterates of the mixing operator MM;N are expressed in terms of

dyadic iterations of N and binary tree extensions of M .

Theorem 8 For every n 2 N, the iterateMn
M;N ofMM;N is expressed by

Mn
M;N (�) =M

(n)

��
�
�
N

j�1
2n (x; y); N

j
2n (x; y)

��2n
j=1

�
: (21)

Observe that, when M = N ,

Mn
M;M (M) =M

(n)

��
M
�
M

j�1
2n (x; y);M

j
2n (x; y)

��2n
j=1

�
=M (n)

��
M

2j�1
2n+1 (x; y)

�2n
j=1

�
by (10).
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Proof. For n = 1 formula (21) gives

M1
M;N (�) =M

��
�
�
N

j�1
2 (x; y); N

j
2 (x; y)

��2
j=1

�
=MM;N (�):

Assuming that (21) holds for n � 1, (5) and (17) yield

Mn+1
M;N (�) = M(Mn

M;N (�)(x;N(x; y));Mn
M;N (�)(N(x; y); y))

= M

�
M (n)

��
�
�
N

j�1
2n (x;N(x; y)); N

j
2n (x;N(x; y))

��2n
j=1

�
;

M (n)

��
�
�
N

j�1
2n (N(x; y); y); N

j
2n (N(x; y); y)

��2n
j=1

��
;

but, by Lemma 2 with p = 0; q = 1=2 and p = 1=2; q = 1, the equalities

N
k
2n (x;N(x; y)) = N(1�

k
2n )0+

k
2n

1
2 (x; y) = N

k

2n+1 (x; y)

and
N

k
2n (N(x; y); y) = N(1�

k
2n )

1
2+

k
2n (x; y) = N

1
2+

k

2n+1 (x; y)

hold for every k = 0; 1; : : : ; 2n, and therefore

Mn+1
M;N (�) = M

�
M (n)

��
�
�
N

j�1
2n+1 (x; y); N

j

2n+1 (x; y)
��2n

j=1

�
;

M (n)

 �
�

�
N

1
2+

j�1
2n+1 (x; y); N

1
2+

j

2n+1 (x; y)

��2n
j=1

!!

= M (n+1)

 �
�
�
N

j�1
2n+1 (x; y); N

j

2n+1 (x; y)
��2n

j=1
;

�
�

�
N

1
2+

j�1
2n+1 (x; y); N

1
2+

j

2n+1 (x; y)

��2n
j=1

!

= M (n+1)

��
�
�
N

j�1
2n+1 (x; y); N

j

2n+1 (x; y)
��2n+1

j=1

�
;

which completes the inductive reasoning.

3 Generalized Cauchy means

In this section, the expression (21) forMn
M;N given by Theor. 8 will be employed

to study the �xed points of the mixing operator MM;N in a context which is,
in some sense, intermediate: on one hand, it is not so general as to require the
application of �xed points theorems like that of Knaster-Tarski but, on the other,
a class of means much more larger than the class of quasiarithmetic means is
covered by the corresponding theory. The main tools in this approach are order
theoretic and the assumption that M is an isotone mean will be essential since,
if so, then the operator MM;N turns out to be isotone; i.e., if �; � are two
means and � � �, then MM;N (�) � MM;N (�) (the isotonicity of MM;N is
strict provided that M is strictly isotone).
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Let us begin by de�ning two sequences fLn(x; y)g and fUn(x; y)g of functions
as follows: for every n 2 N,

Ln(x; y) =

8>><>>:
M (n)

��
N

j�1
2n (x; y)

�2n
j=1

�
; x � y

M (n)

��
N

j
2n (x; y)

�2n
j=1

�
; x � y

(22)

and

Un(x; y) =

8>><>>:
M (n)

��
N

j
2n (x; y)

�2n
j=1

�
; x � y

M (n)

��
N

j�1
2n (x; y)

�2n
j=1

�
; x � y

: (23)

Since the second members of (22) and (23) are both compositions of means, Ln
and Un are means.

Theorem 9 Let M; N two continuous means such that M is isotone and N is
strict. Then, the means Ln and Un enjoy the following properties:

i) Ln and Un are continuous means satisfying the inequality

Ln(x; y) � Un(x; y); x; y 2 I; (24)

ii) there exist two means L1 and U1 such that, when n " +1, Ln % L1 and
Un & U1, x; y 2 I. L1 is l.s.c., while U1 is u.s.c. in I2. L1 and U1
are comparable one each other:

L1(x; y) � U1(x; y); x; y 2 I; (25)

iii) the equation

Kn+1(x; y) =M(Kn(x;N(x; y));Kn(N(x; y); y)) (26)

is satis�ed by Kn = Ln and also by Kn = Un; n 2 N.

Proof. The continuity of Ln and Un is a consequence of Lemma 6. By Theor.
4, when x � y,

N
j�1
2n (x; y) � N

j
2n (x; y) (27)

for every j = 1; 2; : : : ; 2n and then, the inequality (24) in the case x � y follows
from the isotonicity of M . Clearly, the inequality opposite to (27) holds when
x � y, so that (24) also holds in this case. Now, by (23) and the case k = 1 of
Lemma 5, when x � y it can be written

Un+1(x; y) = M (n+1)

��
N

j

2n+1 (x; y)
�2n+1
j=1

�
= M (n)

��
M(N

2j�1
2n+1 (x; y); N

2j

2n+1 (x; y))
�2n
j=1

�
;

10



and taking into account that N
2j�1
2n+1 (x; y) � N

2j

2n+1 (x; y) by Theor. 4, the
isotonicity of M implies

M (n)

��
M(N

2j�1
2n+1 (x; y); N

2j

2n+1 (x; y))
�2n
j=1

�
� M (n)

��
N

2j

2n+1 (x; y)
�2n
j=1

�
= Un(x; y);

whence Un+1(x; y) � Un(x; y) when x � y. If x � y, it can be similarly written

Un+1(x; y) = M (n+1)

��
N

j�1
2n+1 (x; y)

�2n+1
j=1

�
= M (n)

��
M(N

2(j�1)
2n+1 (x; y); N

2(j�1)+1
2n+1 (x; y))

�2n
j=1

�
� M (n)

��
N

2(j�1)
2n+1 (x; y)

�2n
j=1

�
= Un(x; y):

Since
Un � min fx; yg ; n 2 N;

there exists the limit U1(x; y) = limn"+1 Un(x; y) and, being the limit of a
decreasing sequence of continuous means, it turn out to be an u.s.c. mean.
A similar argument works in the case of Ln. By taking limits when n " +1,
the inequality (25) follows from (24). Finally, to prove the equality (26) for
Kn = Un, let us note that, when x � y, the de�nition of the binary tree
extension M (n) of M and Lemma 2 yield

Un+1(x; y) = M (n+1)

��
N

j

2n+1 (x; y)
�2n+1
j=1

�
= M

�
M (n)

�
N

j

2n+1 (x; y)
�2n
j=1

;M (n)
�
N

j

2n+1 (x; y)
�2n+1
j=2n+1

�
= M

�
M (n)

�
N

j
2n (x;N(x; y))

�2n
j=1

;M (n)
�
N

j
2n (N(x; y); y)

�2n
j=1

�
= M(Un(x;N(x; y)); Un(N(x; y); y)):

The proof of (26) for Kn = Un and x � y is analogous and the case Kn = Ln
can be similarly treated.
In what follows, the means L1 and U1 given by Theor. 9 are to be called

lower and upper means corresponding to the mixing operator MM;N . The
terminology is justi�ed by the fact that the inequalities

Un(x; y) � �(x; y) � Ln(y; x); x; y 2 I; (28)

are satis�ed by every �xed point of the mixing operatorMM;N and therefore,

L1(x; y) = sup
n2N

Ln(x; y) � �(x; y) � inf
n2N

Un(y; x) = U1(x; y); x; y 2 I: (29)

11



Furthermore, taking limits for n " +1 in the equality (26) it is seen that L1
and U1 are �xed points of MM;N . In other words, the set of mixing means
of the pair (M;N) admit a minimum mean L1 and a maximum mean U1,
after which the existence of a generalized Cauchy mean associated toMM;N is
guaranteed by the equality L1 = U1. The converse is also true: if there exists
a unique mean � such that MM;N (�) = �; then L1 = � = U1. In summary,
the following theorem was established.

Theorem 10 Let M; N be two continuous means such that M is isotone and
N is strict. If L1 and U1 are the lower and upper means associated to the
mixing operatorMM;N and � is a mixing mean of the pair (M;N), then

L1(x; y) � �(x; y) � U1(x; y); x; y 2 I:

Furthermore, L1 = U1 if and only if there exists the generalized Cauchy mean�
M
N

�
corresponding to the pair (M;N).

Proof. See the previous discussion.
Note that, when there exists the generalized Cauchy mean

�
M
N

�
corresponding

to the pair (M;N), it admits the representation�
M

N

�
(x; y) = lim

n"+1
M (n)

��
N

j
2n (x; y)

�2n
j=1

�
; x; y 2 I: (30)

A condition ensuring L1 = U1 is furnished by the following result.

Theorem 11 Assume that M; N ful�ll the hypotheses made in Theor. 10 and,
moreover, that M is a (C)-nonexpansive mean; then the equality L1(x; y) =
U1(x; y) holds for every x; y 2 I.

Note that L1(x; y) = U1(x; y) is a continuous mean.
Proof. It will be su¢ cient to prove the theorem in the case in which M is
nonexpansive. In fact, if M is (C)-nonexpansive on I; then, for any homeomor-
phism f : I ! R, the f -conjugated Mf = f �M � (f�1�f�1) is a nonexpansive
mean on f(I). Now, for x; y 2 I, it can be written

MMf ;Nf
(�f )(f(x); f(y)) = f

�
M(f�1

�
�f (f(x); f (N(x; y)))

�
; f�1

�
�f (N(x; y); y)

�
)
�

= f (M (� (x;N(x; y)) ; �(N(x; y); y)))

= f(MM;N (�))(x; y);

whence � is a �xed point ofMM;N if and only if

MMf ;Nf
(�f ) = �f ;

i.e., if and only if �f is a �xed point ofMMf ;Nf
. In view of Nf is a continuous

and strict mean on f(I), this prove the assertion above. Now, after Lemma 6,

12



M (n) is nonexpansive for every n 2 N provided that M is nonexpansive; thus,
for every x; y 2 I,

jUn(x; y)� Ln(x; y)j =

����N (n)

��
N

j
2n (x; y)

�2n
j=1

�
�N (n)

��
N

j�1
2n (x; y)

�2n
j=1

�����
�

�N j
2n (x; y)

�2n
j=1

�
�
N

j�1
2n (x; y)2

n

j=1

�2n
j=1


1
: (31)

Since N is a strict continuous mean, � 7! N �(x; y) is continuous on [0; 1] by
Theor. 4 and therefore, uniformly continuous there so that, given " > 0, there
exists n0 2 N such that�N j

2n (x; y)
�2n
j=1

�
�
N

j�1
2n (x; y)2

n

j=1

�2n
j=1


1
< "; n � n0: (32)

The equality U1 = L1 follows from (31) and (32), which �nishes the proof.
Another statement of Theor. 11 is the following: the family of pairs FG

de�ned by

FG = f(M;N) :M is isotone and (C)-nonexpansive, N is strict and continuousg

constitutes a mixing family. It is clear that the class of pairs (A(f); A(g)) com-
posed by quasiarithmetic means is strictly contained in FG.

4 Examples and remarks

Let M be a nonexpansive mean de�ned on I. Since the nonexpansiveness in-
equality (4) is a Lipschitz condition with an unitary Lipschitz constant, M
turns out to be almost everywhere di¤erentiable by the Rademacher´s Theorem.
By virtue of the Lebesgue´s di¤erentiation of monotonic functions Theorem, a
homeomorphism f : I ! R is also almost everywhere di¤erentiable. In this man-
ner, a (C)-conjugated mean de�ned on I is almost everywhere di¤erentiable on
In. Now, useful criterions of nonexpansiveness and (C)-nonexpansiveness can
be given for di¤erentiable functions. Let us discuss them brie�y in the context
of two variables means (the case of n variables does not present appreciable
di¤erences).
A well-known criterion of nonexpansiveness of a di¤erentiable function F :

I � I ! R is expressed by the inequality

k5F (x; y)k1 = jFx(x; y)j+ jFy(x; y)j � 1; (x; y) 2 I � I: (33)

For an isotone mean, the partial derivatives are non negative; hence, a dif-
ferentiable isotone mean is nonexpansive if and only if the inequality (33)
holds without the absolute-value bars. Now, assume that M is a di¤eren-
tiable mean such that, for a di¤erentiable homeomorphism f , the f -conjugated

13



Mf = f �M � (f�1 � f�1) is nonexpansive. In this instance, the necessary and
su¢ cient condition k5Mf (x; y)k1 � 1; x; y 2 f(I), takes the form��f 0(M(f�1(x); f�1(y))�� �����Mx(f

�1(x); f�1(y))
1

f 0 (f�1(x))

���� +
+

����My(f
�1(x); f�1(y))

1

f 0 (f�1(y))

�����
� 1;

for every x; y 2 f(I) or, equivalently,����Mx(x; y)
1

f 0 (x)

����+ ����My(x; y)
1

f 0 (y)

���� � 1

jf 0(M(x; y)j ; x; y 2 I: (34)

In terms of �(t) = 1= jf 0(t)j ; t 2 I, this inequality becomes

jMx(x; y)j�(x) + jMy(x; y)j�(y) � � (M(x; y)) ; x; y 2 I: (35)

Taking into account that jf 0(t)j > 0; t 2 I , one can state the following result.

Lemma 12 A mean M 2 C1(I� I) is C1-conjugated of a nonexpansive mean if
and only if the inequality (35) is satis�ed by a positive and continuous function
� de�ned on I.

Observe that the inequality (35) with � = const: > 0 corresponds to the
case of a nonexpansive mean M .
Proof. After the preceding discussion it remains to prove only the su¢ ciency.
To this end, choose a point a 2 I and observe that the function de�ned by

f(x) =

Z x

a

d�

�(�)
; x 2 I;

is C1 and strictly increasing in I and therefore, the inverse f�1 : �(I)! I exists
and is a C1 function on �(I). Since f 0(x) = 1=�(x) > 0; x 2 I, the inequality
(35) can be rewritten in the form (34) which, as seen in the discussion above,
turns out to be equivalent to k5Mf (x; y)k1 � 1.
Let M be a di¤erentiable and homogeneous mean on R+; then M satis�es

the Euler´s equation

Mx(x; y)x+My(x; y)y =M(x; y); x; y > 0;

if M is, besides, isotone, then the inequality (35) holds with �(x) � x and
therefore, the following consequence to Lemma 12 can be stated.

Corollary 13 Every di¤erentiable, isotone and homogeneous mean M on R+
is (C)-nonexpansive.

14



In this way, most of the usual means are (C)-nonexpansive and therefore,
this hypothesis is not so stringent as might appear at �rst sight. Under the
hypotheses of the corollary, it is clear that ln (M(ex; ey)) turns out to be a
nonexpansive mean.

Example 14 The Heronian mean HE (cf. [8], pg. 399) is given by

HE(x; y) =
x+ y +

p
xy

3
; x; y > 0:

In view of

(HE)x + (HE)y =
1

3

�
2 +

1

2

�
x+ y
p
xy

��
=

1

3

�
2 +

A(x; y)

G(x; y)

�
� 1

3
(2 + 1) = 1;

with equality if and only x = y, it turns out to be that HE is not a nonex-
pansive mean. However, HE 2 C1(R+ � R+) is (strictly) isotone and ho-
mogeneous, and then HE is (C)-nonexpansive by Cor. 13: lnHE(ex; ey) =
ln
��
ex + ey + e(x+y)=2

�
=3
�
is a nonexpansive mean. On the other side, the

generalized logarithmic mean of order 2 is de�ned (cf. [8], pg. 385) by

L[2](x; y) = F (x; y) =
r
x2 + xy + y2

3
; x; y > 0;

and, as a simple computation shows, it is the Lagrangian mean generated by the
function f(x) = x2; thus, it is (strictly) isotone. Adding the partial derivatives
of L[2] yields

L[2]x + L[2]y =

 r
x2 + xy + y2

3

!�1�
x+ y

2

�
=

A(x; y)

L[2](x; y) � 1; x; y > 0:

The last inequality is derived from the fact that L[2] is a superarithmetic mean:

L[2](x; y) � A(x; y); x; y > 0:

In this way, L[2] turns out to be a symmetric, isotone, strict and nonexpansive
mean. Now, the mean conjugated of L[2] by f(x) = x2 is�

L[2](
p
x;
p
y)
�2
=
x+ y +

p
xy

3
; x; y > 0;

i.e., the Heronian mean HE. This example shows that, for a given (C)-nonexpansive
mean M , there are in general more than one homeomorphism f such that Mf

is nonexpansive.
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Theor. 2 in [7] is easily derived from Theor. 10. In fact, after (18) and (19)
it can be written

Un(x; y) =

8<: f�1
�
1
2n

P2n

j=1 f
�
g�1

�
g(x) + j

2n (g(y)� g(x))
���

; x � y

f�1
�
1
2n

P2n

j=1 f
�
g�1

�
g(x) + j�1

2n (g(y)� g(x))
���

; x � y
;

and it is easy to see that

Un(x; y)! f�1
�Z 1

0

f � g�1 (g(x) + t (g(y)� g(x))) dt
�

when n " +1. Now, for x 6= y,

f�1
�Z 1

0

f � g�1 (g(x) + t (g(y)� g(x))) dt
�

= f�1

 
1

g(y)� g(x)

Z g(y)

g(x)

f � g�1 (�) d�
!

= f�1
�

1

g(y)� g(x)

Z y

x

f(�) dg(�)

�
;

which proves that the generalized Cauchy mean corresponding to the pair (A(f); A(g))
is the Cauchy mean generated by f and g or, in symbols,�

A(f)
A(g)

�
=

�
f

g

�
: (36)

In view of the fact that
�
f
f

�
= A(f), it turns out to be�

A(f)
A(f)

�
= A(f); (37)

i.e., the mean generated by the pair (A(f); A(f)) is A(f).
Partially closed expressions can be written for the generalized Cauchy mean

corresponding to the pair (M;N) if only one component of the pair is quasi-
arithmetic. If M = A(f) and N is a continuous strict mean; then,

lim
n"+1

Un(x; y) = lim
n"+1

8<: f�1
�
1
2n

P2n

j=1 f
�
N

j
2n (x; y)

��
; x � y

f�1
�
1
2n

P2n

j=1 f
�
N

j�1
2n (x; y)

��
; x � y

= f�1
�Z 1

0

f
�
N �(x; y)

�
) d�

�
:

(38)
Now, the map � 7! N �(x; y) is continuous and strictly monotonic by Theor. 4,
so that denoting by �(x; y; �) its (continuous and strictly monotonic) inverse,
the integral in the last member of (38) can be written in the form

f�1
�Z 1

0

f
�
N �(x; y)

�
) d�

�
= f�1

�Z y

x

f (�) d�(x; y; �)

�
;

where
�
d�(x; y; �) : (x; y) 2 I2

	
is a family of Borel probability measures on

[0; 1] (which are absolutely continuous with respect the Lebesgue measure). Ba-
sic results on this type of means can be found in [2].
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On the other side, if M is an isotone and (C)-nonexpansive mean and N =
A(g); then

lim
n"+1

Un(x; y) = lim
n"+1

8<: M (n)
��
g�1

�
(1� j

2n )g(x) +
j
2n g(y)

��2n
j=1

�
; x � y

M (n)
��
g�1

�
(1� j

2n )g(x) +
j
2n g(y)

��2n
j=1

�
; x � y

= lim
n"+1

g�1

 
M (n)
g

 �
(1� j

2n
)g(x) +

j

2n
g(y)

�2n
j=1

!!
:

The next example shows an explicit computation of Ln and Un in the case
of linear means M = L�; N = L� .

Example 15 Let us assume that 0 < �; � < 1 and de�neM(x; y) = L�(x; y) =
(1� �)x+�y and N(x; y) = L�(x; y) = (1� �)x+�y; then, the equalities (26)
give

Kn+1(x; y) = L�(Kn(x; L�(x; y));Kn(L�(x; y); y));

or, setting
Kn(x; y) = (1� �n)x+ �ny;

(1� �n+1)x+ �n+1y = (1� �) [(1� �n)x+ �n ((1� �)x+ �y)] + � [(1� �n) ((1� �)x+ �y) + �ny]
= [1� �� � (�+ � � 2��)�n]x+ [(�+ � � 2��)�n + ��] y:

Hence, the �rst order di¤erence equation

�n+1 = A�n + �� (39)

with A = � + � � 2�� is satis�ed by �n. Note that 0 < A � 1=2 when 0 <
�; � < 1. Once the substitution �n = An�n is made in (39), it is obtained

�n+1 = �n +
��

An+1
:

an equation for �n which is easily solved in the form

�n =
n�1X
k=1

��

Ak+1
+ �1 = �

1

An+1
��
A�An
A� 1 + �1:

Thence,

�n = A
n�n =

��

A

A�An
1�A + �1A

n;

so that, in view of 0 < A < 1=2, �n ! �� (1�A)�1 when n " +1, in-
dependently from the initial value of the sequence; thus, it turns out to be
L1 =M = U1 with

 =
��

1�A =
��

1� (�+ � � 2��) : (40)
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5 Properties of the generalized Cauchy means

As said in the Introduction, Cauchy means constitute a closed under conjugacy
class of means, being this property a clear indicative of the huge size of such class.
A family of pairs F is said to be closed under conjugacy when (Mf ; Nf ) 2 F
for every homeomorphism f : I ! I provided that (M;N) 2 F . For generalized
Cauchy means, the following result holds.

Theorem 16 A class of generalized Cauchy means GC(F) associated to a mix-
ing family F is closed under conjugacy provided that F is closed under conju-
gacy.

Since FG is clearly closed under conjugacy, the class GC(FG) is closed as
well.
Proof. In the proof of Theor. 11, it was established that � is a �xed point
of MM;N if and only if �f is a �xed point of MMf ;Nf

. The theorem is a
straightforward consequence of this fact.
Now, a basic result on comparison of generalized Cauchy means is estab-

lished.

Theorem 17 Let F be a mixing family of pairs (M;N) such that the �rst
components M are isotone means. If (Mi; Ni) 2 F ; i = 1; 2; then�

M1

N1

�
�
�
M2

N2

�
provided that M1 �M2 and N1 � N2.

Proof. A proof of this theorem can be given along the lines traced in [7],
Lemma 3. Here, a proof based on the representation formula (30) is o¤ered.
Clearly, for a pair of comparable means M1; M2, M

(n)
1 � M

(n)
2 ; n 2 N, and

Md
1 � Md

2 ; d 2 D ([0; 1]), provided that N1 � N2. This fact together the
isotonicity of M2 yields�

M1

N1

�
= lim

n"+1
M

(n)
1

��
N

j
2n

1

�2n
j=1

�
� lim

n"+1
M

(n)
2

��
N

j
2n

1

�2n
j=1

�
� lim

n"+1
M

(n)
2

��
N

j
2n

2

�2n
j=1

�
=

�
M2

N2

�
:

This �nishes the proof.
Take, for instance, the mixing family FG; then, the inequalities

G �
�
M

N

�
� A

18



are satis�ed by a mean
�
M
N

�
2GC(FG) provided that

G �M; N � A.

Indeed, the previous theorem yields
�
G
G

�
�
�
M
N

�
�
�
A
A

�
and G =

�
G
G

�
; A =

�
A
A

�
by

(37).
As stated by the next result, other properties of the pair (M;N) are inherited

by the generalized Cauchy mean
�
M
N

�
.

Theorem 18 Let
�
M
N

�
be the generalized Cauchy mean corresponding to the pair

(M;N); then, the following assertions hold:

i)
�
M
N

�
is a strict mean provided that M and N are both strict;

ii)
�
M
N

�
is an isotone mean provided that M and N are both isotone;

iii)
�
M
N

�
is a homogeneous mean provided that M and N are both homogeneous;

iv)
�
M
N

�
is a continuous mean provided that M and N are both continuous.

Proof. i) is a consequence of the case n = 1 of inequalities (25). In fact, if M
and N are strict means; then L1 and U1 turn out to be strict and therefore,

min fx; yg < L1(x; y) �
�
M

N

�
(x; y) � U1(x; y) < max fx; yg ; x 6= y:

Taking into account Lemma 6, the assertions ii) and iii) are easily derived from
the representation formula (30). To prove iv), let us simply observe that the
equality L1 =

�
M
N

�
= U1 holds by Theor. 10 and L1 is l.s.c., while U1 is

u.s.c. in I2 by Theor. 9-ii).
Note that the symmetry of

�
M
N

�
does not �gure in the list of properties inher-

ited from the pair (M;N) given by Theor. 18. Indeed, mixing non symmetric
means may well result in a symmetric mean. For instance, the weight  given
by (40) satis�es  = 1=2 if and only if � + � = 1, so that

�
L�
L1��

�
= L1=2 = A

for every 0 < � < 1. Su¢ cient conditions for the symmetry of
�
M
N

�
are given by

the following:

Theorem 19 Assume thatM is a quasiarithmetic mean and that N is a (strict,
continuous) symmetric mean; then, the means Ln and Un are symmetric for
every n 2 N, as well as their common limit

�
M
N

�
.
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Proof. In view of N
j
2n (y; x) = N1� j

2n (y; x) by Lemma 3 and of M (n) turns
out to be symmetric for every n 2 N by Theor. 7, it can be written

Un(y; x) =

8>><>>:
M (n)

��
N

j
2n (y; x)

�2n
j=1

�
; x � y

M (n)

��
N

j�1
2n (y; x)

�2n
j=1

�
; x � y

=

8>><>>:
M (n)

��
N1� j

2n (x; y)
�2n
j=1

�
; x � y

M (n)

��
N1� j�1

2n (x; y)
�2n
j=1

�
; x � y

=

8>><>>:
M (n)

��
N

j
2n (x; y)

�2n
j=1

�
; x � y

M (n)

��
N

j�1
2n (x; y)

�2n
j=1

�
; x � y

= Un(x; y):

A similar argument shows the symmetry of Ln. The symmetry of
�
M
N

�
follows

by taking limits for n tending to +1 in the above equality.
To end this paper, let us recall that once de�ned a certain class M(I) of

means on an interval I, a basic question is the problem of representation (some-
times referred as equality problem) of the means belonging toM(I) : how many
equivalent expressions of a mean M 2 M(I) are there? Probably, the �rst
problem of representation was considered by G. Hardy, J. E. Littlewood and G.
Pólya, who �nd in [9] all pairs f; g such that A(f) = A(g). A suitable response
to the problem is also known for several classes of mean besides of quasiarith-
metic ones, majorly for such classes admitting a �nite number of generators like
Lagrangian or anti-Lagrangian means ([6], [7]), Bajraktarevíc means ([12]), gen-
eralized weighted means ([11]) and many others. In regards to (two variables)
Cauchy means, L. Losonczi has solved in [14] the problem of representation in
the case of su¢ ciently regular (seven times di¤erentiable) generators (see also
[13] and [3]). J. Matkowski has shown in [10] that the regularity hypothesis on
the generators can be really omitted. Now well, given a mixing family of pairs
F , the problem of representation in the class GC(F) consists of determining
the pairs (Mi; Ni) 2GC(F); i = 1; 2, such that�

M1

N1

�
=

�
M2

N2

�
; (41)

or, equivalently, of �nding the solutions � to the simultaneous functional equa-
tions �

M1(�(x;N1(x; y)); �(N1(x; y); y)) = �(x; y)
M2(�(x;N2(x; y)); �(N2(x; y); y)) = �(x; y)

; x; y 2 I:

When M is isotone and N is strict, the representation formula (30) enable us
to write the equality (41) in the form

lim
n"+1

M
(n)
1

��
N

j
2n

1 (x; y)
�2n
j=1

�
= lim

n"+1
M

(n)
2

��
N

j
2n

2 (x; y)
�2n
j=1

�
; x; y 2 I:
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It is apparent that the di¢ culty of the problem of representation in the class
GC(F) increases with the size of the mixing family F .
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