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Abstract. We present a new criterion for the weighted Lp−Lq bound-
edness of multiplier operators for Laguerre and Hermite expansions that
arise from a Laplace-Stieltjes transform. As a special case, we recover
known results on weighted estimates for Laguerre and Hermite fractional
integrals with a unified and simpler approach.

1. Introduction

The aim of this paper is to obtain weighted estimates for multipliers of

Laplace transform type for Laguerre and Hermite orthogonal expansions.

To explain our results, consider the system of Laguerre functions, for fixed

α > −1, given by

lαk (x) =

(
k!

Γ(k + α + 1)

) 1
2

e−
x
2Lαk (x) , k ∈ N0

where Lαk (x) are the Laguerre polynomials. The lαk (x) are eigenfunctions

with eigenvalues λα,k = k + (α + 1)/2 of the differential operator

(1.1) L = −
(
x
d2

dx2
+ (α + 1)

d

dx
− x

4

)
and are an orthonormal basis in L2(R+, x

αdx). Therefore, for γ < p(α+1)−1

we can associate to any f ∈ Lp(R+, x
γ dx) its Laguerre series:

f(x) ∼
∞∑
k=0

aα,k(f)lαk (x), aα,k(f) =

∫ ∞
0

f(x)lαk (x)xαdx

and, given a bounded sequence {mk}, we can define a multiplier operator

by

(1.2) Mα,mf(x) ∼
∞∑
k=0

aα,k(f)mkl
α
k (x).

The main example of the kind of multipliers we are interested in is the

Laguerre fractional integral, introduced by G. Gasper, K. Stempak and W.
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2 P. L. DE NÁPOLI, I. DRELICHMAN, AND R. G. DURÁN

Trebels in [7] as an analogue in the Laguerre setting of the classical fractional

integral of Fourier analysis, and given by

Iσf(x) ∼
∞∑
k=0

(k + 1)−σaα,kl
α
k (x).

In [7] the aforementioned authors obtained weighted estimates for this

operator that were later improved by G. Gasper and W. Trebels in [8] using

a completely different proof. In this work we recover some of the ideas of the

original method of [7], but simplifying the proof in many technical details

and extending it to obtain a better range of exponents that, in particular,

give the same result of [8] for the Laguerre fractional integral. Moreover, we

show that our proof applies to a wide class of multipliers, namely multipliers

arising from a Laplace-Stieltjes transform, which are of the form (1.2) with

mk = m(k) given by the Laplace-Stieljtes transform of some real-valued

function Ψ(t), that is,

(1.3) m(s) = LΨ(s) :=

∫ ∞
0

e−stdΨ(t).

We will assume that Ψ is of bounded variation in R+, so that the Laplace

transform converges absolutely in the half plane Re(s) ≥ 0 (see [22, Chapter

2]) and the definition of the operator Mα,m makes sense.

Multipliers of this kind are quite natural to consider and, indeed, a

slightly different definition is given by E. M. Stein in [16] and was previously

used in the unweighted setting by E. Sasso in [15]. More recently, B. Wróbel

[23] has obtained weighted Lp estimates for the both the kind of multipliers

considered in [16] and the ones considered here when α ∈ {−1
2
} ∪ [1

2
,∞),

by proving that they are Calderón-Zygmund operators (see Section 4 below

for a precise comparison of results). Also, let us mention that T. Mart́ınez

has considered multipliers of Laplace transform type for ultraspherical ex-

pansions in [12].

Other kind of multipliers for Laguerre expansions have also been con-

sidered, see, for instance, [7, 18, 20] where boundedness criteria are given

in terms of difference operators. In our case, we will only require minimal

assumptions on the function Ψ, which are more natural in our context, and

easier to verify in the case of the Laguerre fractional integral and in other

examples that we will consider later. Indeed, the main theorem we will prove

for multipliers for Laguerre expansions reads as follows:

Theorem 1.1. Assume that α > −1 and that Mα,m is a multiplier of

Laplace transform type for Laguerre expansions, given by (1.2) and (1.3),

such that:
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(H1) ∫ ∞
0

|dΨ|(t) < +∞;

(H2) there exist δ > 0, 0 < σ < α + 1, and C > 0 such that

|Ψ(t)| ≤ Ctσ for 0 ≤ t ≤ δ.

Then Mα,m can be extended to a bounded operator such that

‖Mα,mf‖Lq(R+,x(α−bq)) ≤ C‖f‖Lp(R+,x(α+ap))

provided that the following conditions hold:

1 < p ≤ q <∞ , a <
α + 1

p′
, b <

α + 1

q

and (
1

q
− 1

p

)(
α +

1

2

)
≤ a+ b ≤

(
1

q
− 1

p

)
(α + 1) + σ.

Besides the system {lαk}k≥0, other families of Laguerre functions have

been considered in the literature, and using an idea due to I. Abu-Falah,

R. A. Maćıas, C. Segovia and J. L. Torrea [1] we will show that analogues

of Theorem 1.1 hold for those families with appropriate changes in the

exponents (see Section 3 for the precise statement of results).

Finally, the well-known connection between Laguerre and Hermite ex-

pansions will allow us to extend the above result to an analogous result

for Laplace type multipliers for Hermite expansions. To make this precise,

recall that, given f ∈ L2(R), we can consider its Hermite series expansion

f ∼
∞∑
k=0

ck(f)hk, ck(f) =

∫ ∞
−∞

f(x)hk(x)dx.

where hk are the Hermite functions given by

hk(x) =
(−1)k

(2kk!π1/2)1/2
Hk(x)e−

x2

2 ,

which are the normalized eigenfunctions of the Harmonic oscillator operator

H = − d2

dx2
+ |x|2.

As before, given a bounded sequence {mk} we can define a multiplier

operator by

(1.4) MH,mf ∼
∞∑
k=0

ck(f)mkhk

and we say that it is a Laplace transform type multiplier if equation (1.3)

holds. Then, we have the following analogue of Theorem 1.1, which, in the
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case of the Hermite fractional integral (that is, for mk = (2k + 1)−σ), gives

the same result of [14, Theorem 2.5] in the one-dimensional case:

Theorem 1.2. Assume that MH,m is a multiplier of Laplace transform type

for Hermite expansions, given by (1.4) and (1.3), such that:

(H1h) ∫ ∞
0

|dΨ|(t) < +∞;

(H2h) there exist δ > 0, 0 < σ < 1
2
, and C > 0 such that

|Ψ(t)| ≤ Ctσ for 0 ≤ t ≤ δ.

Then MH,m can be extended to a bounded operator such that

‖MH,mf‖Lq(R,x−bq) ≤ C‖f‖Lp(R,xap)

provided that the following conditions hold:

1 < p ≤ q <∞ , a <
1

p′
, b <

1

q

and

0 ≤ a+ b ≤ 1

q
− 1

p
+ 2σ.

The remainder of this paper is organized as follows. In Section 2 we prove

Theorem 1.1. For the case α ≥ 0 the proof relies on the representation of

the operator as a twisted generalized convolution, already used in [7] for

the Laguerre fractional integral. However, instead of using the method of

that paper to obtain weighted bounds, we give a simpler proof based on the

use of Young’s inequality in the multiplicative group (R+, ·), which allows

us to obtain a wider range of exponents. Moreover, we obtain an estimate

for the convolution kernel which simplifies and generalizes Lemma 2.1 from

[7]. For the case −1 < α < 0 the result is obtained from the previous case

by means of a weighted transplantation theorem from [6]. A similar idea

was used by Y. Kanjin and E. Sato in [10] to prove unweighted estimates

for the Laguerre fractional integral using a transplantation theorem from

[9]. In Section 3 we obtain the analogues of Theorem 1.1 for other Laguerre

systems using an idea from [1]. In Section 4 we exploit the relation between

Laguerre and Hermite expansions to derive Theorem 1.2 from Theorem 1.1.

Finally, in Section 5 we present some examples of operators covered by the

two main theorems and make some further comments.
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2. Proof of the theorem in the Laguerre case

In this section we prove Theorem 1.1. We will divide the proof in three

steps:

(1) We write the operator as a twisted generalized convolution and ob-

tain the estimate for the convolution kernel when α ≥ 0. This part

of the proof follows essentially the ideas of [7], but in the more gen-

eral setting of multipliers of Laplace transform type. In particular,

we provide an easier proof of the analogue of [7, Lemma 2.1] in this

setting (see Lemma 2.1 below).

(2) We complete the proof of the theorem in the case α ≥ 0 by proving

weighted estimates for the generalized euclidean convolution.

(3) We extend the results to the case −1 < α < 0 using the case α ≥ 0

and a weighted transplantation theorem from [6] (Lemma 2.5 below).

2.1. Step 1: representing the multiplier operator as a twisted gen-

eralized convolution when α ≥ 0. Following [13, 2] we define the twisted

generalized convolution of F and G by

F ×G :=

∫ ∞
0

τxF (y)G(y) y2α+1 dy

where the twisted translation operator is defined by

τxF (y) =
Γ(α + 1)

π1/2Γ(α + 1/2)

∫ π

0

F ((x, y)θ)Jα−1/2(xy sin θ)(sin θ)2α dθ

with

Jβ(x) = Γ(β + 1)Jβ(x)/(x/2)β

Jβ(x) being the Bessel function of order β and

(x, y)θ = (x2 + y2 − 2xy cos θ)1/2.

Then, we have (formally) that

(2.1) Mα,mf(x2) = F ×G

where

F (y) = f(y2) , G(y) = g(y2)

and

(2.2) g(x) ∼ 1

Γ(α + 1)

∞∑
k=0

mkL
α
k (x)e−

x
2 .

Recalling that |Jβ(x)| ≤ Cβ if β ≥ −1
2
, we have that:

(2.3) |F ×G| ≤ C(|F | ? |G|)
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where ? denotes the generalized Euclidean convolution which is defined by

(2.4) F ? G(x) :=

∫ ∞
0

τEx F (y)G(y) y2α+1 dy

with

(2.5) τEx F (y) :=
Γ(α + 1)

π1/2Γ(α + 1/2)

∫ π

0

F ((x, y)θ)(sin θ)
2α dθ.

As a consequence of (2.1) and (2.3), the operator Mα,m is pointwise

bounded by a generalized euclidean convolution with the kernel G (with re-

spect to the measure x2α+1 dx). Therefore, we need to obtain an appropriate

estimate for G(x) = g(x2), that essentially is:

|g(x)| ≤ Cxσ−α−1 for α ≥ 0 and 0 < σ < α + 1

(see Lemma 2.1 below for a precise statement).

This generalizes the result given in [7, Lemma 2.1] but, while in that

paper the proof of the corresponding estimate is based on delicate pointwise

estimates for the Laguerre functions, our proof is based on the following

generating function for the Laguerre polynomials (see, for instance, [20]):

(2.6)
∞∑
k=0

Lαk (x)wk = (1− w)−α−1e−
xw

1−w := Zα,x(w) (|w| < 1).

To explain our ideas, we point out that if the series in (2.2) were conver-

gent (this need not be the case) we would have:

g(x) =
1

Γ(α + 1)

∞∑
k=0

mkL
α
k (x)e−

x
2

=
1

Γ(α + 1)

∞∑
k=0

(∫ ∞
0

e−ktdΨ(t)

)
Lαk (x)e−

x
2

=
1

Γ(α + 1)
e−

x
2

∫ ∞
0

Zα,x(e
−t) dΨ(t).

The main advantage of this formula is that it shields a rather explicit

expression for g in which, thanks to (2.6), the Laguerre polynomials do not

appear.

However, in general it is not clear if the series in (2.2) is convergent (not

even in the special case of the Laguerre fractional integral m(t) = tσ−1).

Moreover, the integration of the series in Zα,x(w) is difficult to justify since

it is not uniformly convergent in the interval [0, 1] (because Zα,x(w) is not

analytical for w = 1).

Nevertheless, we will see that the formal manipulations above can be

given a rigorous meaning if we agree in understanding the convergence of
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the series in (2.2) in the Abel sense. For this purpose, we introduce a regu-

larization parameter ρ ∈ (0, 1), we consider the regularized function

(2.7) gρ(x) =
1

Γ(α + 1)

∞∑
k=0

mkρ
kLαk (x)e−

x
2

and recall that the series in (2.2) is summable in Abel sense to the limit

g(x) if there exists the limit

g(x) = lim
ρ→1

gρ(x).

With this definition in mind, we can give a rigorous meaning to the

heuristic idea described above. More precisely, we will prove the following:

Lemma 2.1. Let gρ be defined by (2.7). Then:

(1) For 0 < ρ < 1 the series (2.7) converges absolutely.

(2) The following representation formula holds:

(2.8) gρ(x) =
1

Γ(α + 1)

∫ ∞
0

Zα,x(ρe
−t) dΨ(t).

(3) If we define g(x) by setting ρ = 1 in this representation formula, g(x)

is well defined and the series (2.2) converges to g(x) in the Abel sense.

(4) If α > 0, 0 < ρ0 < ρ ≤ 1 and 0 < σ < α + 1, then

|gρ(x)| ≤ Cxσ−α−1,

with a constant C = C(α, σ) independent of ρ.

Proof. (1) Observe first that hypothesis (H1) implies that (mk) is a bounded

sequence. Indeed,

|mk| ≤
∫ ∞

0

e−kt|dφ|(t) ≤
∫ ∞

0

|dφ|(t) = C < +∞.

Now recall that ([20, Lemma 1.5.3]), if ν = ν(k) = 4k + 2α + 2,

|lαk (x)| ≤ C(xν)−
1
4 if

1

ν
≤ x ≤ ν

2
.

Therefore, if we fix x, for k ≥ k0, x is in the region where this estimate holds

(since ν → +∞ when k → +∞), and from Stirling’s formula we deduce that

k!

Γ(k + α + 1)
=

Γ(k + 1)

Γ(k + α + 1)
= O(k−α).

Then we have the following estimate for the terms of the series in (2.7)

|mkρ
kLαk (x)|e−

x
2 ≤ C(x)ρkk−σ for k ≥ k0,



8 P. L. DE NÁPOLI, I. DRELICHMAN, AND R. G. DURÁN

and, since ρ < 1, this implies that the series converges absolutely.1

(2) First, observe that Zα,x(w) is continuous as a function of a real vari-

able for w ∈ [0, 1] (if we define Zα,x(1) = 0) and, therefore, it is bounded,

say

|Zα,x(w)| ≤ C = C(α, x) for w ∈ [0, 1].

Hence, using hypothesis (H1) we see that the integral in the representa-

tion formula is convergent for any ρ ∈ [0, 1]. Moreover, from our assumptions

we have that, for ρ < 1,

gρ(x) =
1

Γ(α + 1)

∞∑
k=0

mkρ
kLαk (x)e−

x
2

=
1

Γ(α + 1)

∞∑
k=0

(∫ ∞
0

ρke−ktdΨ(t)

)
Lαk (x)e−

x
2

= lim
N→+∞

1

Γ(α + 1)

N∑
k=0

(∫ ∞
0

ρke−ktdΨ(t)

)
Lαk (x)e−

x
2

= lim
N→+∞

1

Γ(α + 1)
e−

x
2

∫ ∞
0

Z(N)
α,x (ρe−t) dΨ(t)(2.9)

where

Z(N)
α,x (w) =

N∑
k=0

Lαk (x)wk

denotes a partial sum of the series for Zα,x(w). Now, since ρ < 1, that series

converges uniformly in the interval [0, ρ], so that given ε > 0 there exists

N0 = N0(ε) such that

|Zα,x(w)− Z(N)
α,x (w)| < ε if N ≥ N0.

Using this estimate and hypothesis (H1), we obtain∣∣∣∣∫ ∞
0

Zα,x(ρe
−t) dΨ(t)−

∫ ∞
0

Z(N)
α,x (ρe−t) dΨ(t)

∣∣∣∣
≤
∫ ∞

0

|Zα,x(ρe−t)− Z(N)
α,x (ρe−t)| |dΨ|(t)

≤ Cε

from which we conclude that

(2.10) lim
N→+∞

∫ ∞
0

Z(N)
α,x (ρe−t) dΨ(t) =

∫ ∞
0

Zα,x(ρe
−t) dΨ(t)

and, replacing (2.10) into (2.9) we obtain (2.8).

1K. Stempak has observed that this result can be also justified by observing that, for
fixed x, Lαk (x) has at most polynomial growth with k →∞ (see, for instance, (7.6.9) and
(7.6.10) in [19]). Hence, the polynomial growth of Lαk (x) versus the exponential decay of
ρk, with mk disregarded as a bounded sequence, produce an absolutely convergent series.
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(3) We have already observed that the integral in (2.8) is convergent

for ρ = 1. Moreover, the bound we have proved above for Zα,x, and (H1)

imply that we can apply the Lebesgue bounded convergence theorem to

this integral (with a constant majorant function, which is integrable with

respect to |dΨ|(t) by (H1)), to conclude that g(x) = limρ→1 gρ(x).

(4) Let δ be as in (H2) and observe that

Γ(α + 1)gρ(x) = e−
x
2

∫ ∞
0

Zα,x(ρe
−t)dΨ(t)

= e−
x
2

∫ δ

0

Zα,x(ρe
−t)dΨ(t) + e−

x
2

∫ ∞
δ

Zα,x(ρe
−t)dΨ(t)

= e−
x
2

∫ δ

0

Z ′α,x(ρe
−t)ρe−tΨ(t) dt︸ ︷︷ ︸

(i)

+ e−
x
2Zα,x(ρe

−δ)Ψ(δ)︸ ︷︷ ︸
(ii)

− e−
x
2Zα,x(ρ)Ψ(0)︸ ︷︷ ︸

(iii)

+ e−
x
2

∫ ∞
δ

Zα,x(ρe
−t)dΨ(t)︸ ︷︷ ︸

(iv)

Since |Zα,x(ρe−δ)| ≤ (1− ρe−δ)−α−1 ≤ Cδ, Ψ(0) = 0, and σ − α− 1 < 0,

clearly (ii) ≤ Cxσ−α−1 and (iii) vanishes.

To bound (iv), notice that if ω = ρe−t and t > δ, 0 ≤ Zα,x(ω) ≤ Mδ.

Therefore, using (H1) and the fact that σ − α− 1 < 0 we obtain

(iv) ≤ e−
x
2Mδ

∫ ∞
δ

|dΨ|(t) ≤ Cxσ−α−1.

Now, observing that

Z ′α,x(ω) = (α + 1)Zα+1,x(ω)− xZα+2,x(ω).

and using (H2), we obtain

(i) ≤ Ce−
x
2

∫ δ

0

Zα+1,x(ρe
−t)ρe−ttσ dt

+ e−
x
2

∫ δ

0

xZα+2,x(ρe
−t)ρe−ttσ dt

and the wanted estimates in this case follow by a direct application of the

following lemma. �

Lemma 2.2. In the conditions of Lemma 2.1(4), if

I(x) = e−
x
2

∫ δ

0

Zβ,x(ρe
−t)ρe−ttσ dt,

and β = α + 1 or β = α + 2 then, |I(x)| ≤ Cxσ−β with C = C(β, σ, δ, ρ0).
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Proof. Making the change of variables w = ρe−t, and recalling the definition

of Zβ,x(w) given by (2.6), we see that

I(x) = e−
x
2

∫ ρ

ρe−δ
(1− w)−β−1e−

xw
1−w logσ

( ρ
w

)
dw

Making a further change of variables u = 1
2

+ w
1−w and setting cδ = e−δ

this is

I(x) =

∫ 1
2
+ ρ

1−ρ

1
2
+

cδρ

1−cδρ

(
u+

1

2

)β+1

e−ux
[
log

(
ρ
u+ 1

2

u− 1
2

)]σ
1(

u+ 1
2

)2 du
≤ C

∫ 1
2
+ ρ

1−ρ

1
2
+

cδρ

1−cδρ

uβ−1e−ux
(
u− 1

2

)−σ [
u(ρ− 1) +

1

2
(ρ+ 1)

]σ
︸ ︷︷ ︸

:=ũ(ρ)

du(2.11)

where in (2.11) we have used that, since

ρ
u+ 1

2

u− 1
2

= 1 +
u(ρ− 1) + 1

2
(ρ+ 1)

u− 1
2

,

then

log

(
ρ
u+ 1

2

u− 1
2

)
≤
u(ρ− 1) + 1

2
(ρ+ 1)

u− 1
2

.

Since 1
2
< u ≤ 1

2
+ ρ

1−ρ , it is immediate that

0 ≤ u(ρ− 1) +
1

2
(ρ+ 1) ≤ ρ,

which, using that σ ≥ 0, implies ũ(ρ) ≤ 1.

Also, since

u ≥ 1

2
+

cδρ0

1− cδρ0

>
1

2

we have that (
u− 1

2

)−σ
≤ Cu−σ

where the constant depends only on ρ0 and δ. Therefore,

I(x) ≤ C

∫ ∞
0

uβ−σ−1e−ux du

= Cx−β+σ

∫ ∞
0

vβ−σ−1e−v dv(2.12)

≤ Cx−β+σ(2.13)

where in (2.12) we have made the change of variables v = ux, and in (2.13)

we have used that β − σ − 1 > −1 because β = α + 1 or β = α + 2.

�
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2.2. Step 2: weighted estimates for the generalized Euclidean con-

volution. Following the idea of the previous section, we define a regularized

multiplier operator Mα,m,ρ by:

(2.14) Mα,m,ρf(x) :=
∞∑
k=0

mkρ
kak,α(f)lαk (x)

In this section we will obtain the estimate

(2.15)

(∫ ∞
0

|Mα,m,ρ(f)|qxα−bq dx
) 1

q

≤ C

(∫ ∞
0

|f |pxα+ap dx

) 1
p

for f ∈ Lp(R+, x
α+ap) with a constant C independent of the regularization

parameter ρ and appropriate a, b (see Theorem 2.3).

Indeed, the operator can be expressed as before as a twisted generalized

convolution with kernel Gρ(y) = gρ(y
2) (in place of G), and by Lemma 2.1,

if F (y) = f(y2), we have the pointwise bound

|Mα,m,ρf(x2)| ≤ (|F | ? |Gρ|)(x) ≤ C(|F | ? |x2(σ−α−1)|)(x).

Therefore, (2.15) will follow from a weighted inequality for the generalized

Euclidean convolution with kernel Kσ := x2(σ−α−1) (Theorem 2.3).

Once we have (2.15), Theorem 1.1 will follow by a standard density

argument. Indeed, if we consider the space

E = {f(x) = p(x)e−
x
2 : 0 ≤ x, p(x) a polynomial},

any f ∈ E has only a finite number of non-vanishing Laguerre coefficients.

In that case, it is straightforward that Mα,mf(x) is well-defined and:

Mα,mf(x) = lim
ρ→1

Mα,m,ρf(x).

Then, by Fatou’s lemma,∫ ∞
0

|Mα,m(f)|qxα−bq dx ≤ lim
ρ→1

∫ ∞
0

|Mα,m,ρ(f)|qxα−bq dx

and, therefore, we obtain(∫ ∞
0

|Mα,m,ρ(f)|qxα−bq dx
) 1

q

≤ C

(∫ ∞
0

|f |pxα+ap dx

) 1
p

∀f ∈ E.

Since E is dense in Lp(R+, x
α+ap), we deduce that Mα,m can be extended

to a bounded operator from Lp(R+, x
α+ap) to Lq(R+, x

α−bq). Moreover, the

extended operator satisfies:

Mα,mf = lim
ρ→1

Mα,m,ρf.

This means that the formula (1.2) is valid for f ∈ Lp(R+, x
α+ap) if the

summation is interpreted in the Abel sense with convergence in Lq(R+, x
α−bq).
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Therefore, to conclude the proof of Theorem 1.1 in the case α ≥ 0 it is

enough to see that the following result holds:

Theorem 2.3. Let α ≥ 0, 0 < σ < α + 1 and Mα,m,ρ be given by (2.14)

such that it satisfies (H1) and (H2). Then, for all f ∈ Lp(R+, x
α+ap), the

following estimate holds

‖Mα,m,ρf(x2)x−2b‖Lq(R+,x2α+1) ≤ ‖f(x2)x2a‖Lp(R+,x2α+1)

provided that

a <
α + 1

p′
, b <

α + 1

q

and that (
1

q
− 1

p

)(
α +

1

2

)
≤ a+ b ≤

(
1

q
− 1

p

)
(α + 1) + σ

Proof. First, notice that if condition (H2) holds for a certain 0 < σ0 < α+1,

then it also holds for any 0 < σ < σ0. Therefore, it suffices to prove the

theorem in the case a+b = (1
q
− 1
p
)(α+1)+σ which in turn, by the conditions

above, implies σ ≥ −1
2

(
1
q
− 1

p

)
.

Let Kσ(x) := x2(σ−α−1), F (y) = f(y2) and recall that

|Mα,m,ρf(x2)| ≤ C(|F | ? |Kσ|)(x)

where ? denotes the generalized euclidean convolution defined by (2.4).

We begin by computing the generalized Euclidean translation ofKσ given

by (2.5). Making the change of variables

t = cos θ ⇒ dt = − sin θ dθ = −
√

1− t2 dθ

we see that

τEx Kσ(y) = C(α)

∫ 1

−1

(x2 + y2 − 2xyt)σ−α−1(1− t2)α−
1
2 dt.

Following the notation of our previous work [5], if we let

Iγ,k(r) :=

∫ 1

−1

(1− t2)k

(1− 2rt+ r2)
γ
2

dt,

then

τEx Kσ(y) = C(α)y2(σ−α−1)I2(1+α−σ),α− 1
2

(
x

y

)
and, therefore,

Kσ ? F (x) = C

∫ ∞
0

y2(σ−α−1)I2(1+α−σ),α− 1
2

(
x

y

)
F (y)y2α+1dy

= C

∫ ∞
0

y2σI2(1+α−σ),α− 1
2

(
x

y

)
F (y)

dy

y
(2.16)
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Now,

‖Mα,m,ρf(x2)x−2b‖Lq(R+,x2α+1) ≤ C‖[Kσ ? F (x)]x−2b‖Lq(R+,x2α+1)

= C

(∫ ∞
0

|Kσ ? F (x)x−2b|qx2α+1 dx

) 1
q

= C

(∫ ∞
0

∣∣∣Kσ ? F (x)x
2α+2
q
−2b
∣∣∣q dx

x

) 1
q

but, by (2.16),

[Kσ ? F (x)]x
2α+2
q
−2b

= C

∫ ∞
0

y2σx
2α+2
q
−2bI2(1+α−σ),α− 1

2

(
x

y

)
F (y)

dy

y

= C

∫ ∞
0

(y
x

)−[ 2α+2
q
−2b]

I2(1−α−σ),α− 1
2

(
x

y

)
F (y)y2σ+ 2α+2

q
−2bdy

y

= [y
2α+2
q
−2bI2(1+α−σ),α− 1

2
(y) ∗ F (y)y2σ+ 2α+2

q
−2b](x)

where ∗ denotes the convolution in R+ with respect to the Haar measure
dx
x

.

Then, by Young’s inequality:

‖Mα,m,ρf(x2)x−2b‖Lq(R+,x2α+1)

≤ ‖F (x)x2σ+ 2α+2
q
−2b‖Lp( dxx )‖x

2α+2
q
−2bI2(1+α−σ),α− 1

2
(x)‖Ls,∞( dx

x
)

provided that:

(2.17)
1

p
+

1

s
= 1 +

1

q
.

Since we are assuming that a+ b =
(

1
q
− 1

p

)
(α + 1) + σ, we have that

‖F (x)x2σ+ 2α+2
q
−2b‖Lp( dxx ) =

(∫ ∞
0

|F (x)x2σ+ 2α+2
q
−2b|p dx

x

) 1
p

=

(∫ ∞
0

|F (x)x2a+ 2α+2
p |p dx

x

) 1
p

= ‖F (x)x2a‖Lp(R+,x2α+1)

= ‖f(x2)x2a‖Lp(R+,x2α+1)

whence, to conclude the proof of the theorem it suffices to see that

‖x
2α+2
q
−2bI2(1+α−σ),α− 1

2
(x)‖Ls,∞( dx

x
) < +∞.

For this purpose, we shall use the following lemma, which is a generaliza-

tion of our previous result [5, Lemma 4.2]. The first part of the proof is the

same as in that lemma, but it is included here for the sake of completeness:
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Lemma 2.4. Let

Iγ,k(r) =

∫ 1

−1

(1− t2)k

(1− 2rt+ r2)
γ
2

dt

Then, for r ∼ 1 and k > −1, we have that

|Iγ,k(r)| ≤


Cγ,k if γ < 2k + 2
Cγ,k log 1

|1−r| if γ = 2k + 2

Cγ,k|1− r|−γ+2k+2 if γ > 2k + 2

Proof. Assume first that k ∈ N0 and −γ
2

+ k > −1. Then,

Iγ,k(1) ∼
∫ 1

−1

(1− t2)k

(2− 2t)
γ
2

dt ∼ C

∫ 1

−1

(1− t)k

(1− t) γ2
dt.

Therefore, Iγ,k is bounded.

If −γ
2

+ k = −1, then

Iγ,k(r) ∼
∫ 1

−1

(1− t2)k d
k

dtk

{
(1− 2rt+ r2)−

γ
2
+k
}
dt.

Integrating by parts k times (the boundary terms vanish),

Iγ,k(r) ∼
∣∣∣∣∫ 1

−1

dk

dtk
{

(1− t2)k
}

(1− 2rt+ r2)−
γ
2
+k dt

∣∣∣∣ .
But dk

dtk

{
(1− t2)k

}
is a polynomial of degree k and therefore is bounded in

[−1, 1] (in fact, it is up to a constant the classical Legendre polynomial).

Therefore,

Iγ,k(r) ∼
1

2r
log

(
1 + r

1− r

)2

≤ C log
1

|1− r|
.

Finally, if −γ
2

+ k < −1, then integrating by parts as before,

Iγ,k(r) ≤ Ck

∫ 1

−1

(1− 2rt+ r2)−
γ
2
+k dt.

Thus,

Iγ,k(r) ∼ (1− 2rt+ r2)−
γ
2
+k+1|t=1

t=−1 ≤ Ck,γ|1− r|−γ+2k+2.

This finishes the proof if k ∈ N0.

Consider now the case k = m+ ν with m ∈ N0 and 0 < ν < 1. Then,

Iγ,k(r) =

∫ 1

−1

(1− t2)ν(m+1)+(1−ν)m(1− 2rt+ r2)−
νγ
2
− (1−ν)γ

2 dt

≤ Iνm+1,γ(r)I
1−ν
m,γ (r),

where in the last line we have used Hölder’s inequality with exponent 1
ν
.

If γ < 2m+ 2, by the previous calculation

|Iγ,k(r)| ≤ C.



MULTIPLIERS OF LAPLACE TRANSFORM TYPE FOR LAGUERRE AND HERMITE. . .15

If γ > 2(m+ 1) + 2, then, by the previous calculation

|Iγ,k(r)| ≤ C|1− r|ν(−γ+2(m+1)+2)|1− r|(1−ν)(−γ+2m+2)

= C|1− r|−γ+2k+2.

For the case 2m + 2 < γ < 2m + 4, notice that we can always assume

r < 1, since Iγ,k(r) = r−γIγ,k(r
−1). Then, as before, we can prove that

I ′γ,k(r) ≤ γ(1− r)Iγ+2,k(r)

But now we are in the case γ + 2 > 2(m+ 1) + 2 and, thus,

|Iγ+2,k(r)| ≤ C|1− r|−γ+2k.

Therefore, if −γ + 2k + 1 6= −1

Iγ,k(r) =

∫ r

0

I ′γ,k(s) ds

≤ C

∫ r

0

(1− s)−γ+2k+1 ds

≤ C|1− r|−γ+2k+2,

and if −γ + 2k + 1 = −1

Iγ,k(r) ≤ C

∫ r

0

1

1− s
ds

= C log
1

|1− r|
.

It remains to check the case k ∈ (−1, 0). For this purpose, write

Iγ,k(r) =

∫ 0

−1

(1− t2)k

(1− 2rt+ r2)
γ
2

dt︸ ︷︷ ︸
(i)

+

∫ 1

0

(1− t2)k

(1− 2rt+ r2)
γ
2

dt︸ ︷︷ ︸
(ii)

Since γ > 0 and k + 1 > 0,

(i) ≤
∫ 0

−1

(1 + t)k dt = C

(ii) ≤
∫ 1

0

(1− t)k

(1− 2rt+ r2)
γ
2

dt

= − 1

k + 1

∫ 1

0

d
dt

[(1− t)k+1]

(1− 2rt+ r2)
γ
2

dt

=
2r

k + 1

∫ 1

0

(1− t)k+1

(1− 2rt+ r2)
γ
2
+1
dt

≤ CIγ+2,k+1(r).

and, since now k+ 1 > 0, Iγ,k can be bounded as before. This concludes the

proof of the lemma. �
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Now we are ready to conclude the proof Theorem 2.3. Remember that

we need to see that

(2.18) ‖x
2α+2
q
−2bI2(1+α−σ),α− 1

2
(x)‖Ls,∞( dx

x
) < +∞.

Using the previous lemma, it is clear that when x→ 1 and 2(α+1−σ) ≤
2(α− 1

2
) the norm in (2.18) is bounded.

In the case 2(α + 1 − σ) > 2(α − 1
2
) (that is, σ < 3), the integrability

condition is

−s
[
2(α + 1− σ)− 2

(
α− 1

2

)
− 2

]
≥ −1.

But, using (2.17), we see that this is equivalent to σ ≥ −1
2

(
1
q
− 1

p

)
, which

holds by our assumption on a+ b.

When x = 0, the integrability condition is

2α + 2

q
− 2b > 0

which holds because b < α+1
q

.

Finally, when x→∞, since Iα− 1
2
,2(α+1−σ)(x) ∼ x−2(α+1−σ), the condition

we need to fulfill is

2α + 2

q
− 2b− 2(α + 1− σ) < 0

which, by our assumption on a+ b is equivalent to a < α+1
p′

. �

2.3. Extension to the case −1 < α < 0 and end of proof of Theorem

1.1. As before, we may assume that a+b =
(

1
q
− 1

p

)
(α+1)+σ. In this case,

to extend our result to the case −1 < α < 0 let us consider −1 < α < β,

where β ≥ 0, and use a transplantation result from [6], that we recall here

as a lemma for the sake of completeness:

Lemma 2.5 ([6], Corollary 6.19 (ii)). Let 1 < q < ∞. Given α, β > −1,

we define the transplantation operator

Tα
βf =

∞∑
k=0

(∫ ∞
0

f(y)lαk (y)yα dy

)
lβk .

Then, if σ0 ∈ R and σ1 = σ0 + (α − β)(1
p
− 1

2
), Tα

β : Lqσ0
(R+, x

α dx) →
Lqσ1

(R+, x
β dx) and Tβ

α : Lqσ1
(R+, x

β dx) → Lqσ0
(R+, x

α dx) are bounded op-

erators if and only if

−1 + α

q
< σ0 <

1 + α

q′
.
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Using this lemma, we can write

‖Mα,mf |x|−b‖Lq(R+,xα dx) = ‖Tβ
α(Mβ,m(Tα

βf))|x|−b‖Lq(R+,xα dx)

≤ C‖Mα,m,β(Tα
βf)|x|−b̃‖Lq(R+,xβ dx)

provided that

(2.19) −1 < α < β

(2.20) −b̃ = −b+ (α− β)

(
1

q
− 1

2

)
,

and

(2.21) −1 + α

q
< −b < 1 + α

q′
,

and, using Theorem 2.3 for Mβ,m with β ≥ 0,

‖Mα,m,β(Tα
βf)|x|−b̃‖Lq(R+,xβ dx) ≤ C‖Tα

βf |x|ã‖Lp(R+,xβ dx)

provided that

0 < σ < β + 1 , ã <
β + 1

p′
, b̃ <

β + 1

q
,

(2.22)

(
1

q
− 1

p

)(
β +

1

2

)
≤ ã+ b̃

and that

(2.23) ã+ b̃ =

(
1

q
− 1

p

)
(β + 1) + σ.

Finally, using Lemma 2.5 again, we obtain

(2.24) ‖Mα,mf |x|−b‖Lq(R+,xα dx) ≤ C‖f |x|a‖Lp(R+,xα dx)

provided that

(2.25) ã = a+ (α− β)

(
1

p
− 1

2

)
and that

(2.26) −1 + α

p
< a <

1 + α

p′
.

Now, replacing (2.20) and (2.25) into (2.22) and (2.23) we obtain(
1

q
− 1

p

)(
α +

1

2

)
≤ a+ b

and

(2.27) a+ b =

(
1

q
− 1

p

)
(α + 1) + σ.

To conclude the proof of the theorem we need to see that the restrictions

a > −1+α
p

in (2.26) and b > −1+α
q′

in (2.21) are redundant. Indeed, the
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first one follows from (2.27) and b < α+1
q

, while the second one follows from

(2.27) and a < α+1
p′

.

3. Multipliers for related Laguerre systems

In this section we show how the results for multipliers for expansions

in the Laguerre system {lαk}k≥0 can be extended to other related systems,

using a transference result from I. Abu-Falah, R. A. Maćıas, C. Segovia and

J. L. Torrea [1]. To this end, for fixed α > −1, we consider the orthonormal

systems:

(1) {Lαk (y) := y
α
2 lαk (y)}k≥0 in L2(R+)

(2) {ϕαk (y) :=
√

2yα+ 1
2 lαk (y2)}k≥0 in L2(R+)

(3) {ψαk (y) :=
√

2lαk (y2)}k≥0 in L2(R+, y
2α+1 dy)

which are eigenvectors of certain modifications of the Laguerre differential

operator (1.1).

Then, following the notations in [1], if we let Wα, V, and Zα be the

operators defined by

Wαf(y) = y−
α
2 f(y), V f(y) = (2y)

1
2f(y2), and Zαf(y) =

√
2y−αf(y2)

it is immediate that WαLαk = lαk , V Lαk = ϕαk , and ZαLαk = ψαk . Moreover,

for f a measurable function with domain in R+, the following result holds:

Lemma 3.1 ([1], Lemma 3.22). Let α > −1.

(1) Let δ = ρ− α(p
2
− 1), then ‖Wαf‖Lp(R+,yρ+α) = ‖f‖Lp(R+,yδ)

(2) Let 2δ = γ + p
2
− 1, then ‖V f‖Lp(R+,yγ) = 2

1
2
− 1
p‖f‖Lp(R+,yδ)

(3) Let δ = η
2
− α(p

2
− 1), then ‖Zαf‖Lp(R+,yη+2α+1) = 2

1
2
− 1
p‖f‖Lp(R+,yδ)

In analogy to what we have done for the system {lαk}k≥0, we can also

define multipliers of Laplace transform type for the orthonormal systems

listed above. For instance, in the case of the system {Lαk}k≥0, if

f(x) ∼
∞∑
k=0

bα,k(f)Lαk (x), bα,k(f) =

∫ ∞
0

f(x)Lαk (x)dx

given a bounded sequence {mk}k≥0 we may define the multiplier

ML
α,mf(x) ∼

∞∑
k=0

bα,k(f)mkLαk (x),

and we say that ML
α,m is a multiplier of Laplace transform type if mk =

m(k) is given by (1.3) for some real-valued function Ψ(t). Similar definitions

can be given for the systems {ϕαk}k≥0 and {ψαk }k≥0; we will denote the

corresponding multipliers by Mϕ
α,m and Mψ

α,m. Then, the following analogue

of Theorem 1.1 holds:



MULTIPLIERS OF LAPLACE TRANSFORM TYPE FOR LAGUERRE AND HERMITE. . .19

Theorem 3.2. Assume that α > −1.

(1) If ML
α,m is a multiplier of Laplace transform type for the system

{Lαk}k≥0 such that (H1) and (H2) hold, then

‖ML
α,mf‖Lq(R+,x−Bq) ≤ C‖f‖Lp(R+,xAp)

provided that

1 < p ≤ q <∞ , A <
α

2
+

1

p′
, B <

α

2
+

1

q
,

and that (
1

q
− 1

p

)
(α + 1) < A+B ≤ σ

(
1

q
− 1

p

)
.

(2) If Mϕ
α,m is a multiplier of Laplace transform type for the system

{ϕαk}k≥0 such that (H1) and (H2) hold, then

‖Mϕ
α,mf‖Lq(R+,x−Dq) ≤ C‖f‖Lp(R+,xCp)

provided that

1 < p ≤ q <∞ , C < α +
1

p′
+

1

2
, D < α +

1

q
+

1

2

and that(
1

q
− 1

p

)
(2α + 1) < C +D ≤ (2σ − 1)

(
1

q
− 1

p

)
.

(3) If Mψ
α,m is a multiplier of Laplace transform type for the system

{ψαk }k≥0 such that (H1) and (H2) hold, then

‖Mψ
α,mf‖Lq(R+,x−Fq) ≤ C‖f‖Lp(R+,xEp)

provided that

1 < p ≤ q <∞ , E < 2α + 1 +
1

p′
, F <

1

q

and that(
1

q
− 1

p

)
(2α + 1) < E + F ≤ (2σ − 1)

(
1

q
− 1

p

)
.

Proof. We explain how to prove (1), since the other cases are analogous.

From the fact that WαLαk = lαk and by Lemma 3.1(1), we have the following

diagram

Lp(R+, x
ap+α)

Mα,m−→ Lq(R+, x
−bq+α)

(Wα)−1
y xWα

Lp(R+, x
Ap)

MLα,m−→ Lq(R+, x
−Bq)
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provided that

(3.1) Ap = ap− α
(p

2
− 1
)

and −Bq = −bq − α
(q

2
− 1
)
.

and Mα,m = WαML
α,m(Wα)−1. Therefore, the identities (3.1) together with

the conditions on a, b given by Theorem 1.1 imply the desired result. �

4. Proof of Theorem 1.2

In this section we exploit the well-known relation between Hermite and

Laguerre poynomials to obtain an analogous result to that of Section 2 in

the Hermite case. Indeed, recalling that

H2k(x) = (−1)k22kk!L
− 1

2
k (x2)

H2k+1(x) = (−1)k22kk!xL
1
2
k (x2)

it is immediate that

h2k(x) = l
− 1

2
k (x2)

h2k+1(x) = xl
1
2
k (x2)

It is then natural to decompose f = f0 + f1 where

f0(x) =
f(x) + f(−x)

2
, f1(x) =

f(x)− f(−x)

2

and, clearly, when k = 2j, if we let g0(y) = f0(
√
y) we obtain:

ck(f) = 〈f0, hk〉 = 2

∫ ∞
0

f0(x)l
− 1

2
j (x2) dx = a− 1

2
,j(g0)

while if k = 2j + 1, and we let g1(y) = 1√
y
f1(
√
y) we have:

ck(f) = 〈f1, hk〉 = 2

∫ ∞
0

f1(x)xl
1
2
j (x2) dx = a 1

2
,j(g1)

Then,

MH,mf(x) =
∞∑
j=0

m2ja− 1
2
,j(g0)l

− 1
2

j (x2) +
∞∑
j=0

m2j+1a 1
2
,j(g1)xl

1
2
j (x2)

= M− 1
2
,m0
g0(x

2) + xM 1
2
,m1
g1(x

2)

where (m0)k = m2k and (m1)k = m2k+1.

To apply Theorem 1.1 to this decomposition, we need to check first that

m0 and m1 are Laplace-Stiltjes functions of certain functions Ψ0 and Ψ1.

Indeed, notice that m2k = LΨ0(k) where

Ψ0(u) =
1

2
Ψ(
u

2
)
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and m2k+1 = LΨ1(k) where

Ψ1(u) =
1

2

∫ u
2

0

e−τdΨ(τ).

It is also easy to see that Ψ0 satisfies the hypotheses of Theorem 1.1 for

α = −1
2

whereas Ψ1 satisfies the hypotheses for α = 1
2

(in this case condition

(H2) follows after an integration by parts).

Then,

‖MH,mf |x|−b‖Lq(R) =

(∫
R
|MH,mf(x)|q|x|−bq dx

) 1
q

= C

(∫
R

∣∣∣M− 1
2
,m0
g0(x

2) + xM 1
2
,m1
g1(x

2)
∣∣∣q |x|−bq dx) 1

q

(4.1)

Using Minkowski’s inequality and making the change of variables y =

x2, dx = 1
2
y−

1
2 dy, we see that

(4.1) ∼
(∫ ∣∣∣M− 1

2
,m0
g0(y)

∣∣∣q |y|− bq2 − 1
2 dy

) 1
q

+

(∫ ∣∣∣M 1
2
,m1
g1(y)

∣∣∣q |y| (−b+1)q
2
− 1

2 dy

) 1
q

= ‖M− 1
2
,m0
g0(y)|y|−

b
2‖

Lq(R,x−
1
2 dx)

+ ‖M 1
2
,m1
g1(y)|y|

−b+1
2
− 1
q ‖

Lq(R,x
1
2 dx)

≤ C‖g0(y)|y|ã‖
Lp(R,x−

1
2 dx)

+ C‖g1(y)|y|â‖
Lp(R,x

1
2 dx)

where the last inequality follows from Theorem 1.1 provided that:

ã <
1

2p′
, b <

1

q

(4.2) 0 ≤ ã+
b

2
≤ 1

2

(
1

q
− 1

p

)
+ σ

â <
3

2p′

and

(4.3)

(
1

q
− 1

p

)
≤ â+

1

q
− 1− b

2
≤ 3

2

(
1

q
− 1

p

)
+ σ.

Therefore,

‖MH,mf |x|−b‖Lq(R) ≤ C

(∫
|g0(x)|p|x|ãp−

1
2 dx

) 1
p

+ C

(∫
|g1(x)|p|x|âp+

1
2 dx

) 1
p

= C

(∫
|f0(
√
x)|p|x|ãp−

1
2 dx

) 1
p

+ C

(∫
|f1(
√
x)|p|x|âp+

1
2
− p

2 dx

) 1
p

= C

(∫
|f0(x)|p|x|2ãp dx

) 1
p

+ C

(∫
|f1(x)|p|x|2âp+2−p dx

) 1
p

≤ C‖f(x)|x|a‖Lp(R)
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provided that

(4.4) a = 2ã = 2â+
2

p
− 1.

Therefore, by (4.4) and the conditions on ã, â, there must hold

a <
1

p′

while, by (4.4), (4.2) and (4.3) are equivalent to

0 ≤ a+ b ≤ 1

q
− 1

p
+ 2σ.

Remark 4.1. It follows from the proof of Theorem 1.2 that a better result

holds if the function f is odd.

5. Examples and further remarks

First, we should point out that it is clear that, since a Stieltjes integral

of a continuous function with respect to a function of bounded variation

can be thought as an integral with respect to the corresponding Lebesgue-

Stieltjes measure, we could equivalently have formulated all our results in

terms of integrals with respect to signed Borel measures in R+. However,

we have found convenient to use the framework of Stieltjes integrals since

many of the classical references on Laplace transforms are written in that

framework (for instance [22]), and leave the details of a possible restatement

of the theorems in the case of regular Borel measure to the reader.

We also recall that the Laplace-Stieltjes transform contains as particular

cases both the ordinary Laplace transform of (locally integrable) functions

(when Ψ(t) is absolutely continuous), and Dirichlet series (see below). In

particular, if Ψ is absolutely continuous and φ(t) = Ψ′(t) (defined almost

everywhere), the assumptions (H1) and (H2) of Theorem 1.1 can be re-

placed by:

(H1ac) ∫ ∞
0

|φ(x)| dx < +∞ i.e. φ ∈ L1(R+)

(H2ac) there exist δ > 0, 0 < σ < α + 1, and C > 0 such that∣∣∣∣∫ t

0

φ(x) dx

∣∣∣∣ ≤ Ctσ for 0 < t ≤ δ.

In particular, assumption (H2ac) holds if φ(t) = O(tσ−1) when t→ 0.

As we have already mentioned in the introduction, B. Wróbel [23, Corol-

lary 2.7] has recently proved that Laplace type multipliers for the system

{ϕαk}k≥0 are bounded on Lp(Rd, ω), 1 < p < ∞, for all ω ∈ Ap and

α ∈ ({−1
2
} ∪ [1

2
,∞))d. In the case of power weights in one dimension this
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means that ω(x) = |x|β must satisfy −1 < β < p − 1, while taking p = q

and letting the weight be |x|β on both sides, Theorem 3.2(2) can easily be

seen to imply −1− p
(
α + 1

2

)
< β < p− 1 + p

(
α + 1

2

)
.

Also, weighted estimates had been obtained before for the case of some

particular operators for the system {lαk}k≥0. Indeed, recall that one of the

main examples of the kind of multipliers we are considering is the Laguerre

fractional integral introduced in [7], which corresponds to the choice mk =

(k + 1)−σ.

In [14, Theorem 4.2], A. Nowak and K. Stempak considered multi-dimensional

Laguerre expansions and used a slightly different definition of the fractional

integral operator, given by the negative powers of the differential operator

(1.1).

As they point out, their theorem contains as a special case the result

of [7] (in the one dimensional case). To see that both operators are indeed

equivalent, they rely on a deep multiplier theorem [18, Theorem 1.1].

Instead, we can see that Theorem 1.1 is applicable to both definitions

by choosing:

mk = (k + c)−σ, φ(t) =
1

Γ(σ)
tσ−1e−ct (c > 0)

The case c = 1 corresponds to the definition in [7], whereas the choice

c = α+1
2

corresponds to the definition in [14]. Therefore, Theorem 1.1 applied

to these choices, coincides in the first case with the result of [8, Theorem 1]

(which is an improvement of [7, Theorem 3.1]) and improves in the second

case the one-dimensional result of [14, Theorem 4.2].

The same choice of mk and φ in Theorem 1.2 gives a two-weight es-

timate for the Hermite fractional integral, which corresponds to the one-

dimensional version of [14, Theorem 2.5].

Another interesting example is the operator (L2 +I)−
α
2 , where L is given

by (1.1). In this case, Theorem 1.1 with hypotheses (H1ac) and (H2ac)

instead of (H1) and (H2) applies with α = σ and

φ(t) =
1

Cα
e−

α+1
2
tJα−1

2
(t)t

α−1
2

since, by [21, formula 5, p. 386],∫ ∞
0

e−stJα−1
2

(t)t
α−1

2 dt = Cα(s2 + 1)−
α
2

and, when t→ 0, Jα−1
2

(t)t
α−1

2 ∼ tα−1.
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A further example is obtained by choosing Ψ(t) = e−s0tH(t − τ) with

s0 = α+1
2

, where H is the Heaviside unit step function:

H(t) =

{
1 if t ≥ 0
0 if t < 0

and we see that Theorem 1.1 is applicable to the Heat diffusion semigroup

(considered for instance in [17] and [11])

Mτ = e−τL

associated to the operator L for any σ > 0. More generally, the same con-

clusion holds for

Ψ(t) =
∞∑
n=1

ane
−s0tH(t− τn)

provided that the Dirichlet series

F (s) =
∞∑
n=1

ane
−τns, 0 < τ1 < τ2 < . . .

conveges absolutely for s = s0 (which corresponds to hypothesis (H1)).

As a final comment, we remark that finding a function Ψ of bounded

variation such that mk = LΨ(k) holds (see (1.3)) is equivalent to solving

the clasical Hausdorff moment problem (see [22, Chapter III]).
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