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Abstract

Background: Low concentrations of high-density lipoprotein cholesterol (HDL-C) represent a well-established cardio-

vascular risk factor. Paradoxically, extremely high HDL-C levels are equally associated with elevated cardiovascular risk,

resulting in the U-shape relationship of HDL-C with cardiovascular disease. Mechanisms underlying this association are

presently unknown. We hypothesised that the capacity of high-density lipoprotein (HDL) to acquire free cholesterol

upon triglyceride-rich lipoprotein (TGRL) lipolysis by lipoprotein lipase underlies the non-linear relationship between

HDL-C and cardiovascular risk.

Methods: To assess our hypothesis, we developed a novel assay to evaluate the capacity of HDL to acquire free

cholesterol (as fluorescent TopFluor� cholesterol) from TGRL upon in vitro lipolysis by lipoprotein lipase.

Results: When the assay was applied to several populations markedly differing in plasma HDL-C levels, transfer of free

cholesterol was significantly decreased in low HDL-C patients with acute myocardial infarction (�45%) and type 2

diabetes (–25%), and in subjects with extremely high HDL-C of >2.59 mmol/L (>100 mg/dL) (�20%) versus healthy

normolipidaemic controls. When these data were combined and plotted against HDL-C concentrations, an inverse

U-shape relationship was observed. Consistent with these findings, animal studies revealed that the capacity of HDL to

acquire cholesterol upon lipolysis was reduced in low HDL-C apolipoprotein A-I knock-out mice and was negatively

correlated with aortic accumulation of [3H]-cholesterol after oral gavage, attesting this functional characteristic as a

negative metric of postprandial atherosclerosis.

Conclusions: Free cholesterol transfer to HDL upon TGRL lipolysis may underlie the U-shape relationship between

HDL-C and cardiovascular disease, linking HDL-C to triglyceride metabolism and atherosclerosis.
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Introduction

Low levels of plasma high-density lipoprotein choles-
terol (HDL-C) represent a well-established cardiovascu-
lar risk factor.1,2 However, therapeutic raising of HDL-
C on a background of statin treatment does not exert
expected beneficial effects on cardiovascular disease
(CVD).3 Furthermore, large-scale epidemiological stu-
dies reveal that both cardiovascular and overall mortal-
ity are paradoxically increased at extremely high HDL-C
levels,4–6 an observation which might account for the
negative results of HDL-C-raising trials. It has therefore
been suggested that it is not HDL-C itself that is causa-
tively related to atheroprotection but, rather, a cardio-
protective HDL function, which cannot always be
reliably estimated through the assay of HDL-C.7

The major atheroprotective function of HDL is pres-
ently thought to involve cholesterol efflux from arterial
wall cells with its subsequent transport to the liver for
excretion in a process of reverse cholesterol transport
(RCT).7 Such a ‘HDL flux hypothesis’ is based on nega-
tive associations of CVD with in vitro measurements of
cellular cholesterol efflux from lipid-loaded macrophages.8

Cholesterol efflux from tissue macrophages, however, pro-
vides only a small contribution to HDL-C levels if any9

and can therefore hardly explain the complex non-linear
association between HDL-C and cardiovascular risk.

Intravascular high-density lipoprotein (HDL)
metabolism is intimately linked to that of triglyceride-
rich lipoproteins (TGRLs), a phenomenon which is fre-
quently manifested as a negative correlation between
plasma levels of HDL-C and triglycerides.10,11 Given
that elevated triglyceride levels are increasingly
accepted as a cardiovascular risk factor,10,11 low
HDL-C has been proposed to represent a biomarker
of elevated concentrations of atherogenic TGRL rem-
nants,10 a clinically attractive concept which, however,
lacks mechanistic insight. In the circulation, HDL and
TGRL interact via multiple metabolic pathways, the
most studied of which includes heteroexchange of
core lipids mediated by cholesteryl ester transfer pro-
tein (CETP).12 A key pathway linking HDL and TGRL
involves transfer to HDL of surface remnants gener-
ated during TGRL lipolysis by lipoprotein lipase
(LPL).13 This frequently overlooked process delivers
high amounts of free cholesterol to HDL and consti-
tutes a quantitatively major source of circulating
HDL-C, accounting for up to 50% of its variation.14

Indeed, intestinal cholesterol secretion within chylo-
microns is comparable with net cholesterol efflux
from all extra-hepatic tissues combined.15,16

Mechanistically, free cholesterol acquirement by HDL
can be primarily mediated by small-sized complexes
containing phospholipid and apolipoprotein (apo)A-I,
the major HDL protein and potent biological deter-
gent.17,18 Remarkably, high amounts of apoA-I are
synthesised by the intestine to be incorporated into
chylomicrons and postprandially transferred to HDL.19

To explain the relationship between HDL-C levels
and cardiovascular risk, we propose a reverse remnant
cholesterol transport (RRT) hypothesis which involves
acquirement by HDL of surface remnants of TGRL
upon lipolysis with subsequent transport of remnant-
derived cholesterol to the liver in a pathway which ori-
ginates in the intestine with the secretion of apoA-I on
chylomicrons followed by their transport to plasma via
lymph. As a corollary, we suggest that plasma concen-
tration of HDL-C is an imperfect static measure of
cholesterol flux through this dynamic pathway.

To assess this hypothesis, we developed an in vitro
fluorescent assay to evaluate the capacity of HDL to
acquire free cholesterol from TGRL during lipolysis by
LPL. The assay was applied to several groups of sub-
jects markedly differing in HDL-C levels. Our findings
reveal decreased free cholesterol transfer from TGRL
to HDL in subjects with both low and extremely high
HDL-C, a finding which may link HDL-associated car-
diovascular risk to triglyceride metabolism and account
for the U-shape relationship of HDL-C and CVD.

Methods

Study populations

Four groups of subjects markedly differing in HDL-C
levels were studied together with corresponding control
groups. Male patients presenting with ST segment ele-
vation acute myocardial infarction (AMI; n¼ 22) were
recruited at the Heart Institute-InCor University of Sao
Paulo Medical School Hospital (São Paulo, Brazil)
before initiation of any treatment within no later than
24 h of clinical presentation in the Emergency Room.
Healthy non-smoking normolipidaemic male subjects
(n¼ 8) were recruited as controls. Treatment-naı̈ve
patients with well-controlled type 2 diabetes (T2D;
males and postmenopausal women, n¼ 17) were
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recruited from the Ramon Carrillo Centre (La
Matanza, Buenos Aires, Argentina). Healthy non-
smoking normolipidaemic subjects (n¼ 16) were
recruited from the same geographical area to constitute
the control group. Subjects with high (1.81 to
2.59mmol/L (70 to 100mg/dL); n¼ 20) and extremely
high (>2.59mmol/L (>100mg/dL); n¼ 20) HDL-C
levels together with healthy normolipidaemic control
volunteers (n¼ 20) were recruited at the La Pitié-
Salpetrière University Hospital (Paris, France).

Measurement of HDL capacity to acquire free
cholesterol during TGRL lipolysis by LPL

Given that fluorometric measurements are distin-
guished by high sensitivity and specificity, introduction
in the assay of a fluorescent free cholesterol derivative
provides an excellent means for evaluating free choles-
terol transfer across lipoproteins. Importantly, selective
labelling of TGRL with fluorescent free cholesterol
implies its absence from HDL at baseline, thereby
strongly enhancing its relative enrichment in HDL
over time as compared with that of unlabelled free chol-
esterol. We therefore labelled TGRL with fluorescent
23-(dipyrrometheneboron difluoride)-24-norcholesterol
(Avanti Polar Lipids, Alabaster, AL, USA), also
known as TopFluor� cholesterol (TopF) and
BODIPY-cholesterol, and evaluated its transfer to
HDL during LPL-induced lipolysis.

To isolate TGRL (d< 1.019 g/ml), a single-step
ultracentrifugation was used. HDL was employed in
the form of ultracentrifugally isolated HDL (UC-
HDL) or as apoB-depleted plasma. To label human
TGRL with TopF, TGRL was added to lipoprotein-
deficient plasma (LPDP) at the LPDP:TGRL ratio of
1:100 by volume. The mixture was filtered and TopF
was added as a chloroformic solution followed by over-
night incubation at 37�C under gentle stirring. Labelled
TGRL was separated from unbound fluorescent lipid
using filtration through a PD-10 Sephadex column.
Triglyceride concentration in purified labelled TGRL
was measured by photometry and TopF fluorescence
was registered at the excitation/emission wavelengths
of 500/525 nm using a Gemini Microplate Reader
(Molecular Devices, USA) to verify the labelling.

To evaluate the transfer of TopF, Tris buffer (0.4 M,
pH 8) was mixed on ice with required amounts of
TopF-labelled TGRL and HDL, and LPL from
Pseudomonas sp. or from bovine milk (both from
Sigma, France) was added to start lipolysis at 37�C.
At the end of the incubation, the reaction mixture
was placed on ice and apoB precipitant containing
phosphotungstic acid and MgCl2 was added.
Following incubation at room temperature and centri-
fugation, HDL-containing supernatant was aspirated,

filtered and transferred to a black microplate for fluor-
escence reading. Fluorescence of the standard TGRL
sample alone was also measured at a triglyceride con-
centration employed in the assay and fluorescent values
measured in HDL were expressed as a percentage of
fluorescence of such standard sample. In some experi-
ments, inhibitors for CETP (torcetrapib, 25 mM) and
lecithin-cholesterol acyltransferase (LCAT) (iodoaceta-
mide, 750 mM) were used.

To characterise the transfer of TopF to HDL
obtained from clinical plasma samples, TGRL and
apoB-depleted plasma were used at final concentrations
of 0.34mmol/L (30mg triglyceride/dL) and 3.3%,
respectively. Assay conditions (lipoprotein concentra-
tions, incubation time, etc.) were chosen to model
those of postprandial TGRL lipolysis in humans.
A reference apoB-depleted plasma sample obtained
from one healthy normolipidaemic control plasma ali-
quoted and stored at �80�C was included in each series
of measurements and all values obtained in clinical
samples were normalised to that observed in the refer-
ence plasma.

Postprandial aortic cholesterol accumulation in mice

Postprandial aortic accumulation of free cholesterol
was evaluated in vivo after gavage with 100 mCi of
[3H]-cholesterol administrated with olive oil to three
groups of mice markedly differing in HDL-C levels,
including low-HDL-C apoA-I knock-out mice, high-
HDL-C human apoA-I transgenic mice and control
wild-type mice. The animals were euthanised 2 h after
the gavage, their aortas removed and weighed, and spe-
cific radioactivity measured. HDL capacity to acquire
TopF from TGRL during LPL-induced lipolysis was
evaluated in apoB-depleted EDTA plasma obtained
from every mouse following overnight fast several
weeks before the gavage experiment.

A detailed description of the methods is provided in
the Supplementary Material online.

Results

HDL isolated by ultracentrifugation or apoB depletion
readily acquired TopF upon lipolysis of TopF-labelled
TGRL (Figure 1; Supplementary Figure 1). The trans-
fer was time-dependent and typically saturated after
1–2 h, except for the highest concentration of
UC-HDL (Figure 1(a) and (c)). Dose-dependence of
the transfer was characterised by an increase with
increasing UC-HDL concentrations (Figure 1(b)),
while maximal TopF accumulation in HDL isolated
by apoB depletion was observed at intermediate
concentrations of apoB-depleted plasma, decreasing at
higher concentrations (Figure 1(d)). This dose-dependence
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was confirmed by measurements of unlabelled native
free cholesterol (Supplementary Figure 2), revealing a
correlation coefficient of 0.71 (p< 0.001) between the
two methods and demonstrating the validity of our
fluorescence-based approach. In addition, when HDL
was re-isolated from the same reaction mixtures by
apoB precipitation and ultracentrifugation, TopF
fluorescence readings in such HDL were strongly cor-
related (r¼ 0.95, p¼ 0.014), further validating our
approach.

When Vmax and Kd for the transfer of unlabelled free
cholesterol were calculated, they revealed maxima at
intermediate concentrations of HDL (Figure 2(a)),

consistent with the results obtained using fluorescent
free cholesterol. As a consequence, concentration of
apoB-depleted plasma of 3.3% and UC-HDL concen-
tration of 4mg protein/dL, both corresponding to the
initial concentration-dependent sections of the dose-
dependent curves (Figure 1(b) and (d)), were chosen
to compare individual plasma samples for the capacity
of their HDL to acquire free cholesterol.

Initial characterisation of the assay revealed good
reproducibility of the measurement of TopF transfer
to normolipidaemic apoB-depleted plasma, with intra-
and inter-assay coefficients of variation of 5.1% and
8.8%, respectively (n¼ 10). The assay was initially

T
op

F
 tr

an
sf

er
, %

0 5 10 15 20
HDL, mg protein/dL

0

10

20

30

40

50

60

 0h
 1h
 2h
 3h

*
*

***

**

*

*

*

**
*

*

*

***
**

**
†

††
†

††‡

†‡

†‡

†‡

T
op

F
 tr

an
sf

er
, %

0 5 10 15 20

ApoB-depleted plasma, vol%

0

20

40

60

80

100

 0h
 1h
 2h
 3h

* ***
***

** †

†

‡

‡

0 1 2 3
Time, h

0

10

20

30

40

50

60

T
op

F
 tr

an
sf

er
, %

0 mg/dL
2.5 mg/dL
5 mg/dL
10 mg/dL
20 mg/dL

***

**

**

**

**

*

*
*

*

*

*
†

††

0 1 2 3

Time, h

0

20

40

60

80

100

T
op

F
 tr

an
sf

er
, %

0%
2.5%
5%
10%
20%

**

**
*

*

*

*
*

**

**

**

**

(a)

(c)

(b)

(d)

Figure 1. Kinetics and dose-dependences of the transfer of fluorescent free cholesterol from triglyceride-rich lipoprotein (TGRL) to

high-density lipoprotein (HDL) during lipoprotein lipase (LPL)-induced lipolysis. HDL was isolated from normolipidaemic EDTA plasma

by density gradient ultracentrifugation ((a) and (b)) or by apolipoprotein B (apoB) depletion ((c) and (d)) and incubated for up to 3 h at

37�C with LPL (190 U/mL) and TGRL (30 mg triglyceride/dL) labelled with TopFluor� cholesterol (TopF), at a final concentration of

2.5–20 mg HDL protein/dL ((a) and (b)) or at a final dilution of apoB-depleted plasma of 2.5 to 20% v/v ((c) and (d)), respectively. At

the end of the incubation, HDL was separated from TGRL by apoB depletion and TopF fluorescence was measured in HDL at the

excitation/emission wavelengths of 500/525 nm. Mean values of 4–6 independent experiments performed in duplicate with four

individual HDL samples are shown. Please note that means with SDs are shown in Supplementary Figure 1 for the sake of clarity.

***p< 0.001, **p< 0.01, *p< 0.05 vs. 0 h; yyp< 0.01, yp< 0.05 vs. 1 h ((a) and (c)).

***p< 0.001, **p< 0.01, *p< 0.05 vs. 0 mg/dL; yyp< 0.01, yp< 0.05 vs. 2.5 mg/dL; zp< 0.05 vs. 5 mg/dL (b)

**p< 0.01, *p< 0.05 vs. 0%; yp< 0.05 vs. 2.5%; zp< 0.05 vs. 5% (d).
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employed to obtain insight into mechanisms of free
cholesterol transfer from TGRL to HDL during LPL-
mediated lipolysis using inhibitors. Both inhibition of
CETP using torcetrapib and inhibition of LCAT using
iodoacetamide markedly (1.8- and 2.1-fold, respect-
ively) enhanced the accumulation of TopF in UC-
HDL (Figure 2(b)). Torcetrapib equally increased the
accumulation of TopF when apoB-depleted plasma was
used as a source of HDL (from 49� 11% to 74� 11 in
the absence and presence of 25 mM torcetrapib, respect-
ively, in 10% apoB-depleted plasma; n¼ 4, p< 0.05),
modifying the dose-dependence of the transfer in such
a way that its decrease at high concentrations of apoB-
depleted plasma was abolished.

The assay was subsequently applied to several
groups of patients markedly differing in plasma HDL-
C. Patients with AMI featured reduced HDL-C
(�31%, p< 0.001; Supplementary Table 1) relative to
healthy normolipidaemic controls. The capacity of
HDL to acquire TopF was decreased in AMI patients
by �46% (controls, 103� 12% vs. patients, 57� 28%,
p< 0.001; Figure 3(a)). This decrease was thereby more
pronounced as compared with that in HDL-C levels.
The capacity of HDL to acquire TopF was positively
correlated with HDL-C in this low HDL-C group
(r¼ 0.49, p< 0.05). By contrast, accumulation of
TopF in UC-HDL isolated from AMI plasma was simi-
lar to that observed in UC-HDL from controls when

the lipoproteins were compared on a protein concentra-
tion basis (Supplementary Figure 3(a)). To evaluate
whether between-group differences were specifically
related to the transfer of fluorescent cholesterol, we
measured the accumulation of unlabelled native free
cholesterol in HDL from a subpopulation of AMI
and control subjects. The transfer of free cholesterol
was strongly (6.5-fold, p< 0.01) reduced in AMI rela-
tive to control HDL (Supplementary Figure 3(b)) and
was correlated with measurements of TopF-cholesterol
(r¼ 0.73, p¼ 0.005).

Treatment-naı̈ve patients with well-equilibrated
T2D, an established cardiovascular risk factor, were
characterised by a typical lipid profile involving
reduced HDL-C (�21%, p< 0.05) and elevated trigly-
cerides (þ94%, p< 0.05) as compared with healthy
normolipidaemic controls (Supplementary Table 2).
The capacity of HDL to acquire free cholesterol was
decreased in T2D patients by �24% (controls,
96� 28% vs. patients, 72� 33%, p< 0.05; Figure 3(a)).
This decrease was similar to that in HDL-C levels.

As compared with healthy, normolipidaemic con-
trols, subjects with high HDL-C levels (from 1.81 to
2.59mmol/L (70 to 100mg/dL)) were characterised by
elevated HDL-C (þ34%, p< 0.001; Supplementary
Table 3). Despite such marked increase, the capacity
of HDL to acquire free cholesterol did not differ
between the groups (controls, 97� 22% vs. patients,
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Figure 2. Kinetic parameters of free cholesterol transfer from triglyceride-rich lipoprotein (TGRL) to high-density lipoprotein

(HDL) during lipoprotein lipase (LPL)-induced lipolysis and effects of inhibitors. HDL was isolated from normolipidaemic EDTA plasma

by apolipoprotein B (apoB) depletion and incubated for 2 h at 37�C with lipoprotein lipase (LPL) (190 U/mL) and TGRL (7.5, 15, 30 and

60 mg TG/dL) at a final dilution of apoB-depleted plasma of 2.5, 5, 10 and 20% v/v. At the end of the incubation, HDL was separated

from TGRL by apoB depletion, free cholesterol was measured in HDL using the Amplex Red kit and Kd and Vmax. were calculated

according to Lineweaver–Burk. To evaluate the effects of inhibitors, ultracentrifugally isolated HDL (4 mg protein/dL) isolated from

normolipidaemic EDTA plasma was incubated for 2 h with LPL (190 U/ml) and TopFluor� cholesterol-labelled TGRL (30 mg

triglyceride/dL) in the absence or presence of torcetrapib (25 mM) or iodoacetamide (750 mM). Data from three independent

experiments performed in duplicate with three individual HDL samples are shown.

*p< 0.05 vs. 0 h; yp< 0.05 vs. 2 h incubation in the absence of the inhibitors.
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94� 33%, Figure 3(a)), thereby diverging from the
HDL-C assay.

In subjects with extremely high HDL-C concentra-
tions (>2.59mmol/L (>100mg/dL)), HDL-C was
elevated almost 2-fold (þ92%) relative to controls
(Supplementary Table 4). Despite such pronounced
increase, the capacity of HDL to acquire free choles-
terol was diminished by �20% in this group (con-
trols, 101� 20% vs. patients, 81� 27%, p< 0.05;
Figure 3(a)), further diverging from HDL-C. As a
result, no correlation between HDL capacity to acquire
TopF and plasma HDL-C was observed across all the
populations studied (r¼ 0.10, p¼ 0.29; n¼ 123). Such
absence of linear correlation was related to a complex

non-linear dependence between TopF transfer and
HDL-C observed across both individual subjects
(Figure 3(b)) and studied populations (Figure 3(c)),
which resembled an inverse U-shape. It is of note that
no difference in the capacity of HDL to acquire TopF
was observed between the four control groups, validat-
ing our study design (Figure 3(a)).

To evaluate potential determinants of the reduced
free cholesterol transfer to HDL, plasma activities of
CETP and LCAT were assessed in the patients using
fluorometric kits. The only significant difference
observed relative to controls involved reduced
CETP activity in AMI patients (�50%, p< 0.01;
Supplementary Figure 4).

0

20

40

60

80

100

120

140

160

180

200
(a) (b)

(c)

T
op

F
 tr

an
sf

er
, %

T
op

F
 tr

an
sf

er
, %

AMI control T2D control   H-HDL control EH-HDL control

*** * *

T
op

F
 tr

an
sf

er
 %

HDL-C, mg/dL

HDL-C, mg/dL

150

100

50

40 80 120

20

20

40

60

80

100

120

140

160

180

40 60 80 100 120 140 160 1800
0

0

Figure 3. Transfer of fluorescent free cholesterol from triglyceride-rich lipoprotein (TGRL) during lipoprotein lipase (LPL)-induced

lipolysis to high-density lipoprotein (HDL) isolated from patients with acute myocardial infarction (AMI; n¼ 22), type 2 diabetes (T2D;

n¼ 17), high HDL cholesterol (H-HDL; n¼ 20) and extremely high HDL-C (EH-HDL; n¼ 20). HDL was isolated from EDTA plasma

by apolipoprotein B (apoB) depletion and incubated for 2 h at 37�C with LPL (190 U/mL) and TopFluor� cholesterol (TopF)-labelled

TGRL (30 mg triglyceride/dL) at a final concentration of apoB-depleted plasma of 3.3% v/v. At the end of the incubation, HDL was

separated from TGRL by apoB depletion and TopF fluorescence was measured at the excitation/emission wavelengths of 500/525 nm.

The horizontal lines depict mean values in each group; ***p< 0.001, *p< 0.05 vs. HDL from corresponding healthy normolipidaemic

controls (a). The relationship between TopF transfer and plasma HDL-C levels was plotted using least-square data fitting for all

individual subjects studied (b) as well as for the means� SDs of TopF transfer and HDL-C in each group using ggplot2 (c). In (c),

all controls were combined to form a single control group.
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Given that subjects with low and high HDL-C levels
greatly differ in their HDL particle profile, with large
HDL prevailing at high HDL-C,20 we evaluated to
whether HDL particle subpopulations differed in their
capacity to acquire free cholesterol upon TGRL lipoly-
sis by LPL. We found that large, light HDL2 particles
were up to 3.8-fold less efficient acceptors for TopF
relative to small, dense HDL3 at a fixed protein
concentration of 4mg/dL (Supplementary Figure 5),
equivalent to a 2.8-fold per particle difference.

The relationship of the assay with CVD was initially
evaluated on the basis of published mortality data.
When cardiovascular and overall mortality data
obtained from the large-scale CANHEART HDL
study4 and Copenhagen City Heart Study6 were recal-
culated for the mean HDL-C levels observed in the five
populations studied by us (AMI, T2D, subjects with
high and extremely high HDL-C, and pooled controls)
and plotted against HDL-C, a U-shape relationship
was observed as reported4,6 (Supplementary Figure
6(a)). In striking contrast, when HDL-C was replaced
by the mean values of HDL capacity to acquire TopF,
linear negative relationships with both cardiovascular
and overall mortality were obtained (r2 from 0.89 to
0.98, p from 0.044 to 0.003), indicative of the significant
relationship of mortality with the assay outcome
(Supplementary Figure 6(b)).

Pathophysiological relevance of the assay was fur-
ther evaluated in vivo using murine models displaying
marked differences in circulating HDL-C levels, specif-
ically wild-type mice, dyslipidaemic low HDL-C apoA-
I –/– mice and high HDL-C mice transgenic for human
apoA-I. As expected, HDL-C concentrations were
reduced by �82% in apoA-I knock-out mice and ele-
vated by þ72% in human apoA-I transgenic animals
(Figure 4(a)). Expectedly, CETP activity was nearly
absent from plasma of all mice and LCAT activity
was greatly reduced relative to human plasma
(Supplementary Figure 7), with apoA-I knock-out ani-
mals featuring the lowest LCAT activity.

The capacity of HDL to acquire free cholesterol
measured upon TGRL lipolysis by LPL in vitro using
TopF was reduced by �38% (p<0.01) in apoA-I
knock-out mice but was not modified in human
apoA-I transgenic animals (Figure 4(b)). When all the
mice received an oral gavage of [3H]-cholesterol
together with olive oil, postprandial accumulation
of [3H]-cholesterol in the aorta was significantly
(6.1-fold) enhanced 2 h after the gavage in apoA-I
knock-out relative to wild-type mice, while no differ-
ence between wild-type and human apoA-I transgenic
mice was found (Figure 4(c)). As a consequence, the
capacity of HDL to acquire free cholesterol in vitro
was significantly and negatively correlated with
the aortic accumulation of [3H]-cholesterol in vivo

across all mice, attesting this functional parameter as
a negative metric of postprandial atherosclerosis
(Figure 4(d)).

Discussion

In the present study, we evaluated our RRT hypothesis
that free cholesterol transfer to HDL upon TGRL lip-
olysis by LPL underlies the complex relationship
between HDL-C levels and cardiovascular risk. We
provide evidence, using human subjects and animal
models markedly differing in HDL-C concentrations,
that this process links triglyceride metabolism to ath-
erosclerosis and may account for the relationship
between HDL-C and CVD.

To assess our hypothesis, we developed an original
method to evaluate in vitro free cholesterol transfer
from TGRL to HDL upon LPL-mediated lipolysis of
TGRL labelled with TopF, a fluorescent derivative of
free cholesterol. Earlier studies of material exchange
between TGRL and HDL revealed that multiple lipid
and protein components, including free cholesterol,
phospholipid and apolipoproteins, were transferred
from TGRL to HDL upon LPL-mediated lipoly-
sis.13,14,21,22 Mechanisms of such exchange are defined
by the removal of excess surface fragments from
TGRL, which cannot adapt the structure of remnant
particles possessing reduced hydrophobic core.
Formation of surface TGRL remnants possibly
involves spontaneous organisation of excessive surface
lipids separated from TGRL into low-energy complexes
which resemble micelles or liposomes.23

ApoA-I, the major HDL protein present in high
amounts on chylomicrons,19 can play a central role in
this process as a result of its distinct lipid-binding prop-
erties.17,18 Indeed, apoA-I avidly interacts with minimal
amounts of lipids present in aqueous solutions, trans-
forming them into highly organised lipoprotein com-
plexes in the HDL density range.17,18 While apoA-I
can solubilise excess surface lipids released from
TGRL upon lipolysis, HDL phospholipid may provide
lipid surface required for their absorption.21,23,24 Other
structural HDL apolipoproteins, including apoA-II,
apoE and apoM, can equally be expected to participate
in lipid transfer during lipolysis, consistent with the
presence of free cholesterol acceptor activity in HDL
from apoA-I –/– mice.

As lipid transfer proteins play key roles in exchan-
ging lipids across lipoproteins, these proteins may
actively participate in the transfer of surface lipids
upon LPL-mediated lipolysis. To assess this possibility,
we employed torcetrapib, a specific CETP inhibitor,
and observed enhanced transfer of free cholesterol
upon inhibition. Such an inhibitory role of CETP
towards cholesterol removal from TGRL can be
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explained by its capacity to transfer cholesterol, in a
form of cholesteryl ester, from HDL back to
TGRL.12 Indeed, HDL represents a major source of
cholesteryl ester in human plasma, reflecting preferen-
tial association of LCAT with HDL.16 When free chol-
esterol is transferred from TGRL to HDL and
esterified under the action of LCAT, a molecule of
cholesteryl ester formed becomes a substrate for
CETP and can be readily transferred back to TGRL
in exchange for a molecule of TGRL-derived triglycer-
ide. This mechanism can be operative for TopF as it is

efficiently esterified by LCAT and as its ester is trans-
ferred by CETP in vitro.25,26

If this mechanism is true and LCAT and CETP act
along the same pathway of cholesterol removal from
HDL, then inhibition of LCAT should enhance LPL-
induced accumulation of TGRL-derived free choles-
terol in HDL. Consistent with this conclusion, we did
observe accelerated accumulation of TopF upon LCAT
inhibition by iodoacetamide, suggesting a multi-step
mechanism of free cholesterol movement between
HDL and TGRL upon LPL-induced lipolysis, which
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Figure 4. Relationships of plasma high-density lipoprotein cholesterol (HDL-C) levels and high-density lipoprotein (HDL) capacity to

acquire fluorescent free cholesterol from triglyceride-rich lipoprotein (TGRL) upon lipoprotein lipase (LPL)-induced lipolysis with

postprandial aortic cholesterol accumulation in mice. HDL-C concentrations (a) and capacity of HDL (as 3.3% apolipoprotein

(apo)B-depleted EDTA plasma); (b) to acquire TopF from TGRL (30 mg triglyceride/dL) during LPL-induced lipolysis were measured in

human apoA-I transgenic (hapoA-I tg; n¼ 6–12), apoA-I knock-out (apoA-I -/-; n¼ 6–10) and control wild-type (wt; n¼ 7–14) mice.

Postprandial aortic accumulation of cholesterol (c) was evaluated in vivo after gavage with 100mCi of [3H]-cholesterol administered

with olive oil (100 mL). The animals were euthanised 2 h after the gavage, their aortas removed and specific radioactivity measured per

wet tissue weight. The relationship between postprandial aortic accumulation of [3H]-cholesterol in vivo and capacity of HDL to

acquire TopFluor� cholesterol (TopF) from TGRL during LPL-mediated lipolysis in vitro was plotted using exponential data fitting (d).

The horizontal lines depict mean values in each group.

***p< 0.001, **p< 0.01 vs. wild-type mice.
yyyp< 0.001, yyp< 0.05, yp< 0.05 vs. human apoA-I transgenic mice.
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involves acquirement of free cholesterol by HDL with
its subsequent esterification by LCAT followed by
CETP-mediated exchange of the generated cholesteryl
ester for triglyceride present in TGRL.

Importantly, kinetic data reveal that esterification of
free cholesterol by LCAT occurs more slowly than both
facilitated diffusion of cholesteryl ester mediated by
CETP and free cholesterol transfer across lipopro-
teins,16,27,28 thereby constituting a rate-limiting step in
the exchange of cholesterol between TGRL and HDL.
Such cholesteryl ester transfer from HDL to TGRL
might therefore be negligibly low at low concentrations
of LCAT (and low concentrations of HDL, as LCAT is
exclusively carried by HDL under our experimental con-
ditions) but might greatly increase at high HDL concen-
trations, decreasing net cholesterol accumulation in
HDL. Reduction of free cholesterol concentration gra-
dient between TGRL and HDL occurring at high HDL
concentrations may additionally contribute to the latter
effect. Consistent with this notion, the dose-dependence
of free cholesterol transfer was characterised by direct
relationship with HDL concentration at low concentra-
tions of both UC-HDL and apoB-depleted plasma, most
likely reflecting the presence in the assay of increasing
concentrations of acceptor HDL particles for TGRL-
derived free cholesterol. However, such a direct relation-
ship evolved into an inversed dose-dependence at high
concentrations of HDL when apoB-depleted plasma
(possessing high CETP activity) was employed as the
HDL source. Interestingly, the inverse relationship was
not observed in apoB-depleted plasma in the presence of
torcetrapib, or in UC-HDL (containing only minor
amounts of CETP following ultracentrifugation29). In
the latter experiment, the transfer of free cholesterol
was directly related to HDL concentration throughout
the whole concentration range studied, potentially
reflecting low CETP activity in the samples.

Clinical value of the assay was assessed in four popu-
lations markedly differing in plasma HDL-C. The
transfer of free cholesterol to HDL was reduced in
low HDL-C patients with AMI, low HDL-C patients
with T2D and subjects with extremely high HDL-C
levels of >100mg/dL relative to healthy normolipidae-
mic controls. When these data were plotted against
individual HDL-C levels in all subjects, or against
mean HDL-C levels in the groups, inverse U-shape
relationships were observed which mirrored the
U-shape relationship of overall and cardiovascular
mortality with HDL-C concentrations recently
reported in large-scale epidemiological studies.4–6 As a
consequence, the relationships of free cholesterol trans-
fer to HDL with cardiovascular and overall mortality
obtained from these studies were linear and negative, in
clear contrast to the U-shape relationships observed for
HDL-C. Albeit circumstantial, these data suggest that

free cholesterol transfer to HDL upon TGRL lipolysis
by LPL may underlie the U-shape relationship between
HDL-C and CVD.

Interestingly, free cholesterol transfer was
unchanged in subjects with high HDL-C of 70–
100mg/dL and was only diminished at extremely high
HDL-C levels of >100mg/dL. It is worth noting that
the high HDL-C groups expectedly featured a preva-
lence of female over male subjects, while the AMI
group was composed of only males, raising a question
of the role of gender for the observed differences. Each
of the studied groups was, however, compared with a
matched control group and no difference in the TopF
transfer was observed between the four control groups
despite their differences in the sex ratio, thereby arguing
against the role of gender in the between-group effects
observed by us.

According to the dose-dependences of HDL capacity
to acquire free cholesterol from TGRL upon lipolysis,
the decreases in this metric observed in low HDL-C
patients with AMI and T2D may straightforwardly
reflect low concentrations of acceptor HDL particles.
Indeed, no difference in free cholesterol transfer to
AMI and control HDL was found when the lipopro-
teins were compared on a protein concentration basis.
Other metabolic alterations potentially underlying
decreased free cholesterol transfer in both low and
extremely high HDL-C subjects involve elevated
CETP and/or LCAT activities, which were, however,
not detected by us. Altered HDL particle profile typical
of extremely high HDL-C states includes highly ele-
vated levels of large, lipid-rich HDL and reduced con-
centrations of small, lipid-poor HDL particles.20,30 As
our data document superior capacity of small versus
large HDL to acquire free cholesterol upon TGRL lip-
olysis (which is consistent with the superiority of such
particles to efflux cellular cholesterol and to perform
other biological functions31), the decrease in this
metric at extremely high HDL-C might reflect such
alterations in the HDL particle profile.

To establish a direct link between lipolytic free chol-
esterol transfer from TGRL to HDL and development
of CVD, we studied postprandial movement of radiola-
belled cholesterol in three groups of mice markedly dif-
fering in HDL-C. Small amounts of [3H]-cholesterol
were consistently found in murine aortic tissue 2 h fol-
lowing oral gavage with this compound. Such aortic
accumulation of [3H]-cholesterol was inversely asso-
ciated with HDL-C concentrations, being highly ele-
vated in low HDL-C apoA-I knock-out animals. In
parallel, the capacity of murine HDL to acquire free
cholesterol upon TGRL lipolysis by LPL was reduced,
resulting in its negative correlation with the aortic accu-
mulation of [3H]-cholesterol. These data additionally
attest free cholesterol transfer to HDL upon TGRL
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lipolysis by LPL as a negative metric of CVD and dir-
ectly link HDL metabolism to postprandial atheroscler-
osis. Interestingly, free cholesterol transfer was not
compromised in high HDL-C apoA-I transgenic mice,
in contrast to our observations of reduced free choles-
terol transfer in human subjects with extremely high
HDL-C, potentially reflecting low CETP and LCAT
activities in mice.

Together, our data provide evidence that HDL cap-
acity to acquire free cholesterol upon TGRL lipolysis
by LPL in vitro, measured using our novel assay, may
represent a superior biomarker of cardiovascular risk
as compared with plasma HDL-C levels presently
employed in clinical practice. The assay is simple,
rapid, does not require sophisticated equipment and
can be easily run in clinical routine. Moreover, these
data support our RRT hypothesis to explain the
U-shape association between HDL-C levels and CVD
by intravascular free cholesterol transfer from TGRL
to HDL in a pathway that can be essential for trigly-
ceride metabolism and energy production. We propose
that plasma concentration of HDL-C is an imperfect
static measure of cholesterol flux through this dynamic
pathway, which is directly associated with the efficacy
of cholesterol removal from the circulation only at low-
to-normal HDL-C.

Importantly, HDL exerts a plethora of other
biological effects, including its capacity to efflux chol-
esterol from peripheral cells, to protect LDL from oxi-
dative modification, to reduce production of pro-
inflammatory phospholipids and to beneficially
impact glucose metabolism.32,33 None of these well-stu-
died activities is, however, known to be reduced at both
low and extremely high concentrations of HDL and can
thereby account for the complex non-linear relationship
between HDL-C levels and CVD. We conclude that this
relationship primarily reflects the lipid acceptor role of
HDL in the lipolysis.
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