
Articles
https://doi.org/10.1038/s41559-018-0694-0

1Jonah Ventures, Boulder, CO, USA. 2Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, MD, USA.  
3Department of Earth Sciences,  Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA. 4Facultad de Ciencias Exactas y Naturales 
(FCEN-UNCuyo), Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA-CONICET),  Mendoza, Argentina. 5MB Isotope 
Bioscience Laboratory – ISOFYS, Ghent University, Ghent, Belgium. 6CAVElab, Computational and Applied Vegetation Ecology, Ghent University, Ghent, 
Belgium. 7Department of Geology , University of Cincinnati, Cincinnati, OH, USA. 8Department of Anthropology,  University of Cincinnati, OH, USA. 
9Swiss Federal Institute for Forest, Snow and Landscape Research – WSL Forest soils and Biogeochemistry, Birmensdorf, Switzerland. 10BIOGECO, INRA 
University of Bordeaux, Pessac, France. 11Centro de Investigación en Ecosistemas de la Patagonia, Coyhaique, Chile. 12CAS Key Laboratory of Forest Ecology 
and Management, Institute of Applied Ecology, Chinese Academy of Sciences,  Shenyang, China. 13Research Institute for Humanity and Nature, Kyoto, 
Japan. 14NERC Centre for Ecology and Hydrology, Penicuik, UK. 15Centre for Ecological Research and Forestry Applications, Barcelona, Spain. 16Department 
of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden. 17Department of Science and Primary Industries, Ara 
Institute of Canterbury, Christchurch, New Zealand. 18Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria.  

19Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium. 20Computational and Applied Vegetation Ecology lab, Department 
of Environment, Ghent University, Ghent, Belgium. 21Department of Plant Ecology, Forestry and Forest Products Research Institute, Tsukuba, Japan.  

22Soil Science Department, Moscow M.V. Lomonosov State University, Moscow, Russia. 23Department of Ecology, Faculty of Sciences, University of 
Granada, Granada, Spain. 24CREAF, Barcelona, Spain. 25CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain. 26Department of Biology, California 
State University Dominguez Hills, Carson, CA, USA. 27Department of Entomology, Natural History Museum of Los Angeles County, Los Angeles, CA, 
USA. 28Department of Geology and Geography, West Virginia University, Morgantown, WV, USA. 29Instituto Nacional de Tecnología Agropecuaria, 
CONICET Universidad Nacional de la Patagonia Austral, Río Gallegos, Argentina. 30INRA, UMR Ecologie des Forêts de Guyane, Campus Agronomique, 
Kourou, Guyane Française, France. 31Department of Biology, Boston University, Boston, MA, USA. 32Department of Natural Resources and the Environment, 
University of New Hampshire, Durham, NH, USA. 33Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences 
and Natural Resources Research, Chinese Academy of Sciences, Beijing, China. 34Department of Anthropology, Trent University, Peterborough, Ontario, 
Canada. 35South African National Biodiversity Institute, Cape Town, South Africa. 36Ecosystem Physiology, University of Freiburg, Freiburg, Germany.  

37Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.  
38Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy 
of Sciences, Beijing, China. 39College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China. 40Faculty of Biology, 
Department of Vertebrate Ecology and Zoology, University of Gdańsk, Gdańsk, Poland. *e-mail: josephmcraine@gmail.com

Human societies depend on a resilient, accommodating Earth 
system with a constrained range of environmental condi-
tions1,2, yet there is a fundamental uncertainty about the 

trajectory of N availability in terrestrial ecosystems. On the one 

hand, as more and more reactive N has been fixed by humans over 
time3, planetary boundaries for N fluxes are thought to have been 
exceeded, generating wide-scale aquatic and terrestrial eutrophica-
tion as well as contributing to terrestrial acidification and aquatic 
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Human societies depend on an Earth system that operates within a constrained range of nutrient availability, yet the recent 
trajectory of terrestrial nitrogen (N) availability is uncertain. Examining patterns of foliar N concentrations and isotope ratios  
(δ​15N) from more than 43,000 samples acquired over 37 years, here we show that foliar N concentration declined by 9% and 
foliar δ​15N declined by 0.6–1.6‰. Examining patterns across different climate spaces, foliar δ​15N declined across the entire 
range of mean annual temperature and mean annual precipitation tested. These results suggest declines in N supply relative to 
plant demand at the global scale. In all, there are now multiple lines of evidence of declining N availability in many unfertilized 
terrestrial ecosystems, including declines in δ​15N of tree rings and leaves from herbarium samples over the past 75–150 years. 
These patterns are consistent with the proposed consequences of elevated atmospheric carbon dioxide and longer growing 
seasons. These declines will limit future terrestrial carbon uptake and increase nutritional stress for herbivores.
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anoxia. Exceeding the planetary N boundary is thought to be desta-
bilizing the Earth system1,2,4–7. In contrast, atmospheric carbon 
dioxide (CO2) concentrations have increased by >​40% over the past 
150 years. Elevated atmospheric CO2 could be reducing N availabil-
ity in terrestrial ecosystems as plant N demand increases more than 
N supplies and/or higher ratios of carbon (C) to N in plants induce 
greater microbial N limitation8–11. Longer growing seasons associ-
ated with climate warming could also be increasing plant N demand 
more than supply in some ecosystems, also reducing N availability12. 
With no global databases to directly assess changes in terrestrial N 
availability, the lack of resolution of the trajectory of terrestrial N 
cycling constrains our ability to predict future terrestrial C uptake13, 
plant biodiversity14 and herbivore performance15,16. For example, 
increasing N availability would generally increase plant productivity 
in unfertilized ecosystems, reduce plant biodiversity and increase 
the growth of herbivores as protein limitation is reduced. Decreasing 
N availability generally leads to opposite effects. Given the central 
role of N in so many ecosystem properties, a basic N trajectory is 
required to increase the certainty with which regulatory decisions 
can be made and predict future terrestrial ecosystem function.

To test whether there is evidence of global-scale increases or 
decreases in terrestrial N availability, we compiled a data set of 
43,015 measurements of foliar N concentrations ([N]) and δ​15N. 
Measurements were restricted to terrestrial rooted plants that were 
not directly fertilized and were collected between 1980 and 2017 
(Supplementary Figs. 1–3). Similar to foliar [N], foliar δ​15N scales 
positively with N availability relative to plant N demand within an 
ecosystem17–19 as plants experiencing higher N availability acquire 
soil N that is more enriched in 15N. When N availability is high, 
there is a greater relative importance of loss pathways that strongly 
fractionate against 15N; for example, denitrification. Also, plants 
acquire less N from mycorrhizal fungi, which transfer 15N-depleted 
N to plants. Our data set is over 30,000 data points larger than pre-
viously assembled17, providing a better representation of global 
ecosystems and climate space as well as representing an additional 
12 years of data to examine temporal trends (Supplementary Figs. 1 
and 2). All samples used in analyses were associated with mean cli-
mate data and assigned a mycorrhizal type and N2-fixing capacity 
based on provided data or literature syntheses20,21. Data were then 
averaged to provide a single foliar δ​15N value for each species at a 
given site in a given year before determining relationships between 
foliar δ​15N and climate, mycorrhizal type and foliar [N]. We then 
tested whether foliar δ​15N and foliar [N] increased or decreased over 
time across sites with regression and structural equation modelling.

Results
Examining patterns for 38,646 unsummarized measurements of 
foliar δ​15N from non-N2-fixing species, mean foliar δ​15N was 0.4‰ 
and varied by over 40‰ across all samples (−​20.6‰ to +​21.4‰). 
As observed in a previous synthesis17, using data summarized by 
species at each site for each year (n =​ 10,827), foliar δ​15N increased 
with increasing mean annual temperature (MAT) and decreasing 
mean annual precipitation (MAP) (Fig.  1). With these data, δ​15N 
began increasing with increasing MAT above 9.9 ±​ 1.0 °C, which 
was similar to the 8.5 °C break point observed in the full data set of 
the first synthesis17 and the 9.8 °C break point observed for a global 
synthesis of soil organic matter δ​15N22. As observed previously, in 
the current synthesis, foliar δ​15N increased with increasing log-
transformed foliar [N] and differed among species with different 
mycorrhizal associations (Fig. 1). Non-mycorrhizal species still had 
the highest foliar δ​15N, and ericoid species the lowest (Fig. 1). Foliar 
[N] was highest under cold, wet climates and also differed signifi-
cantly among mycorrhizal types, with non-mycorrhizal and arbus-
cular species having the highest N concentrations (19.2 mg g−1)  
and ericoid species the lowest (12.2 mg g−1). After accounting for  
climate, foliar [N] and mycorrhizal type, there were significant 

differences among continents in foliar δ​15N. For example, samples 
from Europe were 0.9 ±​ 0.2‰ lower than expected based on climate, 
mycorrhizal type and [N], whereas samples from South America 
were 1.0 ±​ 0.2‰ more than expected (Supplementary Table  1, 
Supplementary Fig.  4). For foliar [N], leaves from a typical plant 
with the geometric mean [N] of 17.3 mg g−1 would be 10.7 mg g−1 if 
the plant were from Australia and 19.5 mg g−1 from Asia if one held 
mycorrhizal type and climate constant and only varied the conti-
nent of origin (Supplementary Table 1).

After standardizing values for differences in climate, mycorrhi-
zal type, foliar [N] and continent, there was no significant trend 
in residual δ​15N over time when comparing at the same foliar [N] 
over time (−​0.003 ±​ 0.007‰ y−1; P =​ 0.62, n =​ 2,301; Supplementary 
Table 1). However, log-transformed foliar [N] did decline over time 
(−​0.0012 ±​ 0.0003 y−1; P =​ 0.001, n =​ 2,301; Supplementary Table 1). 
This rate of decline is the equivalent of a typical plant with the geo-
metric mean [N] of 17.3 mg g−1 in 1980 declining 9% to 15.6 mg g−1 
in 2017. Given this declining foliar [N] over time and the relation-
ship between foliar [N] and δ​15N, we ran additional regression mod-
els that standardized foliar δ​15N for climate, mycorrhizal type and 
continent, but did not hold foliar [N] constant over time. Not hold-
ing foliar [N] constant over time, residual foliar δ​15N declined by 
1.6 ±​ 0.5‰ (P <​0.001) over 37 years (Fig. 2).

To test how changes in foliar [N] were affecting the trend in  
δ​15N given that both were changing over time, a structural equation 
model (SEM) further examined the role of foliar [N] in determining 
changes in δ​15N and the changes in δ​15N that were independent of 
trends in foliar [N]. Doing so allows partitioning of direct effects of 
time on foliar δ​15N from indirect effects that occur through changes 
in foliar [N]. Working with site-level residual foliar δ​15N and foliar 
[N] for non-N2-fixing species after standardizing for climate, 
mycorrhizal type and continent, taking into account [N]-dependent 
and -independent pathways, the SEM resulted in a lower estimate of 
the decline in foliar δ​15N in non-N2-fixing species than the regres-
sion with the sums of effects via the two pathways generating an 
estimated decline of 0.6‰ over 37 years (Supplementary Fig.  5, 
Supplementary Table  2). With this approach, 70% of the decline 
occurred independent of changes in [N], while the remainder was 
due to the decline in [N].

To explore patterns of changes in foliar δ​15N and [N] over time 
across climates for non-N2-fixing species, we ran a series of SEMs 
using subsets of the data created by serially adjusting the minimum 
and maximum MAT for inclusion in the SEM. Examining the coef-
ficients for SEMs across ranges of MAT, plants in hot regions have 
been more likely to increase in foliar [N] over time than plants 
from cold regions (Supplementary Fig. 6). Yet, the [N]-independent 
changes in foliar δ​15N were consistently negative across the entire 
range of MAT tested (Supplementary Fig. 6). As a result, after cal-
culating [N]-dependent and [N]-independent pathways of changes 
in foliar δ​15N, foliar δ​15N declined across the entire range of MAT 
tested and the decline was probably of the highest magnitude in hot-
ter regions. Employing a similar approach for MAP, regions with 
intermediate MAP were most likely to experience increased [N] 
(Supplementary Fig.  7), but the strength of the [N]-independent 
declines in foliar δ​15N led to declines in foliar δ​15N across the entire 
range of MAP examined (Supplementary Fig. 7).

N2-fixing plants showed similar patterns over time in site-level 
foliar δ​15N as non-N2-fixers, although it is uncertain whether 
these patterns result from increasing N2 fixation or reduced δ​15N 
of acquired N due to declining N availability. Across 4,369 samples 
(Supplementary Fig.  8), mean foliar δ​15N for N2-fixers was 2.0‰ 
and varied by over 24‰. Probably reflecting their greater access 
to N, the geometric mean foliar [N] for N2-fixing species was 
25.8 mg g−1 as opposed to just 17.3 mg g−1 for non-N2-fixers. Foliar 
δ​15N increased with increasing MAT, decreasing MAP and increas-
ing foliar [N] (Supplementary Fig. 9). Potentially signifying greater 
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N2-fixation, [N] was increasing for N2-fixers between 1980 and 2017 
(Supplementary Table 1). However, leaf δ​15N still declined by 1.4‰ 
over the 37 years. Using the same SEM used for non-N2-fixers, tak-
ing into account the increases in N as well as N-independent decline, 
foliar δ​15N declined by 0.8‰. This decline is similar to the rate for 
non-N2-fixers (Supplementary Fig.  10, Supplementary Table  3), 
but it should be noted that sample size was lower for non-N2-fixers 
(n =​ 379 for data averaged by site and year).

Discussion
Based on evidence that foliar δ​15N reflects soil N availability to plants 
in non-N2-fixing species, the most parsimonious interpretation of 
the decline in foliar [N] and foliar δ​15N for non-N2-fixing species 
is that the ratio of plant N demand to soil N supply is increasing 
in unfertilized ecosystems across the Earth; that is, N availability 
to plants is declining. Within this general global pattern, there are 
individual examples of local to regional increases in N availability 
occurring23–25. We also reveal evidence that some climatic regions 
might be experiencing complicated responses, with foliar [N] 
increasing while foliar δ​15N decreased. Yet, patterns consistent with 
broad-scale oligotrophication in unfertilized terrestrial ecosystems 
are documented in numerous other studies. Evidence of oligotro-
phication includes regional declines in grass and tree foliar N con-
centrations26,27, reduced dietary protein in cattle on rangelands15, 
reduced pollen protein concentrations28, increased soil C:N29,  

reduced N mineralization rates in forests30 and reductions in NO3
− 

in forest streams31–34. In addition, declines in δ​15N of tree rings and 
leaves from herbarium samples indicate reduction of plant N avail-
ability in forests and grasslands over the past 75–150 years12,25,27.  
It should be noted that these corroborating patterns have been 
quantified for North America and Europe. Similar research has 
yet to be conducted to begin to examine other lines of evidence on 
other continents.

The mechanism behind terrestrial oligotrophication cannot be 
directly tested here, but progressive N limitation associated with 
elevated atmospheric CO2 and/or longer growing seasons due to 
climate change are likely candidates due to the global extent of the 
oligotrophication. Although N deposition does affect terrestrial eco-
system N cycling, North American tree ring and herbarium studies 
support the timing of the initiation of the decline in N availability 
to predate broad-scale increases in N deposition25,27 and declines in 
foliar [N] are unlikely to be explained by greater N deposition rates 
globally. Further N isotope research on tree rings and herbarium 
specimens as well as more extensive syntheses of foliar [N] data 
could elucidate regional variation in changes in N availability over 
time, as well as further explore the timing of declines before the 
years examined here.

Considered alongside these other lines of evidence, our results 
suggest that most terrestrial ecosystems are undergoing oligotro-
phication, even while other ecosystems—particularly intensively 
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fertilized terrestrial ecosystems, urban areas and their downstream 
receiving waters—are eutrophying (Fig. 3). This global bifurca-
tion of N availability raises questions about whether humanity has 
exceeded a true planetary boundary for N availability35. Broad-scale 
reductions of anthropogenic N fixation would certainly reduce 
impacts on aquatic ecosystems, but at the same time could also 
further constrain terrestrial C uptake as atmospheric CO2 concen-
trations continue to increase and N deposition rates fall13. Given 
projected increases in atmospheric CO2 concentrations and global 
temperatures over the next century, it is likely that this oligotrophi-
cation will continue and the C:N stoichiometry of most terrestrial 
ecosystems will continue to increase. It remains to be tested whether 
reduced plant protein accompanying oligotrophication can explain 
reductions in production in herbivores36, but declining N availability  

to plants should cascade up to herbivores15,16. Even if atmospheric 
CO2 is eventually stabilized at low enough levels to mitigate the most 
serious impacts of climate change37, many terrestrial ecosystems will 
increasingly display signs of too little reactive N as opposed to too 
much. Preventing these declines in N availability further empha-
sizes the need to reduce anthropogenic CO2 emissions.

Methods
Data acquisition. Data for this synthesis included data from the 2009 synthesis 
and published and unpublished data acquired from other researchers. To identify 
data not included in the 2009 synthesis, Web of Science was searched with the 
terms ‘(nitrogen isotope or 15-N) and (leaf or leaves or foliar)’ for papers published 
between 2006 and the present. Web of Science was also searched for papers that 
cited Craine et al., 2009, and these were examined using the same criteria. Google 
Scholar was searched using similar criteria and the first 300 articles were examined. 
Articles that potentially were associated with foliar δ​15N data were downloaded and 
examined to see whether foliar δ​15N data were collected. Articles were excluded if 
foliar δ​15N data were limited to: (1) urban areas, (2) agricultural ecosystems,  
(3) non-control samples of manipulative experiments, (4) non-vascular plants,  
(5) fertilized plants, (6) semi-aquatic or aquatic plants or (7) sites with 
MAP <​ 50 mm. For those papers that did not provide data online, we contacted the 
corresponding author using the provided email and requested the data. First emails 
were sent on October 3, 2017. Failures to respond within two weeks or bounced 
emails resulted in searching the web for a different email or contacting another 
author on the paper. If an author was successfully contacted, we asked whether they 
had additional appropriate foliar δ​15N data that could be provided to the project. 
Data were included in the final synthesis if data points were associated with the 
year the data were collected, if there were location data to generate site latitude and 
longitude, if there was sufficient identity of the species from which the leaves were 
collected to identify the mycorrhizal type and N2-fixing status of the plant and if 
both foliar N concentration and foliar δ​15N were recorded. Out of 146 researchers we 
attempted to contact, a total of 108 researchers responded that they would send data 
and 100 sent data by January 10, 2018. Along with data acquired from Dryad and 
TRY databases, 180 new data sets were added to the 78 data sets of the original paper.

For each data point in the database, we assigned a MAT and MAP based on its 
geographic location from New et al.38. Original climate data were maintained if data 
from the first database did not have location data associated with them. N2-fixing 
status of each species was assigned based on the study by Werner and colleagues20. 
Any Fabaceae species not listed in the reference was assumed to be N2-fixing unless 
the majority of the species in the genus were non-N2 fixers. Family identification 
was assigned from theplantlist.org or ITIS. Mycorrhizal type of the species was 
derived from the study by Brundrett21 using family- and genus-level assignments.

Data analysis. Statistical analyses were preregistered with Open Science 
Framework on 3 October 2017 (https://osf.io/thnyf) to reduce post-analysis bias 
in choosing statistical methods. Analyses were constructed with the knowledge 
of patterns from the 2009 analyses, but without access to any subsequent data. 
All analyses were conducted in R 3.3.2. All data for a given species at a given site 
within a year were averaged. All samples within each 0.1 ° latitude and longitude 
were considered to be from the same site. Statistical analyses were run separately 
for N2- and non-N2-fixing species. Our general regression approach was to test 
for trends in foliar δ​15N after standardizing for as many covariates as possible that 
could be skewing the temporal trend due to differential sampling. To accomplish 
this, we conducted a set of regressions with species-averaged data followed by 
a regression with site-averaged data. In the first set of regressions, foliar δ​15N 
(averaged by site, species and year) was regressed against log-transformed MAP, 
log-transformed foliar [N] and mycorrhizal type. Differences among mycorrhizal 
types were assessed with pairwise contrasts on least-squares means. The residuals 
of this regression were then subjected to a segmented regression to identify the 
break point between MAT and foliar δ​15N. A subsequent regression of foliar  
δ​15N (averaged for site, species and year) then included MAT, the interaction 
between MAT and a categorical variable representing whether sites had MAT 
above or below the break point, log-transformed MAP, log-transformed foliar [N] 
and mycorrhizal type. Outliers were considered as those points having a Cook’s 
D >​ 1, but no points met this threshold for this data set. To test whether foliar  
δ​15N increased or decreased over time, we ran a second regression on the residual 
foliar δ​15N from the previous analysis after averaging the residuals by year and 
site. The regression tested the averaged residuals against year of sampling and 
the identity of the continent from which the sample was taken. Continent was 
included to ensure that any trends over time were not due to differential sampling 
over time between continents, which had been previously observed as explaining 
variation in foliar δ​15N independent of climate. A similar set of regressions were 
run with log-transformed foliar [N] as the response and without foliar [N] as a 
predictor. After observing that foliar [N] declined, additional regressions were 
performed that paralleled the foliar δ​15N regressions but did not include log foliar 
[N] in the regression model in order to quantify how foliar δ​15N changed without 
standardizing for the declines in log foliar [N]. In this model, the regression was 
not weighted by sample size for each year, in accordance with all other models.
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Structural equation modelling. The first set of regressions were designed to test 
for trends in foliar δ​15N after standardizing foliar δ​15N with respect to foliar [N]. To 
account for trends in [N] occurring over time when assessing the potential causes 
of changes in δ​15N over time (which cannot be assessed using regression methods), 
we also conducted an SEM that used site-level residual δ​15N after accounting for 
MAT and its break point, log-transformed MAP, mycorrhizal type and identity 
of the continent from which samples were taken. The SEM then assessed the 
influence of time on foliar [N] as well as time and [N] on foliar δ​15N.

Post-registration, the SEM was altered to correct an oversight. The final SEM 
used residual foliar [N] after standardizing for MAT, log MAP, mycorrhizal type 
and continent as opposed to unstandardized foliar δ​15N. The SEM also was altered 
from its original pre-registered formulation to use site-averaged data rather than 
unsummarized data, which was another initial oversight. As an exploratory 
exercise, we also ran a series of SEMs that explored the response of foliar δ​15N as 
a function of climate. In the first set of SEMs, data were subset by MAT, serially 
incrementing the lower bound from −​5 to 18 °C and the upper bound from 
10 °C more than the lower bound up to 28 °C. All combinations were tested with 
MAT bounds incremented by 1 °C between runs. In the second set of SEMs, data 
were subset by log MAP, serially varying the lower bound from 2 to 3.1 and the 
upper bound from 0.4 more than the lower bound to 3.6. log MAP bounds were 
incremented by 0.1 and the SEMs explored responses in MAP from 100 mm to 
3981 mm. SEM models were implemented in the R programming language using 
the Lavaan package version 0.5–23.109739. No modification indices were used.

Because all possible pathways between all variables were accounted for in 
the SEM—that is, the models were ‘just identified’ or saturated—we could not 
test the significance of our models22,40–42, but do report significance values and 
unstandardized coefficients for each path. Future research could test more complex 
SEMs that are not saturated, which would allow for estimation of the significance 
of a model as a whole. Given that we could not estimate the significance of the 
model, one should not rely on the SEM as support for the causal structure that was 
tested, but instead as a technique for generating the individual parameters that 
were used to assess N-dependent and N-independent rates of decline in δ​15N.

Data sources. Articles from which published data were derived are listed in  
refs 23,43–224. A table of the papers examined and their ultimate inclusion or 
exclusion can be found in Supplementary Table 4.

Reporting summary. Further information on experimental research design is 
available in the Nature Research Reporting Summary linked to this article.

Data availability
The data sets generated during and/or analysed during the current study are 
available in the Dryad repository (https://doi.org/10.5061/dryad.v2k2607). All 
codes used for statistical analyses and figure generation are available on Dryad 
(https://doi.org/10.5061/dryad.v2k2607).
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Study description In 2009, we published a paper that quantified relationships between foliar delta15N and a) climate relationships, b) foliar N 
concentrations, and c) mycorrhizal associations. Data for the paper were collected through 2006. Since then, over a decade of data 
has accumulated on foliar delta15N, but there has been no analysis to assess whether these relationships have held constant or 
changed. For example. rising atmospheric CO2 concentrations might be reducing N availability to plants, which would cause declines 
in both foliar N concentrations and delta15N. Alternatively, increased atmospheric N deposition could cause increases in both.  
 
All hypotheses will separately tested for N2-fixing and non-N2-fixing plants. 
 
H1) Have there been significant shifts in the relationships between foliar delta15N and a) mean annual temperature, b) mean annual 
precipitation, c) foliar N concentrations, and d) mycorrhizal associations? More specifically, has there been a significant change in the 
mean estimates for each parameter for data collected before 2006 and those collected after 2006?  
 
H2) After accounting for mean annual temperature, mean annual precipitation, foliar N concentrations, and mycorrhizal association, 
has foliar delta15N either increased or decreased over time for N2-fixing and non-N2-fixing plants? 
 
H3) After accounting for mean annual temperature, mean annual precipitation, and mycorrhizal association, has foliar delta15N 
either increased or decreased over time for N2-fixing and non-N2-fixing plants??  
 
H4) How are any trends in foliar N concentrations contributing to any trends in foliar delta15N? 

Research sample An individual sample would be considered a single value of foliar d15N and [N] collected from a species at a given site in a given year.

Sampling strategy Data were acquired from the literature and by contacting coauthors for unpublished data. Data collection  proceeded until all data 
identified as appropriate had been collected to a certain date. Individual researchers were contacted via email twice for their data to 
limit the effort to acquire any one data set.

Data collection Data were acquired by first identifying extant published data sets. wer 
 
First, we searched Web of Science with the terms "(nitrogen isotope or 15-N) and (leaf or leaves or foliar)" for years 2006-present. 
Articles that potentially were associated with foliar 15N data were flagged for downloading and examination to see if foliar 15N data 
were collected. Articles were excluded if data are limited to: 
 
1) urban areas 
2) agricultural ecosystems 
3) non-control samples of manipulative experiments 
4) non-vascular plants 
5) fertilized plants 
6) semi-aquatic or aquatic plants 
7) sites with mean annual precipitation &lt; 50 mm 
 
Planted trees were included if they were from plantations older than 5 years and met the above requirements. 
 
Web of Science was searched for relevant datasets to included any papers that cite Craine et al. 2009. 
 
In addition to identifying these datasets on Web of Science, we also searched Google Scholar using the same search terms and 
criteria to look for relevant articles. 
 
After identifying articles that potentially report collection of foliar 15N data, we downloaded each article to examine whether 
relevant foliar 15N data were collected. For those that were, we first saw whether the data had been provided in an on-line 
repository. If not, we contacted the corresponding author and requested the data. Failures to respond were handled by contacting 
other authors on the paper. Unsuccessful attempts to request data will be noted in a log. 
 
If an author was successfully contacted, we asked the researcher whether they have additional appropriate foliar 15N data that could 
be provided to the project.  
 
Data were included in the final synthesis if data points were associated with a date of collection (at least to year),  location data that 
could be used to generate site latitude and longitude, the identity of the species from which the leaves were collected, and both 
foliar N concentration and foliar d15N.  
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In parallel to obtaining data sets identified in the literature, additional datasets were sought from Dryad (datadryad.org) using the 
search terms "nitrogen isotope" and "15N". 

Timing and spatial scale Data were included if they were collected between 1980 and 2017. First emails were sent on October 3, 2017. Data collection ended 
January 10, 2018. 

Data exclusions For data that met the above criteria, no data were excluded from the analyses.
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