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Time-resolved Hall conductivity of pulse-driven topological quantum systems
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We address the question of how the time-resolved bulk Hall response of a two-dimensional honeycomb lattice
develops when driving the system with a pulsed perturbation. A simple toy model that switches a valley Hall
signal by breaking inversion symmetry is studied in detail for slow quasiadiabatic ramps and sudden quenches,
obtaining an oscillating dynamical response that depends strongly on doping and time-averaged values that
are determined both by the out of equilibrium occupations and the Berry curvature of the final states. On the
other hand, the effect of irradiating the sample with a circularly-polarized pump pulse that breaks time reversal
symmetry and thus ramps the system into a nontrivial topological regime is probed. Even though there is a
nonquantized average signal due to the breakdown of the Floquet adiabatical picture, some features of the photon-
dressed topological bands are revealed to be present even in a few femtosecond timescale. Small frequency
oscillations during the transient response evidence the emergence of dynamical Floquet gaps which are consistent
with the instantaneous amplitude of the pump envelope. On the other hand, a characteristic heterodyning effect
is manifested in the model. The presence of a remnant Hall response for ultrashort pulses that contain only a few
periods of the radiation field is briefly discussed.
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I. INTRODUCTION

The discovery of the quantum Hall effect is considered as a
milestone in condensed matter physics that undeniably linked
the topological structure of electronic wave functions to the
macroscopic properties of a system [1–4], ultimately leading
to the description of a novel class of quantum states: topologi-
cal Chern or quantum Hall insulators (TIs or QHIs) [5–9]. The
ground state of these noninteracting fermionic systems is well
characterized by highly nonlocal order parameters, the Chern
numbers associated to each Bloch band. The celebrated bulk-
boundary correspondence principle states that if the sum of
these integer numbers up to the Fermi level is nonzero, gapless
chiral states will be present at the edge of the system [5,8].
The existence of these conducting boundary excitations in
bulk-insulating materials leads to a manifold of quantum Hall
signals, such as the quantum anomalous Hall effect [10,11]
which is present even in the absence of external magnetic
fields, a hallmark of nontrivial topology.

Over the last decade, great advances in the field of anoma-
lous Hall signals have been fuelled with the idea of en-
gineering topological band structures by driving otherwise
conventional materials with an external time-periodic poten-
tial [12–19]. The proposal of the so-called Floquet topological
insulators (FTI) opened the road for an external control of the
properties of matter with the potentiality of optically turning
on and off energy gaps [20] containing chiral edge states in
ultrashort time scales. Evidence of photon-dressed Floquet
band structure has been revealed in time-resolved pump and
probe spectroscopic measurements [21], but transport experi-
ments with a Hall setup in these unique phases of matter are
still yet to come. While the possibility to control topological
transitions with light looks appealing, some of the concepts
that are well established in unperturbed systems cannot be

generalized in a simple way to these out of equilibrium
phases. In fact, numerical approaches have shown that the zero
magnetic field Hall conductance of continuously irradiated
FTIs is not quantized [22] nor related to the Chern number
of the entire Floquet band [23].

Even more, the broader problem of dynamically reach-
ing a topological regime when ramping an initially trivial
Hamiltonian through a topological quantum phase transition
and determining what are the natural observables to look
for is still a subject of ongoing discussion [24–27]. The
time averaged Hall conductance following a quantum quench
between two inequivalent topological phases was analyzed
in several theoretical works [28–33], unveiling that the final
response is not necessarily quantized. A direct time-resolved
evaluation of the bulk Hall current expectation value was also
reported [34], manifesting a nontrivial signal that builds up
in time when making a controlled parameter ramp into a
Chern insulator final Hamiltonian. Generally speaking, the
well established bulk-edge correspondence in equilibrium is
not guaranteed when dynamically preparing the topological
phase. Discontinuities in bulk observables are due to the
opening and closing of gaps in the energy spectrum of the in-
stantaneous Hamiltonian as the topological regime is reached,
which unavoidably leads to a nonadiabatical population of the
target states. This goes in hand with interband interference
effects in current and center of mass responses which have
been nicely discussed in Ref. [27].

In this work, we revisit some of these points by consider-
ing the development of a Hall response in isolated systems
under coherent dynamics throughout a pulsed perturbation,
motivated both by the theoretical understanding of the basic
mechanisms that generate out of equilibrium quantum Hall
signals and by current time-resolved experiments that are able
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to perform measurements during time periods shorter than
characteristic relaxation time scales [35]. On the other hand,
mostly time averages that disregard dynamical features were
reported in the literature. We address a simple toy model
that switches a valley Hall signal in a honeycomb lattice and
analyze its dynamics for different ramping protocols and as
a function of doping. Furthermore, we consider the effect of
irradiating the sample with a circularly-polarized pump pulse
that breaks time reversal symmetry and is expected to ramp
the system into a Floquet topological phase. It is a relevant
task to identify if experimentally accessible pump pulses with
only a few femtoseconds width and moderate frequencies are
able to reveal some aspects of Floquet theory, even though
the system is no longer in a continuously irradiated regime.
It is also of interest to analyze the post-pulse response, in
particular in the case of ultrashort pulses containing only a few
periods of the electromagnetic field. In the following sections
we study and present results that will help clarify all these and
related points.

II. THE MODEL

We start with a Hamiltonian describing the electronic
structure of graphene and related 2D materials.

H = −
∑
k,s

γ [φka
†
ksbks + φ∗

kb
†
ksaks]

+
∑
k,s

�[a†
ksaks − b

†
ksbks] , (1)

where aks and bks destroy an electron with wave vector k
and spin s in sublattices A and B of the honeycomb lattice,
respectively. The matrix element γ corresponds to the nearest
neighbor hopping and

φk = eiaky

[
1 + 2e−i 3a

2 ky cos

(
a
√

3

2
kx

)]
, (2)

with a the distance between neighboring sites. In the ex-
pression above, � is a masslike term that gaps the spectrum
introducing a staggered on-site sublattice potential. This term
breaks inversion symmetry and is then absent in graphene. In
silicene or germanene, however, it can be induced by an elec-
tric field [36] while in other 2D transition metal compounds
it occurs naturally [37]. From here on we drop the spin index
keeping in mind that all states are double degenerate.

We consider a time-dependent perturbation that may break
time-reversal (TR) symmetry but preserves translational sym-
metry. As a consequence the electron crystal momentum is
conserved and the time dependent Hamiltonian has the form
H(t ) = ∑

k Hk(t ). The time dependence of Hk(t ) may be due
to a time variation of the Hamiltonian parameters or to the
action of a uniform circularly polarized electromagnetic field.

In this work we present analytical and numerical results
using different techniques. Analytical results are obtained us-
ing quasiadiabatic or sudden approximations, Floquet theory
for the case of time-periodic perturbations [38–41], and the
two-time formalism for perturbations with two characteristic
time scales [42]. The numerical results are obtained taking

into account the full time evolution operator

U (t, t ′) =
∏

k

T e− i
h̄

∫ t

t ′ Hk (t ′′ )dt ′′ , (3)

where T is the time-ordering operator. The computation of
this double-time propagator is carried out by discretization of
the real-time axis and multiplication of the resulting time-step
evolution operators, so that for each quasimomentum k we
evaluate Uk(t, t ′) = T e− i

h̄

∫ t

t ′ Hk (t ′′ )dt ′′ as

Uk(t, t ′) = T e− i
h̄

∑N
n=1 Hk (tn )δt ≈ T

N∏
n=1

e− i
h̄
Hk (tn )δt , (4)

with tn = t ′ + 2n−1
2 δt , N the number of time steps between

t and t ′, and the product is understood as time ordered with
later times to the left. The last term in the above equation
is obtained assuming [Hk(tn),Hk(tn + δt )] ≈ 0 for small
enough δt .

III. THE HALL CONDUCTIVITY

The calculation of the Hall conductivity under the effect of
a time-dependent perturbation requires the use of out of equi-
librium techniques. To describe this procedure we use linear
response theory for the case of a time dependent Hamiltonian

HV (t ) = H(t ) + V (t ) , (5)

where H(t ) is the Hamiltonian of the system including
the time dependent perturbation and V (t ) describes the
action of the small bias. A generalized interaction represen-
tation for the wave functions |ψI (t )〉 and operators OI (t )
is defined as |ψI (t )〉 = U (−∞, t )|ψS (t )〉 = U (−∞, t )UV
(t,−∞)|ψS (−∞)〉 and OI (t ) = U (−∞, t )OS (t )U (t,−∞),
where the subindex S on the right hand side of these equa-
tions stands for Schrödinger representation and U (t, t ′) and
UV (t, t ′) are the time evolution operators for the Hamiltonians
H(t ) and HV (t ), respectively. Expanding UV (t, t ′) to first
order in the small perturbation V (t ) and assuming that at time
t = −∞ the system is in thermal equilibrium we obtain for
our (noninteracting) system

〈OS (t )〉 =
∑

α

f (εα )

(
〈ψα|OI (t )|ψα〉 − i

h̄

∫ ∞

−∞
dt ′�(t − t ′)

×〈ψα|[OI (t ),VI (t ′)]|ψα〉
)

, (6)

where |ψα〉 and εα are the one-particle eigenfunctions and
eigenvalues of H(t = −∞), f (x) is the Fermi function, and
[· , ·] indicates the commutator.

The Hall conductivity is obtained from this expression for
the case where VI (t ′) describes the effect of a bias field E0

along, say, the y axis and OI (t ) is the current operator along
the x axis. The electric field in this case is described by a spa-
tially homogeneous time-dependent vector potential Ab(t ) =
−cE0

1
η

ln(1 + eηt ) ŷ = −cE0W (t ) ŷ with η > 0. Expanding
the Hamiltonian to first order in E0 we get

HV (t ) = H(t ) − 1

c
Ab(t ) · j , (7)
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with j = − e
h̄

∑
k ∇kH(t ). In terms of these quantities,

the time dependent Hall conductivity for t 	 1/η is then
given by

σxy (t ) = − i

h̄

∑
k,α

f (εkα )
∫ ∞

−∞
�(t − t ′)〈ψkα|

× [jxI (t ), jyI (t ′)]|ψkα〉W (t ′)dt ′

= − i

h̄

∑
k,α

f (εkα )
∫ ∞

−∞
�(t − t ′)〈ψkα|

× [U (−∞, t )jxU (t,−∞), U (−∞, t ′)jy

×U (t ′,−∞)]|ψkα〉W (t ′)dt ′ . (8)

Here |ψkα〉 corresponds to an eigenstate of the system in
equilibrium (t = −∞) with energy εkα (α is the band index).
It is important to emphasize that in the case of perturbations
of finite duration, such as pulses (see below), a finite value for
σxy (t ) after the perturbation should be understood as signaling
the presence of a remnant Hall current.

IV. THE HALL RESPONSE OF SIMPLE CASES

The above formulation of the Hall conductivity allows
us to calculate the Hall response for different models and
conditions. In what follows we present numerical results and
analytical approximations to interpret the behavior of simple
cases. For the subsequent analysis, it is useful to introduce the
quantum geometric tensor (also known as the Fubini-Study
metric tensor of complex projective spaces [43]), defined as

Qα
μν := 〈Dkμ

ψkα|Dkν
ψkα〉 = Gα

μν + i
Fα

μν

2
, (9)

where Dkμ
= ∂kμ

− iAμ is the covariant derivative and Aμ =
−i〈ψkα|∂kμ

ψkα〉 the Berry connection. The imaginary part of
Qα

μν is proportional to the widely known Berry curvature

Fα
μν (k) := −i

[〈
∂ψkα

∂kμ

∣∣∣∣∂ψkα

∂kν

〉
−
〈
∂ψkα

∂kν

∣∣∣∣∂ψkα

∂kμ

〉]
, (10)

and the real part describes the metric that measures
the distance between two nearby Bloch states ds2 = 1 −
|〈ψkα|ψk+dk,α〉|2 = ∑

μ,ν Gα
μνdkμdkν , with

Gα
μν (k) := 1

2

[〈
∂ψkα

∂kμ

∣∣∣∣∂ψkα

∂kν

〉
+
〈
∂ψkα

∂kν

∣∣∣∣∂ψkα

∂kμ

〉
−
〈
∂ψkα

∂kμ

∣∣∣∣ψkα

〉〈
ψkα

∣∣∣∣∂ψkα

∂kν

〉
−
〈
∂ψkα

∂kν

∣∣∣∣ψkα

〉〈
ψkα

∣∣∣∣∂ψkα

∂kμ

〉]
. (11)

A. The equilibrium response

The well known Hall conductivity of a system in equilib-
rium, with the bias field being the only external perturbation,
represents a paradigm of the bulk-boundary correspondence:
The topology of the band structure wave functions determines
the number of current-carrying edge states. In this case, the
time propagators in Eq. (8) are simply given by U0(t1, t2) =∏

k e− i
h̄
Hk (t1−t2 ) and, after some algebra, the final result for the

Hall conductivity of a two-band model can be written in terms
of the aforementioned gauge invariant tensor [see Eq. (9)]

σxy = e2

h̄

∑
kα

f (εk,α )

[
Fα

xy (k) + t
4εkα

h̄
Gα

xy (k)

]

= e2

h

1

2π

∑
α

∫
BZ

f (εkα )Fα
xy (k)d2k. (12)

The second (dangerously divergent) term in the first equality
of Eq. (12) integrates to zero in equipotentials over the Bril-
louin zone (BZ).

In the case of the Hamiltonian defined by Eq. (1), the
total Hall conductivity can be expressed as the sum of two
contributions coming from states with wave vector k close to
the Dirac points K and K ′ of the BZ. Close to these points the
Hamiltonian can be approximated by

Hξ

k = h̄vF σ ·
(

ξkx, ky,
�

h̄vF

)
, (13)

where now k = (kx, ky ) is the wave vector measured from the
K (ξ = +) or K ′ (ξ = −) points of the BZ, vF denotes the
Fermi velocity, and σ = (σx, σy, σz) are the Pauli matrices
describing the pseudospin degree of freedom. For this par-
ticular case, the Berry curvature and the real part of the x-y
component of the metric reduce to

Fα
xy (k, ξ ) = ± ξ (h̄vF )2�

2[(h̄vF k)2 + �2]3/2

Gα
xy (k, ξ ) = ±ξ (h̄vF k)2 sin(2θk )

4[(h̄vF k)2 + �2]2
, (14)

where the ± signs correspond to the conduction (α = c)
and valence (α = v) bands, respectively, and we have intro-
duced the angle θk = tan−1(ky/kx ). The Berry curvature has
a nontrivial value due to the breaking of inversion symmetry
produced by the masslike term � in the Dirac Hamiltonian.
At zero temperature and for the Fermi energy εF = 0 the
quantized Hall conductivity can be expressed as

σ ξ
xy = e2

h
Cξ , (15)

where Cξ is the contribution to the Chern number from states
of the ξ valley or Dirac cone,

Cξ = 1

2π

∫
Fv

xy (k, ξ )d2k = −ξ
sgn(�)

2
. (16)

The total Chern C = C+ + C− = 0, indicating a zero Hall
response characteristic of a trivial topology. However, as
each Dirac cone gives a nonzero σ

ξ
xy , the electric field in-

duces a transverse valley current: the valley quantum Hall
effect [44–46].

B. A simple model with a time dependent valley Hall signal

As a reference situation, and for the sake of comparison
with the more interesting case of radiation to be discussed in
the next section, here we summarize the results of a model
in which the mass term � is turned on as �(t ) = �∞/(1 +
e−β(t−t0 ) ). After a transient time it reaches a final value �∞ =
50 meV with the parameter β controlling the velocity of the
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FIG. 1. Time resolved Hall conductivity at K ′ valley with a
switch-on envelope �(t ) = �∞/(1 + e−β(t−t0 ) ). (a) β = 0.01 fs−1

with the dashed horizontal line denoting the equilibrium expected
value CK ′ = 0.5; (b) β = 1 fs−1 with the dashed horizontal line at
the long-time limit for the sudden approximation σxy (∞) = π/8.

ramp. The Hamiltonian of the system for wave vectors near
the Dirac points is given by Eq. (13) where now the mass term
� acquires some time dependence. The dynamical response
of the system depends on the way the mass is turned on,
evolving from a quasiadiabatic behavior for very slow ramps
to quenched behavior for fast switchings.

The numerical results for σ K ′
xy (t ) are shown in Fig. 1 for

different parameters. For slow (quasiadiabatic) switching on
of the mass term [Fig. 1(a)], the Hall conductivity increases
while oscillating in time with frequency �(t ) and the absolute
value of its asymptotic average stays close to e2

2h
, the quantized

expected response [see Eq. (16)], shown with the dashed
horizontal line.

For a fast switching-on of the mass [Fig. 1(b)], σ K ′
xy (t ) also

shows oscillations with increasing amplitude and manifests an
absolute value of the asymptotic time average smaller than
e2

2h
. As shown in Appendix A, the long-time limit of the

mean Hall conductivity after a sudden parameter change is
analytically found to be an integral of the Berry curvature
of the final (long-time) Hamiltonian Ff

xy (k) weighted by the
occupations of the after-quench target states |φkf 〉, a result
already obtained by Ref. [30],

σxy (∞) = e2

h̄

∑
kα

∑
f

f (εkα )
∣∣�k

f α

∣∣2Ff
xy (k), (17)

with �k
f α = 〈φkf |ψkα〉. In the particular case of a sudden

turning on of the mass at zero temperature, this asymptotic
value is π/8, independent of the value of �∞ [see Eq. (A7)].

After the transient time, the characteristic frequency of
the valley Hall signal is given by the mass gap 2�∞ of
the final Hamiltonian. The long-lasting increasing amplitude
of the oscillating response is due to the coherence terms
in the wave functions, which have been dismissed in the
diagonal ensemble used to calculate the mean value of the
Hall conductance σxy (∞). An unbounded increase in time
of the amplitude is derived in Appendix A [see Eq. (A8)]. A
qualitative similar dependence can be seen to be present in
the numerical results obtained in Ref. [34] with a parameter
ramp of the BHZ Hamiltonian [47], indicating that this effect
is more general than the particular model addressed in our
work. It has been recently pointed out that nonlinear effects
in the bias field E0 could stabilize and damp these oscillations
(see Ref. [48]).

(a) (b)

FIG. 2. Time resolved Hall conductivity at K ′ valley with a
switch-on envelope of the mass term in Eq. (8) as �(t ) = �∞/(1 +
e−β(t−t0 ) ) with β = 0.01 1/fs. Different curves are obtained by
changing the Fermi level. (a) Obtained with the exact time evolution
of the Bloch states and (b) with the time evolution dictated by the
total adiabatic hypothesis.

In Fig. 2 we show the time resolved Hall conductivity
calculated as a function of doping. Figure 2(a) was obtained
with the full time evolution of the Bloch states and (b)
with a total adiabatic evolution. For εF � −�∞/2 both are
comparable. The long-time mean value is diminished with
respect to the quantized value e2/2h on account of a reduced
contribution of the total Berry curvature to the final response
when considering the occupied states. When the Fermi level
gets closer to the Dirac point, oscillations with the effective

gap 2
√

�2∞ + ε2
F can be appreciated. In the case of the total

adiabatic approximation [Fig. 2(b)], these oscillations damp
out for sufficiently long times [see Eq. (A3) in Appendix A],
since the wave function remains a pure state in the lower
instantaneous band and no coherent terms are allowed during
the evolution.

V. RADIATION DRIVEN SYSTEM: FLOQUET PICTURE
AND TWO-TIME DYNAMICS

This section contains the central results of our work.
Here we consider a uniform circularly polarized electro-
magnetic field described by the vector potential A(t ) =
Re[A0(t )e−i�t (x̂ + i ŷ)]. The electrons-radiation coupling is
described through the Peierls substitution that in our case re-
duces to replacing φ(k) by φ(k + e

h̄c
A(t )) with e the absolute

value of the electron charge and c the speed of light.
The uniform electromagnetic field, describing a plane wave

with its wave vector perpendicular to the plane of the sample,
breaks time-reversal (TR) symmetry and preserves transla-
tional symmetry. The TR symmetry breaking by the circularly
polarized field is important to generate nontrivial topological
properties [12,49] and Floquet chiral edge states [18]. We
consider a range of frequencies � such that all the physics
takes place at low energies, i.e., close to the Dirac points. The
time dependent Hamiltonian for each wave vector k around
the Dirac points of the BZ is now given by

Hξ

k(t ) = h̄vF σ ·
[
ξ

(
kx + e

h̄c
Ax (t )

)
, ky+ e

h̄c
Ay (t ),

�

h̄vF

]
.

(18)
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FIG. 3. (a) Floquet band structure of the Hamiltonian (18) with
a circularly polarized laser of energy h̄� = 400 meV and driving
amplitude of evf A0 = 140 meV in the extended Floquet scheme
weighted by the density of states projected onto the m = 0 Floquet
subspace. (b) Floquet bands in the FFZ, the gaps are at the zone
center ε = 0 or boundary ε = h̄�/2. Vertical lines show the chosen
regions to analyze the different contributions to the Hall response
σ [n]

xy with n = 0, 1, 2, . . . [see Eq. (25)].

For a constant amplitude of the radiation field A0(t ) = A0 the
Hamiltonian is time periodic with period T = 2π/�. In this
case, the set of solutions of the Schrödinger equation can be
expressed within the Floquet formalism, which states that the
wave functions have the form |ψα (t )〉 = exp(−iεαt/h̄)|φα (t )〉
where |φα (t )〉 are known as the Floquet modes, with the same
time periodicity as the Hamiltonian |φα (t + T )〉 = |φα (t )〉
and εα as the quasienergies [38–40]. The Floquet modes |φα〉
are eigenfunctions of the Floquet operator ĤF = H − ih̄ ∂

∂t

with eigenvalues εα

ĤF |φα (t )〉 = εα|φα (t )〉 . (19)

Decomposing the periodic modes in a Fourier ba-
sis, Eq. (19) reduces to an eigenvalue problem in the
composed Sambe space R ⊗ L2(0, T ), where R is the
usual Hilbert space and L2(0, T ) is the space of peri-
odic square integrable functions with period T . With the
periodic functions spanned in a set of orthonormal func-
tions eim�t , the Floquet operator is now a time-independent
infinite Hamiltonian H∞

F . If the eigenvectors of H∞
F are

(. . . , um,α, . . . , u1,α, u0,α, u−1,α, . . .)T , the time dependent
wave functions have the form |�α (t )〉 = e−i εα t

h̄

∑
m eim�t um,α

where the quasienergy can be taken in the first Floquet
zone (FFZ), that is − h̄�

2 < εα � h̄�
2 . These wave functions

describe coherent superposition of electronic and photonic
states.

The quasienergy band structure for h̄� = 400 meV and
evf A0 = 140 meV is shown in Fig. 3(a) in the extended FZ
scheme (ε + mh̄�) where the gaps at energies mh̄�/2 are
apparent. In the FFZ [Fig. 3(b)] the Floquet bands show
the gaps at the zone center ε = 0 or at the zone boundary
ε = ±h̄�/2. In a graphene strip, all these gaps are bridged by
protected edge states [23]. The intensity in the color map of
the figure indicates the contribution of each band to the density
of states projected onto the m = 0 Floquet subspace, obtained
as −1/πTr00Im[(ε + iη+ − H∞

F )−1] with η+ → 0+.
If the amplitude of the radiation field A0(t ) has some time

dependence, breaking the time periodicity of the Hamiltonian,

Floquet theory doesn’t apply. In this case, it is useful to resort
to a mathematical formulation of the evolution equation in an
extended Hilbert space [42,50–52]

[H(τ, t ) − ih̄∂t ]|ψ (τ, t )〉〉 = ih̄∂τ |ψ (τ, t )〉〉, (20)

where two time variables t and τ are introduced. The former
will be associated to the fast time-periodic evolution, while
the later is intended to account for the slow variation of the
pulse shape A0(τ ). The two-time wave functions |ψ (τ, t )〉〉
belong to a generalized Hilbert space with an inner product
defined as

〈〈ψα (τ, t )|ψβ (τ, t )〉〉 = 1

T

∫ T

0
〈ψα (τ, t )|ψβ (τ, t )〉dt. (21)

It is important to take notice of the fact that the definition of
this internal product only makes sense when the dynamics
associated to time τ takes place in a slow temporal scale
compared to the period T . Restricting the solution to the
contour τ = t it is possible to reobtain the physical wave
function that satisfies the original Schrödinger equation [50]
|ψ (τ, t )〉〉|

τ=t
= |ψ (t )〉, since

ih̄∂tψ (t ) = ih̄∂tψ (t, τ )|t=τ + ih̄∂τψ (t, τ )
∂τ

∂t

∣∣∣∣
t=τ

= ih̄∂tψ (t, τ )|t=τ + [H (t ) − ih̄∂τ ]ψ (t, τ )|t=τ

= H (t )ψ (t ). (22)

The advantage of this formalism manifests itself in the
fact that the evolution equation distinguishes two different
time scales, preserving the 2π/� periodicity in the fast time
coordinate and also taking into consideration the pulse mod-
ulation. In fact, Floquet wave functions are the adiabatic
solutions of Eq. (20), since they obey an eigenvalue equation
for the instantaneous Floquet operator

ĤF (τ, t )|φα (τ, t )〉〉 = εα (τ )|φα (τ, t )〉〉, (23)

with εα (τ ) the instantaneous quasienergies at time
τ . A formal solution for the two-time wave vector
could be achieved when it is decomposed in the
Fourier basis |ψ (τ, t )〉〉 = ∑

m eim�t |χm(τ )〉. Expanding
Eq. (20) in its normal modes, the state vector χ̄ (τ ) =
(. . . , χm(τ ), . . . , χ1(τ ), χ0(τ ), χ−1(τ ), . . .)T satisfies a slow
time-dependent Floquet-Schrödinger equation

H∞
F (τ )χ̄ (τ ) = ih̄∂τ χ̄ (τ ), (24)

where H∞
F (τ ) has block components defined by H

n,m
F (τ ) =

1
T

∫ T

0 dt ei(n−m)�tH (τ, t ) + nh̄�δn,m. If the switching of the
electromagnetic field were to be considered completely adi-
abatic in the whole Brillouin zone, the Floquet basis would
be accurate for the description of the evolved states. In fact,
for photon energies h̄� larger than the bandwidth, the FFZ is
such that it contains the entire unperturbed band. Hence, for
an undoped system, all negative quasienergies are occupied
and the positive ones are empty, making the Dirac points
the only relevant gap for the adiabatic Floquet dynamics:
This is the so called nonresonant regime. On the contrary,
when h̄� is smaller than the bandwidth, intraband resonances
between valence and conduction states occur, breaking the
Floquet adiabatic picture. The Floquet ‘ground state’ does not
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FIG. 4. Schematic representation of a transport measurement
experiment of the Hall conductivity. Both a dc bias induced current
Jy in the ŷ direction and a short pulse, characterized by a vector
potential Ap (t ), are applied. We will assume the sample is irradiated
with a spatially homogeneous electric field.

coincide with the initial Slater determinant for any choice of
the Floquet BZ [53] and the lifting of degeneracies in the
instantaneous Floquet spectrum at states k resonant with the
radiation field generates tunneling between different number
of photons subspaces resulting in an involved dynamical
response. In what follows we formulate the problem of pulses
of circularly polarized radiation with frequency � and a
Gaussian envelope A0(t ). A schematic representation of an
experimental setup for measuring the Hall response of the
bulk system is shown in Fig. 4.

In Fig. 5 we present results for a pulse with photon energy
of h̄� = 400 meV; the Gaussian width of the pulse is 50 fs
and its maximum amplitude evf A0 = 140 meV. The chemi-
cal potential has been taken at the Dirac point εF = 0. The
frequency of the electromagnetic field is taken to be smaller
than the bandwidth of the unperturbed Bloch bands, since this
resonant regime is more likely to be experimentally feasible.
The result can be summarized as follows:

(i) Before the pulse the total conductivity (
∑

ξ σ
ξ
xy) is zero;

after the pulse it converges to a finite value (representing a
remnant Hall current).

(ii) During the pulse a high frequency oscillation of 2� is
observed.

(iii) Once the fast oscillations are filtered, the signal shows
some small frequency oscillations during the pulse and re-
mains constant after the pulse. In the figure, the filtered signal
is obtained with a low-pass filter.

The fast 2� oscillations are a special case of the heterodyn-
ing effect, characteristic of periodically driven systems [54].
In our case, this is a consequence of a symmetry of the model.
In fact, when considering the radiation amplitude constant
within a period, the Hamiltonian [see Eq. (18)] is invariant
under the operation T�(θk )R(θk ), where R(θk ) is a rotation
in reciprocal space around the z axis and T�(θk ) is a time

FIG. 5. Time resolved Hall conductivity per valley σ ξ
xy (t ). The

photon energy is h̄� = 400 meV, the Gaussian width of the pulse is
50 fs, and its maximum amplitude evf A0 = 140 meV. The chemical
potential has been taken at the Dirac Point εF = 0. In the inset we
show the signal with the fast oscillations of frequency 2� filtered.

translation that rotates the phase of the circularly polarized
electric field by changing t → t + θk/�. By considering this
symmetry operation in the Kubo formula, a simple angle
integration shows that the only high-frequency mode in the
response is the one with twice the driving frequency. This
selection rule is demonstrated carefully in Appendix B, ex-
plaining the suppression of other multiples of the driving
frequency.

In order to interpret the low frequency behavior we analyze
the contribution of states with different wave vectors k. To this
end we define

σ [0]
xy (t ) =

∫ k0
2

0

∫ 2π

0
σxy (k, t )kdkdθk ,

σ [nk0]
xy (t ) =

∫ (2n+1)k0
2

(2n−1)k0
2

∫ 2π

0
σxy (k, t )kdkdθk, (25)

with

σxy (k, t ) = − i

h̄

∑
α

f (εkα )
∫ t

−∞

× 〈ψkα|[jxI (t ), jyI (t ′)]|ψkα〉W (t ′)dt ′ (26)

and where k0 = �
2vF

and n is a natural number. This partial
integration is performed in order to analyze separately the
contribution of each of the resonances nk0 where Floquet gaps
occur. The result is show in Fig. 6. It’s interesting to note that
states near all of the gaps generated by few photon processes
manifest a nontrivial response, not only those that cross the
Fermi energy. With this choice of parameters the system is in a
resonant regime, where a complex redistribution of electronic
occupation of states takes place during the pulse. The small
frequency oscillations are in each case in correspondence with
the local instantaneous gap generated in the Floquet spectrum,
which unmasks the fact that the wave function behaves as
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FIG. 6. Time resolved contributions to the Hall conductivity per
valley σ [nk0]

xy (t ) coming from different Floquet gaps in the BZ, with
its corresponding filtered signal. (a) n = 0, (b) n = 1, (c) n = 2 and
n = 3. The model parameters are the same as in Fig. 5.

a coherent superposition of Floquet states. The mean and
after-pulse value of the Hall response are highly dependent
on the pump envelope: We are far from the limit of a clear
quantized Hall regime, which could only be achieved if an
ideal adiabatic population of Floquet modes takes place. Even
if the Hamiltonian after the pulse is in its topological trivial
form, there’s still a Hall current due to the proliferation of
electron-hole pairs created throughout the excitation.

The contribution coming from the Dirac points σ [0]
xy can be

understood within the simple model exposed in the previous
section: a masslike switching term in the Dirac Hamiltonian.
The two-time formalism provides an effective slow-time evo-
lution for states near those gaps, as shown in Appendix C.
It can be shown that to second order in η(t ) = evf A(t )/h̄�

and taking the limit η̇(t ) → 0, the state vector can be
approximated by

|ψξ (τ, t )〉〉|τ=t =
[
I2×2

(
1 − η2(t )

2

)
+ η(t )[σ+(ξ )e−i�t

− σ−(ξ )ei�t ]

]
χ̃0(ξ, t ), (27)

where I2×2 corresponds to the 2×2 identity matrix and

χ̃0(ξ, t ) = U
ξ

eff(t,−∞)|ψkvξ 〉 (28)

with the evolution operator corresponding to the Hamiltonian
from Eq. (13) but with a valley-dependent mass term

�(ξ, τ ) = −ξ
[evf A(τ )]2

c2h̄�
. (29)

Using Eq. (28) to calculate the transverse Hall response we
find that the terms with the filtered fast oscillations come from

FIG. 7. Contribution to the Hall conductivity per valley coming
from the Dirac cones for driving field parameters as in Fig. 5, its
corresponding filtered signal, and the comparison with the mass-
switching model. Both the pump envelope evf A(τ ) and the pulsed

mass perturbation �(ξ, τ ) = −ξ
[evf A(τ )]2

c2 h̄�
are shown.

the current-current correlation function [ξσ eff
x (t ), σ eff

y (t ′)],
where we define the operators in the effective interaction
picture as σ eff

x,y (t ) = Ueff(−∞, t )σx,yUeff(t,−∞). The com-
parison between the model and the numerical result is shown
in Fig. 7, finding a good agreement between both of them.
The pump envelope and the effective mass perturbation are
plotted, the two being related through Eq. (29).

Interestingly, in the case of large frequencies, where the
only contribution to the Hall conductance is expected to come
from the Dirac points, this simple model explains analytically
some numerical results already obtained in Ref. [28]. In this
work they found that after a sudden quench of the radiation
field, the transverse conductivity converged to a finite value
while increasing �. Within our model, a simple calculation of
the response [see Eq. (A7) in Appendix A] yields∑

ξ

σ̄ ξ
xy (∞) = −

∑
ξ

ξ
e2

h

π

8
sgn(�(ξ )) = e2

h

π

4
, (30)

which seems to be in agreement with their work. We can also
understand that ramps with lower velocities can in principle
make this value approach to the expected topological quan-
tized result, since a slower switch-on protocol [like the one in
Fig. 1(a)] would adiabatically populate the Floquet states near
these valleys. Numerical results confirm this tendency. No
simple analytical approaches have been found to describe the
low frequency signal coming from the rest of the dynamical
gaps, since there is not an effective slow time evolution that
can be disentangled from the high-frequency oscillations for
such resonant cases [55].

Results obtained with the chemical potential at the first
dynamical gap—the Floquet zone boundary—and a higher
driving frequency, taken to be h̄� = 800 meV, are shown in
Fig. 8. In this case the main contribution to the Hall conduc-
tance comes from states k resonant with the photon energy. In
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FIG. 8. Contribution to the Hall conductivity per valley σ [k0]
xy (t )

coming from states k near k0 = �

2vf
, resonant with the photon

energy h̄� = 800 meV. We indicate its corresponding filtered signal
and use for the sake of comparison two different pump switch-on
protocols with (a) being Gaussian and (b) one that reaches a final
value of evf A0 = 140 meV after a transient time. The horizontal line
stands for the expected value in the case of adiabatic population of
Floquet bands, the contribution [23] to the Chern number at each
valley: Ck0 = −1.

Fig. 8(a) the pump envelope is chosen to be Gaussian while in
Fig. 8(b) it reaches a final value after a transient time (the blue
line shows its profile). In the latter case, the low frequency
oscillations are well defined by the Floquet gap calculated at
the lowest order, which is linear with the amplitude of the
radiation field and independent of the frequency of the driving.
As can be seen in the figure, the mean response at the center of
the pulse and at large times for the switch-on case approaches
the quantize value Ck0 = −e2/h. This is consistent with the
number of edge states bridging the gap of finite samples
with significant weight on the m = 0 Floquet subspace of the
extended zone scheme [23]. Also, the sign difference between
the mean response in the dynamical and nonresonant Dirac
gap follows the fact that the chiral edge states have opposite
velocities at each gap. These features are consistent with those
observed in numerical calculations of the Hall conductance in
finite samples with nonirradiated leads [22].

For the case of a sudden switch on of the time depen-
dent perturbation an approximate expression for the asymp-
totic long-time average Hall conductivity, like Eq. (A4) in
Appendix A, has also been obtained for the case of Flo-
quet systems [29]. These approximations give a compact and
simple form for the long-time behavior of the Hall signal
averaged over a period of the driving field in which the
Berry curvature is weighted by the projection of the final
state on the eigenstates of the Floquet Hamiltonian. It can be
shown that the time average Hall conductivity given by such
approximate expression, valid for the case of any saturating
perturbation with a corresponding redefinition of the bands
population, cannot exceed the absolute value of 1

2Ck0e
2/h at

each valley in the dynamical gap k0. Consequently, this can
at most describe the case of the undoped system and fails for
the resonant case with εF = −h̄�/2. Note that such compact
expressions are obtained by neglecting the off-diagonal terms
describing interband transitions. If the Fermi energy lies at
the dynamical gap the off-diagonal terms together with higher
order corrections must give a contribution of the same order

FIG. 9. Time-resolved Hall signal per valley with a pump en-
velope containing only a few periods of the electromagnetic field.
The photon energy is h̄� = 400 meV and the Gaussian width of
the pulse is 5 fs with evf A0 = 140 meV of maximum amplitude.
The dependence of the remnant post-pulse response with the carrier-
envelope phase (ϕCEP) is shown in the inset.

as the one given by aforementioned theory to reproduce the
exact numerical results.

The effect of perturbations (interactions) that break the
integrability of the system might play a relevant role in the
dynamics [56], especially in the long time where prethermal
states might be reached. This is a very interesting subject that
deserves further investigation but is beyond the scope of the
present work.

VI. HALL RESPONSE WITH ULTRASHORT PULSES

In this section we briefly analyze the effect of ultrashort
pulses on the Hall response and argue that it is possible to
observe after-pulse topological Hall currents. Experiments
able to measure ultrafast driven currents in clean graphene
[35,57] have recently appeared, motivated by the fact that the
control and optical manipulation of photocurrents in unbiased
two-dimensional samples might open new alternatives for
photonics and optoelectronics. In fact, in Ref. [35] after-pulse
currents were measured, showing that the carriers’ lifetime
is long enough to allow for a good characterization of the
electron dynamics in time scales of the order of a few fem-
toseconds.

Figure 9 shows the Hall conductance as obtained with
a Gaussian pulse containing only a few (between two and
three) periods of the driving field in the undoped case. Within
the pulse the 2� oscillations are clearly observed, unveiling
that even for these short perturbations the Floquet picture
with the opening of gaps in the spectrum and the selection
rule for the high frequency response give a good qualitative
description. For short pulses containing only a few periods
of the electromagnetic field, however, the system response
depends on the carrier-envelope phase (CEP) ϕCEP—defined
as the phase of the carrier measured from the maximum of
the Gaussian envelope. This is shown in the inset of the
figure, where we plot the asymptotic after-pulse response as
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a function of ϕCEP. The value of the mean after pulse Hall
conductance, averaged on ϕCEP, is comparable to the ones
obtained with wider pulses in the previous section.

It is important to remark that even in the absence of the
bias, small after-pulse currents can flow along the x and y

directions [35] due to the nonzero time averaged electric field
during the short pulse. However, in such a case the ϕCEP

averaged value is zero. With a bias field the after-pulse Hall
response has a topological origin and its average is nonzero as
can be inferred by the finite mean value of σxy as a function
of ϕCEP.

VII. SUMMARY AND CONCLUSIONS

We have analyzed the full time-resolved Hall response of
two-dimensional honeycomb lattices under coherent dynam-
ics. We concentrate on systems like graphene and transition
metal dichalcogenides. The results, however, are also rele-
vant for a variety of systems showing dynamical topological
properties. A simple toy model that switches a valley Hall
signal shows how a dynamical response builds up in time
when introducing a parameter ramp that breaks inversion
symmetry in the lattice, with its asymptotic time averaged
value depending on the particular ramping protocol. We have
characterized the frequency and amplitude of the oscillating
response and its dependence on doping.

Our central results concern the Hall response of these
systems during and after short pulses of circularly polarized
light and frequencies � smaller than their bandwidth. We
have shown that in graphene-like systems, the Hall response
develops a high-frequency signal with twice the driving fre-
quency. The existence of this 2� mode is a particular case
of the heterodyne effect and the selection rule that suppress
other � multiples is due to the symmetry of the perturbed
Hamiltonian. After filtering these fast oscillations, the signal
shows low frequency oscillations during the pulse. We can
trace this response as coming from several Floquet gaps,
unveiling the fact that some features of the photon-dressed
topological bands are present even in a few femtosecond
timescale. In fact, by a partial integration in k space it is possi-
ble to separate the contribution due to different regions of the
BZ and consequently get information on their contribution. In
particular, each one of the gaps at the K and K ′ points of the
BZ has a low-frequency dependence that can be described by
an effective slow-time evolution equation which is qualitative
and quantitative similar to the switching of a mass term with
different signs at each valley. This reflects the fact that the
Floquet Hamiltonian mimics the occurrence of a dynamically
achieved mass for each Dirac cone. Shifting the chemical po-
tential to the dynamical gap at −h̄�/2, the main contribution
to the Hall conductivity comes from states resonant with the
photon energy. The low frequency oscillations are in good
agreement with the Floquet gap calculated at the lowest order,
which is linear with the amplitude of the radiation field and
independent of the driving frequency.

Part of our analysis concerns the after pulse response. In
graphene, all anomalous velocities of the after-pulse Hamilto-
nian, associated with the Berry curvature, are zero. Nonethe-
less, during the TRS breaking perturbation, the system
undergoes a topological transition and the bias field induces

anomalous velocities generating a transverse current. This
current persists even after the pulse and is independent of the
after-pulse bias field. In fact, if after the perturbation the bias
is turned off, the current remains unaltered. In real systems
these currents will of course decay with the characteristic
scattering time of the electrons. However the long lifetime of
carriers in clean graphene allows measuring induced currents
after ultrashort pulses [35]. Our results show that with ultra-
short pulses, comprising only a few oscillations of the electro-
magnetic field, the after-pulse Hall currents could be detected.

ACKNOWLEDGMENT

We acknowledge financial support from ANPCyT (Grants
PICTs 2013-1045 and 2016-0791), from CONICET (Grant
PIP 11220150100506) and from SeCyT-UNCuyo (Grant
06/C526).

APPENDIX A: PARAMETER QUENCH
ON A TWO BAND MODEL

Consider a sudden perturbation that at time t0 changes the
Hamiltonian from its initial form Hi to a final form Hf .
For t > t0 the wave functions and the corresponding time
evolution operators are

|ψkα (t )〉 =
∑
f

�k
f αe− i

h̄
εkf (t−t0 )|φkf 〉 (A1)

Uk(t, t ′) =
∑
f

e− i
h̄
εkf (t−t ′ )|φkf 〉〈φkf |, (A2)

where εkf and |φkf 〉 are the eigenvalues and eigenfunctions
of Hf and �k

f α = 〈φkf |ψkα (t0)〉 is the projection of the final
state f on the eigenstate α of the unperturbed Hamiltonian.
Using the above expressions in Eq. (8), we can calculate the
mean Hall conductivity σxy by retaining only the diagonal
ensemble of the final Hamiltonian, that is to say, dropping the
off-diagonal terms of the density matrix. This is equivalent to
formally considering decoherence or cooling effects to cap-
ture the long-time behavior. Nevertheless, these off-diagonal
components, ultimately arising from a nonadiabatical evolu-
tion, unveil a rich behavior which we will address later on in
the discussion.

In the particular case of a two band model, the contribution
to the mean value can be expressed as

σxy (t ) = e2

h̄

∑
kα

∑
f

f (εkα )|�k
f α|2{[1 − cos(2ωkf (t − t0))

+ 2ωkf t0 sin(2ωkf (t − t0))]Ff
xy (k)

+ [2ωkf t − sin(2ωkf (t − t0))

− 2ωkf t0 cos(2ωkf (t − t0))]2Gf
xy (k)

}
, (A3)

with ωkf = εkf /h̄. For t − t0 → ∞ we finally obtain

σxy (∞) = e2

h̄

∑
kα

∑
f

f (εkα )
∣∣�k

f α

∣∣2Ff
xy (k)

= e2

h

1

2π

∑
α

∫
BZ

f (εkα )
(∣∣�k

vα

∣∣2 − ∣∣�k
cα

∣∣2)Fv
xy (k),

(A4)
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where v and c stand for the valence and conduction band of the
final Hamiltonian and we have used that F c

xy (k) = −Fv
xy (k).

The long-time limit of the mean Hall conductivity after a sud-
den parameter change is given by an integral of the Berry cur-
vature of the final (time independent) Hamiltonian weighted
by the occupation numbers of the after-quench states, a result
already obtained by Wang et al. [30]. The expression defined
by Eq. (A4) is a first indication that σxy (∞) is not quantized
and depends on the way the perturbation is turned on. It is
important to keep in mind that the naively defined Chern
number of the unitary evolved wave function

C(t ) = 1

2π

∑
α ε occ

∫
BZ

Fα
xy (k, t )d2k (A5)

with

Fα
xy (k, t ) = −i

[〈
∂ψkα (t )

∂kx

∣∣∣∣∂ψkα (t )

∂ky

〉
− H.c.

]
(A6)

and |ψkα (t )〉 = U (t,−∞)|kα〉, does not manifest itself in
the out-of-equilibrium Hall response. If this were the case,
the topological transition could not be reflected in the Hall
conductivity due to the preservation of C(t ) under a unitary
evolution [24].

In the particular case presented in Eq. (13) we can calculate
the response for a sudden switch of a masslike term �(t ) =
�∞θ (t − t0). Making use of the specific form of the Berry
curvature and populations after the quench in Eq. (A4) we

obtain for each valley at zero temperature

σ ξ
xy (∞) = −ξ

e2

h

∫ ∞

0

(h̄vf )3k2�∞dk

2
[
(h̄vf k)2 + �2∞

]2
= −ξ

e2

h

π

8
sgn(�∞). (A7)

Even if this result isn’t quantized with the topological in-
variant of the post-quench Hamiltonian, it is universal at
zero temperature, in the sense of being independent of the
magnitude of �∞. Only within the hypothesis of a total adia-
batic evolution, that can be easily obtained from Eq. (A4) by
taking the population difference equal to unity, it is possible
to recover the quantized value of the Hall response as the
Chern of the final Hamiltonian. This limit is not expected
to be accurate for ultrashort pulses or if the perturbation
induces or eliminates degenerations in the energy spectrum.
Nevertheless, the adiabatic presumption remains well suited
for the evolution of Bloch states away from these situations.

For finite times, closer to the initial ramp, a dynamical re-
sponse is expected to be observed due to the oscillatory behav-
ior with frequency 2ωkf in the kernel of integral Eq. (A3). The
observed oscillation after performing the integration will be
governed by the energy gap at the quasimomentums where the
Berry curvature peaks. On the other hand, the calculation with
the exact time evolution shows an increasing amplitude of the
oscillations, which is not captured by the diagonal ensemble
used to calculate the contribution to the mean Hall response.
Their origin is then attributed to nondiagonal components of
the density matrix in the basis of the final Hamiltonian, which
we initially neglected.

We agglomerate this term in a nonadiabatical contribution
to the Hall conductivity σNA

xy , which can be expressed as

σNA
xy (t ) = e2

h̄

∑
kα

∑
f �=f ′

f (εkα )2Re

{
�k∗

f ′α�k
f α

[(
1 − eiω

f ′f
k (t−t0 )

ω
f ′f
k

− i(t0 − teiω
f ′f
k (t−t0 ) )

)

× vkf ′
x Af ′f

ky
+ e−iω

ff ′
k (t−t0 )ω

ff ′
k

t2 − t2
0

2
vkf

y Af ′f
kx

]}
, (A8)

where we defined the frequency ω
f ′f
k = (εkf ′ − εkf )/h̄,

the final states equilibrium velocity v
kf
ν = 1

h̄

∂εkf

∂kν
, and the

Berry connection between two different states as Af ′f
kν

=
−i〈φkf ′ |∂kν

φkf 〉. The last term in Eq. (A8), when performing
the integral over the BZ, will retain an oscillating character
but with amplitudes increasing in time.

APPENDIX B: HETERODYNE EFFECT

It is well known that when driving a system with periodic
frequency � and measuring a response function generated by
an input signal (in this case the bias current along the ŷ direc-
tion), it oscillates with multiples of the driving frequency [54].
In our time-resolved Hall conductivity simulations a clear
selection rule brings out a response with a manifesting mode
at 2�, besides the small frequency oscillations associated with
the Floquet gaps.

Indeed, this selection rule can be traced to the angular
integration of the correlation functions in momentum space.
We define the unitary transformed state vector as

R̂(θk )
∣∣ψα

k (t, τ )
〉〉 = ∣∣ψ̃α

k (t, τ )
〉〉
, (B1)

with R̂(θk ) = ei
θk
2 σz and θk = tan−1(ky/kx ). This rotation is

performed in order to leave the initial unperturbed Dirac
spinors at the x̂ axes. The transformed time dependent wave
function verifies an extended Schrödinger equation of the
form

[H̃k(t, τ ) − ih̄∂t ]
∣∣ψ̃α

k (t, τ )
〉〉 = ih̄∂τ

∣∣ψ̃α
k (t, τ )

〉〉
(B2)

with

H̃k(t, τ ) = R̂(θk )Hk(t, τ )R̂†(θk )

= h̄vf kσx + evf A(τ )[cos(�t − θk )σx

+ sin(�t − θk )σy]. (B3)
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We extend this transformed state vector in its Fourier modes by taking into account the angle θk as an initial k-dependent
phase, i.e., �t0(k) = θk, ∣∣ψ̃α

k (t, τ )
〉〉 = ∑

n

ein(�t−θk )χ̃nk(τ ). (B4)

The initial condition χ̃nk(−∞) = R̂(θk )|ψkα〉δn,0 = |±〉xδn,0 is such that the Bloch states in this basis are originally eigenstates
of σx , independent of k. Replacing Eq. (B4) into Eq. (B2) we get an infinitely coupled set of equations

(h̄vf kσx + nh̄�)χ̃nk(τ ) + V (τ )χ̃n−1,k(τ ) + V †(τ )χ̃n+1,k(τ ) = ih̄∂τ χ̃n,k(τ ), (B5)

with V (τ ) = evf A(τ ) σx−iσy

2 . The initial condition and the slow time evolution determined by Eq. (B5) are independent of
the angle θk, so in this basis the modes χ̃nk(τ ) are angle independent at all times. This simple procedure shows that the only
dependence of Floquet modes with this angle is exponential with a factor n. When integrating in polar coordinates near the Dirac
cones a simple selection rule is found. The Hall conductivity can be written as

σxy (t ) = e2

h

v2
f

π
Im

⎡⎢⎢⎢⎣∑
α,β

∑
n, n′
l, l′

f (εkα )
∫ t

−∞
dt ′
∫ ∞

0
kdk

∫ 2π

0
dθke

i(n−n′+l−l′ )θkei(n−n′ )�t ei(l−l′ )�t ′

× 〈
χ̃α

n′k (τ )
∣∣σx (θk )

∣∣χ̃β

nk (τ )
〉〈
χ̃

β

l′k (τ ′)
∣∣σy (θk )

∣∣χ̃α
lk (τ ′)

〉
W (t ′)

⎤⎥⎥⎥⎦, (B6)

where the rotated Pauli matrices are

σx (θk ) = cos(θk )σx − sin(θk )σy

σy (θk ) = sin(θk )σx + cos(θk )σy. (B7)

If we perform the angular integral in Eq. (B6) we get that n − n′ + l − l′ = 0,±2, while all the other contributions cancel
out. When n − n′ + l − l′ = 0 the only time dependent oscillations will come from the slow dynamics, since the kernel of
the time integral depends on ei(l−l′ )�(t ′−t ) and hence the result will not retain the fast oscillations. On the other hand, when
n − n′ + l − l′ = ±2 the contribution remains oscillatory with frequency 2�.

APPENDIX C: SLOW TIME DYNAMICS NEAR THE DIRAC POINTS

The appearance of a gap in the quasienergy Floquet spectrum at the Dirac points is due to a virtual process of absorption and
emission of a photon, therefore its magnitude shows a quadratic dependence with the field strength. We search for a canonical
transformation of the Floquet operator H∞

F (ξ, τ ) that retains quadratic orders in the radiation field in order to obtain a dynamical
effective equation that describes accurately the slow time evolution near these gaps. We look for a unitary transformation where
the transformed state vector

χ̃ξ (τ ) = e−Sξ (τ )χ̄ξ (τ ) (C1)

obeys a Floquet-Schrödinger time dependent equation [see Eq. (24) in the main text] with a modified Floquet operator of the
form

H̃∞
F (ξ, τ )χ̃ξ (τ ) = ih̄∂τ χ̃ξ (τ ),

H̃∞
F (ξ, τ ) = e−Sξ (τ )H∞

F (ξ, τ )eSξ (τ ) − ih̄e−Sξ (τ ) d

dτ
eSξ (τ ). (C2)

Notice that due to the additional temporal dependence of the unitary transformation there is an additional term that involves
time derivatives of Sξ (τ ). Separating the unperturbed block-diagonal part of the Hamiltonian H∞

0 (ξ ) from the time dependent
coupling we have that H∞

F (ξ, τ ) = H∞
0 (ξ ) + evf A(τ )H ′∞

ξ , where

H∞
0 (ξ ) =

⎛⎜⎜⎜⎜⎜⎝
. . .

...
...

... . .
.

. . . H 0
ξ (k) + h̄�I 0 0 . . .

. . . 0 H 0
ξ (k) 0 . . .

. . . 0 0 H 0
ξ (k) − h̄�I . . .

. .
. ...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎠ (C3)
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and

evf A(τ )H ′∞
ξ =

⎛⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
... ∗. .

.

. . . 0 H
(1)
ξ (τ ) 0 . . .

. . . H
(−1)
ξ (τ ) 0 H

(1)
ξ (τ ) . . .

. . . 0 H
(−1)
ξ (τ ) 0 . . .

. .
. ...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎠. (C4)

Here we have specified the case of the Dirac Hamiltonian driven with a circularly polarized laser, where the Fourier components
involved are H 0

ξ (k) = h̄vf (ξkxσx + kyσy ) and H
(±1)
ξ (τ ) = evf A(τ ) ξσx∓iσy

2 for each valley.
Expanding Eq. (C2) up to second order in Sξ (τ ) it’s easy to see that linear terms in A(τ ) will vanish if Sξ (τ ) is chosen to

make

evf A(τ )H ′∞(ξ ) + [
H∞

0 (ξ ), Sξ (τ )
] = 0. (C5)

This last identity verifies near the Dirac points taking the canonical transformation to be

Sξ (τ ) =

⎛⎜⎜⎜⎜⎜⎝
. . .

...
...

... . .
.

. . . 0 −η(τ )σ−(ξ ) 0 . . .

. . . η(τ )σ+(ξ ) 0 −η(τ )σ−(ξ ) . . .

. . . 0 η(τ )σ+(ξ ) 0 . . .

. .
. ...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎠, (C6)

with η(τ ) = evf A(τ )
h̄�

and σ±(ξ ) = ξσx±iσy

2 . We then obtain an effective dynamical Floquet-Schrödinger equation to order A2(τ )
for the state vector χ̃ξ (τ ) [

H∞
0 (ξ ) + evf A(τ )

2c

[
H ′∞

ξ , Sξ (τ )
]− ih̄Ṡξ (τ ) + O[A3(τ )]

]
χ̃ξ (τ ) = ih̄∂τ χ̃ξ (τ ),⎛⎜⎜⎜⎜⎜⎝

. . .
...

...
... . .

.

. . . Heff(ξ, τ ) + h̄�I ih̄η̇(τ )σ−(ξ ) 0 . . .

. . . −ih̄η̇(τ )σ+(ξ ) Heff(ξ, τ ) ih̄η̇(τ )σ−(ξ ) . . .

. . . 0 −ih̄η̇(τ )σ+(ξ ) Heff(ξ, τ ) − h̄�I . . .

. .
. ...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
...

χ̃1(ξ, τ )
χ̃0(ξ, τ )
χ̃−1(ξ, τ )

...

⎞⎟⎟⎟⎟⎟⎠ = ih̄∂τ

⎛⎜⎜⎜⎜⎜⎝
...

χ̃1(ξ, τ )
χ̃0(ξ, τ )
χ̃−1(ξ, τ )

...

⎞⎟⎟⎟⎟⎟⎠, (C7)

where we used that [Sξ (τ ), Ṡξ (τ )] = 0 and defined an effective Hamiltonian

Heff(ξ, τ ) = H 0
ξ (k) + 1

h̄�

[
H

(1)
ξ (τ ),H (−1)

ξ (τ )
]

= H 0
ξ (k) − [evf A(τ )]2

h̄�
ξσz. (C8)

If we take the limit η̇(τ ) = evf Ȧ(τ )
h̄�

→ 0 the diagonal blocks are uncoupled. It’s important to notice that this approximation
is less restrictive than the total adiabatic limit. Even if the derivative of the pulse envelope remains finite, this limit would be
appropriate for sufficiently high photon energies, which is the case of interest in the nonresonant regime. The time dependent
equations for the different modes χ̃n(ξ, τ ) can be then written as

[Heff(ξ, τ ) + nh̄�I2×2]χ̃n(ξ, τ ) = ih̄∂τ χ̃n(ξ, τ )

χ̃n(ξ, τ ) = e−in�τU
ξ

eff(τ, τ0)χ̃n(ξ, τ0), (C9)

where I2×2 is a 2×2 identity matrix and the effective evolution operator is formally obtained as

U
ξ

eff(τ, τ0) = T
[
e
− i

h̄

∫ τ

τ0
Heff (ξ,τ ′ )dτ ′]

, (C10)

with T the time ordering operator. The initial condition is chosen to have only the zero mode occupied and in the valence band,
i.e., χn(ξ, τ = τ0) = δn,0|ψkvξ 〉. Since η(τ0) = 0, the unitary transformation in Eq. (C1) reduces to the identity matrix, making
χ̃n(ξ, τ = τ0) = χn(ξ, τ = τ0).

Identifying �(ξ, τ ) = −ξ
[evf A(τ )]2

c2 h̄�
, it is understood that the slow time dynamics of any observable quantity near these valleys

will be determined by a Dirac Hamiltonian with a switching masslike term �(ξ, τ ) proportional to σz. Finally, in the interest of
expressing the state vector in its original basis, we simply apply the inverse transformation in Eq. (C1) to second order in Sξ (τ )
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obtaining an effective evolution for the modes n = 0,±1 given by

χ0(ξ, τ ) = I2×2

(
1 − η2(τ )

2

)
U

ξ

eff(τ, τ0)χ0(ξ, τ0)

χ1(ξ, τ ) = −η(τ )σ−(ξ )Uξ

eff(τ, τ0)χ0(ξ, τ0) (C11)

χ−1(ξ, τ ) = η(τ )σ+(ξ )Uξ

eff(τ, τ0)χ0(ξ, τ0).

Rewriting the extended two-time wave function as |ψξ (τ, t )〉〉 = ∑
n ein�tχn(ξ, τ ) and restricting the solution to the physical

contour τ = t [see Eq. (22)] we obtain for the approximated wave function

|ψξ (τ, t )〉〉|τ=t = |ψξ (t )〉 =
[
I2×2

(
1 − η2(τ )

2

)
+ η(τ )[σ+(ξ )e−i�τ − σ−(ξ )ei�τ ]

]
U

ξ

eff(τ, τ0)χ̃0(ξ, τ0), (C12)

which is normalized to order η2(t ). This procedure guarantees an effective evolution that allows tunneling between Floquet
modes during the pulse duration.

If we use Eq. (C12) to calculate the contribution to the Hall conductance near these valleys we get

σxy (t ) = e2v2
f

ih̄

∑
kα

f (εkα )
∫ t

−∞
〈ψkα|Ck(t, t ′)|ψkα〉W (t ′)dt ′, (C13)

with

Ck(t, t ′) = (1 − η2(t ) − η2(t ′))
[
ξσ eff

x (t ), σ eff
y (t ′)

]− 2ξη(t ) cos(�t )
[
σ eff

z (t ), σ eff
y (t ′)

]− 2ξη(t ′) sin(�t ′)
[
ξσ eff

x (t ), σ eff
z (t ′)

]
+ 4η(t )η(t ′) cos(�t ) sin(�t ′)

[
σ eff

z (t ), σ eff
z (t ′)

]+ η2(t ′)
(
ie2i�t ′[ξσ eff

x (t ), σ eff
− (ξ, t ′)

]− ie−2i�t ′[ξσ eff
x (t ), σ eff

+ (ξ, t ′)
])

− η2(t )
(
e2i�t

[
σ eff

− (ξ, t ), σ eff
y (t ′)

]+ e−2i�t
[
σ eff

+ (ξ, t ), σ eff
y (t ′)

])
,

where we use the notation Oeff(t ) = Ueff(t0, t )OUeff(t, t0) for the operators written in the interaction picture with the effective
evolution operator introduced in Eq. (C10). Using the same argument as in Appendix B we can show that the only oscillating
factors surviving the angular integration are the ones with 2�.
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