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In the present work, we propose an ionic Hamiltonian for describing the interaction of graphene with an
adsorbed Co atom. In this approach, the electronic correlation effects, related to the many d orbitals involved in
the interaction, are taken into account by selecting appropriate electronic configurations of the adsorbed atom.
The Hamiltonian parameters are calculated considering the localized and extended features of the atom-surface
interacting system. The physical quantities of interest are calculated by using a Green functions formalism,
solved by means of the equations of motion method closed up to a second order in the atom-band coupling term.
The charge and spin fluctuations in the adsorbed Co atom are inferred from density functional theory calculations
and assuming that the lower energy configurations obey Hund’s rules. The calculated spectral densities and the
occurrence probabilities of the different atomic configurations are analyzed as a function of the Co energy level
positions and the surface temperature. In addition, the conductance spectra are calculated by using the Keldysh
formalism and compared with existing measurements. We analyze the behavior, under variable bias and gate
potentials, of resonancelike features in the conductance spectra which can be related to transitions between
atomic configurations of low occurrence probability.
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I. INTRODUCTION

Considerable effort has been put into the development
of graphene-based devices for multiple applications [1].
Graphene has the property of allowing spin transport with
high efficiency and long relaxation distances [2]. Never-
theless, the diamagnetic nature of graphene requires some
method to modify its electronic structure, in order to use it in
technological applications. The various methods include the
adsorption of magnetic impurities [3], the doping and gener-
ation of defects [4] and the growing on different substrates
[5], among others [1]. It is also of interest to tune the induced
changes in the electronic structure, for example by gating or
doping. Besides the potential of Co and other transition metals
adsorbed in graphene for spintronic applications [1,6,7], the
interest in these systems comes from the possibility of observ-
ing exotic Kondo physics [8–10].

The Co on graphene system has been the focus of many
theoretical [8,11–17] and experimental [6,18] works. The
combination of the multiorbital features proper of the Co d
valence shell and the particular characteristics of graphene
electronic structure makes the system both interesting and
challenging. The conductance spectra obtained by using scan-
ning tunnelling microscopy (STM) [18] reveal many unidenti-
fied structures which have been object of different theoretical
interpretations [8,13,14,18].

The theoretical description of this system is still un-
der discussion. At the density functional theory (DFT)
level, the most stable position is found to be at the hol-
low site, with an adsorption height of ≈1.5 Å with either

generalized gradient (GGA) or local density (LDA) ap-
proximations [3,8,11,12,14,19–21]. Nevertheless, when the
GGA+U method [22] is used, the results are quite sensitive
to the value of U . For example, for U = 4 eV, the most stable
position is on top at ≈1.8 Å [3,11,12,14]. More possibilities
are found by using different functionals [8,13]. The electronic
configurations found in the literature are 3d94s0 with total
spin S = 1/2 [3,12], 3d84s1 with S = 3/2 [3,11,12] and an
intermediate occupation of 7.5 in the d shell due to a dy-
namical hybridization with graphene [8]. In addition, a cluster
calculation based on a wave-function approach [15] predicted
the configurations 3d94s0 and 3d74s2 at Co-graphene dis-
tances of 1.6 and 3.1 Å, respectively. A stochastic approach
[16,17] also suggested the configurations 3d94s0 and 3d74s2

at approximately the same distances, with an intermediate
3d84s1 configuration at ≈1.8 Å.

The system was also analyzed by using the Anderson
impurity model [23]. In equilibrium situations, the Anderson
model can be solved by using different approaches, such
as quantum Monte Carlo (QMC), numerical renormalization
group (NRG) [24,25], or the exact diagonalization (ED) ap-
proach [26]. In out-of-equilibrium situations, adequate ap-
proximations are necessary to describe the system properties.
The most commonly used are probably the noncrossing and
one-crossing approximations (NCA and OCA) [27–29], al-
though the equations of motion (EOM) approach [30,31], used
in the present work, provides a useful alternative [32–35].
In this context, the Co on graphene system was solved at
several temperatures by using the GGA+OCA method [8] and
recently by using both QMC and ED [11]. In addition, the
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system was analyzed by using a tight-binding approximation
and a renormalization approach [12].

The goal of this paper is the description of the Co on
graphene system in the framework of the Anderson Hamil-
tonian in its ionic form [9,36]. Our results suggest a mixed
valence regime involving 3d84s1 and 3d74s1 electronic con-
figurations, which is consistent with the available studies.
An advantage of the ionic Hamiltonian approach proposed in
the present work is that it provides the contribution of each
configuration to the orbital occupations and spectral densities
In Sec. II, we present the DFT calculations performed to
obtain the equilibrium positions of the adsorbate and the
orbital occupations. Based on these results and taking into
account Hund’s rules, in Sec. III A, we select a suitable
space of configurations to project the Anderson Hamiltonian.
In Sec. III B, we introduce the ionic Hamiltonian projected
into the Co electronic configurations that have a significant
occurrence probability according to the DFT calculations.

Appropriate Keldysh-Green functions [37] are introduced
for calculating the physical quantities of interest in equi-
librium and out of equilibrium. These Green functions are
calculated by employing the EOM method closed up to second
order in the coupling between the atom and the surface [32].
This approach has already been used to describe several
many-body systems, with a good qualitative description of
the Kondo physics and the inelastic excitations in out-of-
equilibrium processes [32,38–40]. The details of the reso-
lution method are presented in Sec. III C, while symmetry
considerations are discussed in Sec. III D.

The bond-pair model [41] is used to determine the Hamil-
tonian parameters: the one electron energy levels involved
in the charge transfer process and the atom-surface coupling
terms leading to the hybridization functions. The calculation
of these parameters is presented and analyzed in Sec. IV. The
main advantages of this proposal are the absence of supercell
effects, the possibility of using a primitive cell for the surface
calculation and a well-defined double counting correction
for the energy level calculation. The orbital occupations and
spectral densities at several temperatures and energy level po-
sitions and the effect of restricting the selected configuration
space are discussed in Sec. IV. We find a good agreement
with previous results, presenting new insights provided by
our model. We show that the selected configuration space
suppresses the fluctuation of the most occupied orbital for
certain energy level positions. Spectral density structures that
either appear or are enhanced when the temperature increases
are straightforwardly identified with charge fluctuations that
become accessible. These structures are present in previous
works, but their origin was not explored. In Sec. VI, we
employ the Keldysh formalism to calculate the differential
conductance spectra for different values of gate potentials and
energy levels. We propose that some resonancelike features
observed in the measurement are related to fluctuations be-
tween configurations with low probability of occurrence. The
conclusions of this work are presented in Sec. VII.

II. DFT CALCULATION: EQUILIBRIUM GEOMETRY AND
ORBITAL OCCUPATION

We begin our study with standard DFT calculations on
the system, as is usual in different approaches aimed at

TABLE I. DFT Orbital occupations per spin for the non-spin-
polarized (nsp) and spin-polarized (sp) DFT calculations, for the
majority (↑) and minority (↓) spin. The total occupation in the d ,
s, and p shells are presented.

Case A1 E1 E2 d shell s px/y pz s + p shell

nsp 0.98 0.63 0.81 3.86 0.13 0.13 0.08 0.47
sp ↑ 0.98 0.94 0.88 4.62 0.13 0.15 0.08 0.51
sp ↓ 0.98 0.37 0.79 3.30 0.13 0.10 0.08 0.41

improving the treatment of electronic correlation effects
[8,11,12,29,42,43]. For this purpose, we used the SEQQUEST

code [44,45], based on the linear combination of atomic
orbital (LCAO) method, to obtain the equilibrium geometry
of the system, the local density of states (LDOS) and the
occupation of the Co atom. The DFT results allow us to infer
the electronic configurations of the adsorbed Co atom that will
define the ionic Hamiltonian.

We used a 6 × 6 supercell, with a vacuum separation of
15 Å to ensure the decoupling in the direction normal to
the surface. For exchange and correlation the PBE [46,47]
functional was used, while the geometry was optimized until
the forces were smaller than 0.01 eV/Å. After relaxation, the
most favorable configuration was the Co adatom in the hollow
position, with an equilibrium distance to the graphene sheet of
1.52 Å, in agreement with previous results [3,8,11,12,14,19–
21]. We computed the density of states and orbital occupations
using a 28 × 28 × 1 k grid and performing DFT studies both
with and without spin polarization.

The C6 symmetry of the system induces a splitting of the
5 d orbitals of the Co atom into the groups A1 (dz2 ≡ d1),
E1 (dxz ≡ d2 and dyz ≡ d3) and E2 (dxy ≡ d4, dx2−y2 ≡ d5). In
Table I, we present the orbital occupations in the d shell for
each symmetry group and in the s and p orbitals, for the non-
spin-polarized (nsp) and spin-polarized (sp) DFT calculations.

The s and p orbital occupations are low, ≈0.1 electrons per
spin, and their contribution to the LDOS of Co atom around
the Fermi energy is negligible. Therefore it is not expected
that these orbitals contribute to charge or spin fluctuations.

The DFT calculations predict a total occupation in the d
shell equal to 7.72, suggesting a charge fluctuation between
7 and 8 electrons. The total occupations per group (A1: 1.96,
E1: 2.52, E2: 3.24) suggest that A1 is completely occupied,
E1 fluctuates between 2 and 3 electrons, and E2 between 3
and 4 electrons. The results for the spin-polarized calculation
formally lead to the same conclusions.

III. HAMILTONIAN AND RESOLUTION METHOD

A. Space of atomic configurations

Based on the DFT results presented in Sec. II, we propose
a charge fluctuation between 7 and 8 electrons in the d shell.
In the hole picture, which is used in this work, the fluctuations
are between 3 and 2 holes. According to Hund’s rules, the total
spin values S = 3/2 and S = 1 define the lower energy con-
figurations involved in this fluctuation. These |S, M〉 states,
being M the spin projection, are written in terms of the atomic
configurations |d1(A1), d2(E1) d3(E1), d4(E2) d5(E2)〉. Ten
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electronic configurations result for S = 3/2 and M = 3/2
from the different possibilities of filling the five d orbitals with
three holes with spin ↑. In a similar way, ten configurations
with S = 1 and M = 1 are built by filling the five d orbitals
with two holes with spin ↑. The other configurations are
obtained by applying the ladder operator Ŝ− to those with
maximum value of M. In absence of an applied magnetic field
and neglecting the spin-orbit interaction, the states |S, M〉 are
degenerated in M.

We label the |S, M〉 states with indices p = dadbdc (for
S = 3/2) and q = dadb (for S = 1), to identify the orbitals
occupied with holes. For example, the state | 3

2 , 3
2 〉

d1d2d3
=

|↑,↑↑, 00〉 fluctuates to |1, 1〉d2d3
= |0,↑↑, 00〉 when the hole

in the d1 orbital (A1) is transferred to the substrate. We
use the notation d (p, q) to indicate the active orbital in the
transition between the configurations labeled with p and q. In
the previous example, d (d1d2d3, d2d3) = d1.

B. Ionic Hamiltonian

The normalization condition of the configuration space
restricted to fluctuations between S = 3/2 and S = 1 is the
following:∑

M,q

|1, M〉q 〈1, M|q +
∑
M,p

∣∣ 3
2 , M

〉
p

〈
3
2 , M

∣∣
p
= 1̂, (1)

where we used the Hubbard projection operators |S, M〉 〈S, M|
[48]. We write the Anderson Hamiltonian in the ionic form by
projecting it in the selected space of atomic configurations [9]:

Ĥ =
∑
k,σ

εknkσ +
∑
M,q

E1,q |1, M〉q 〈1, M|q

+
∑
M,p

E3/2,p

∣∣ 3
2 , M

〉
p

〈
3
2 , M

∣∣
p

+
∑

k,σ,M,p,q

(
V pq

kMσ c†kσ |1, M − σ 〉q

〈
3
2 , M

∣∣
p
+ H.c.

)
. (2)

Here, nkσ = c†kσ
ckσ is the number operator, with c†kσ

(ckσ ) the
operator that creates (annihilates) a hole with spin projection

σ = ±1/2 in the k-band state. The energy of the k-band
state is εk, while the energy of the atomic configuration with
total spin S is given by ES,p[q]. The energy difference E 3

2 ,p −
E1,q = εd (p,q) defines the single hole energy level active in the

transition between | 3
2 , M〉

p
and |1, M − σ 〉q.

The last term in Eq. (2) accounts for the interaction be-
tween the atom and the surface. This expression is obtained
by projecting the fermionic operator cdiσ , which destroys a
hole in the di orbital, into the selected configuration space:

cdiσ =
∑

M,p,q

|1, M − σ 〉q〈1, M − σ |q cdiσ

∣∣ 3
2 , M

〉
p

〈
3
2 , M

∣∣
p
.

(3)
Note that only the transitions for which the active orbital is
d (p, q) = di give a nonzero contribution. Equation (3) leads
to the following definition of the hopping elements V pq

kMσ in
Eq. (2) [9]:

V pq
kMσ = 〈1, M − σ |q cd (p,q)σ

∣∣ 3
2 , M

〉
p
Vkd (p,q). (4)

Here, Vkd (p,q) is the coupling between the k-band
state and the d (p, q) Co orbital. The coefficients

〈1, M − σ |q cd (p,q)σ | 3
2 , M〉

p
are calculated by applying the

annihilation operator cd (p,q)σ to the |S, M〉p[q] states expressed
in terms of the atomic configurations |d1, d2 d3, d4 d5〉. In
this way, we arrive to the expression

〈1, M − σ |q cd (p,q)σ

∣∣ 3
2 , M

〉
p
= ppq

√
3/2 + 2σM

3
. (5)

In Eq. (5), ppq is +1 (−1) if an even (odd) number of
permutations are needed to annihilate the hole in the d (p, q)
orbital of the configuration | 3

2 , M〉
p
, and 0 if the transition

between p and q is not possible.

C. Green functions and equations of motion

We define the following Green functions, which are used
for the calculation of the physical quantities of interest [37]:

GMσ
pq (t ′, t ) = iθ (t ′ − t )

〈{ ∣∣ 3
2 , M

〉
p
〈1, M − σ |q (t ′), |1, M − σ 〉q

〈
3
2 , M

∣∣
p

(t )
}〉

, (6)

F Mσ
pq (t ′, t ) = i

〈[∣∣ 3
2 , M

〉
p
〈1, M − σ |q (t ′), |1, M − σ 〉q

〈
3
2 , M

∣∣
p

(t )
]〉
. (7)

Here, [·, ·] ({·, ·}) is the commutator (anticommutator) and
〈·〉 is the mean value in the Heisenberg picture. The Green
functions (6) and (7) are calculated by using the equations of
motion (EOM) method, which is based on the time derivative
(in the Heisenberg picture) of the operators that define them.
The EOM method requires a suitable decoupling scheme to
close the chain of equations of successive Green functions,
which involve an increasing number of particles. In this work
the EOM are closed in a second order in Vkdi , which has

been proven to be successful for a qualitative description of
the Kondo physics in many atom-surface interacting systems
[32,38–40,49].

Due to the degeneracy on the total spin projection M,
the Green functions become independent of M and σ , so
that we introduce Gpq ≡ GMσ

pq and Fpq ≡ F Mσ
pq . Assuming that

the system has reached the steady-state condition, the Green
functions become translationally invariant in time, so that
the time dependent equations can be solved by means of
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Fourier transform to obtain the following algebraic system of
equations:

(ω − εd (p,q) − �pq(ω))Gpq(ω) = Opq + �pq(ω), (8)

(ω − εd (p,q) − �∗
pq(ω))Fpq(ω) = �pq(ω)Gpq(ω) + ϒpq(ω).

(9)

While in equilibrium the physical quantities of interest
are obtained from Gpq, in an out-of-equilibrium situation the
Green functions Fpq are also needed. In Eqs. (8) and (9),
on-site occupations (Opq) and atom-band crossed terms (�pq,
ϒpq) are calculated self-consistently together with the Green
functions. We focus here on the self-energies �pq and occu-
pations for the equilibrium situation and refer the reader to
Appendix A for the rest of the expressions. The self-energies
of Eq. (8) can be expressed as follows:

�pq(ω) =
∑
q′∈p

�>
d (p,q′ )(ω + εd (p,q′ ) − εd (p,q) )

+ 4

3

∑
p′�q

�<
d (p′,q)(ω + εd (p′,q) − εd (p,q) ). (10)

The first term has contributions from the configurations
q′ to which the state p can fluctuate by losing the hole in
the orbital d (p, q′). For example, if p = d1d2d3, the three
possibilities for q′ are d2d3, d1d3 and d1d2, being the active
orbital d (p, q′) = d1, d2, and d3, respectively. This is consid-
ered with the restriction q′ ∈ p in the sum. Similarly, p′ � q
in the second term indicates the contribution of the p′ states to
which q can fluctuate through the capture of a hole in d (p′, q).
The �

<[>]
di

appearing in Eq. (10) are given by

�
<[>]
di

(ω̃) =
∫ ∞

−∞
dε

f<[>](ε)
0
di

(ε)

ω̃ − ε − iη
, (11)

where 
0
di

(ε) is the imaginary part of the noninteracting self-
energy,

�0
di

(ω) =
∑

k

∣∣Vkdi

∣∣2

ω − εk − iη
. (12)

In Eq. (11), η is the usual infinitesimal convergence param-
eter, f>(ε) = 1/(e(ε−μ)/kBT + 1) is the Fermi function in the
hole picture, f<(ε) = 1 − f>(ε), μ is the chemical potential,
kB is the Boltzmann constant and T is the temperature. The
factors 1 and 4/3 multiplying each term in Eq. (10) come
from the summation over σ and M of the coefficients given
by Eq. (5) (see Appendix A). The self-energies involving
couplings with two different orbitals (for instance, Vkd1Vkd2 )
are negligible compared with the diagonal ones and are then
neglected.

The correlated treatment of the different configurations
becomes manifest in Eq. (10), where each self-energy �pq

corresponding to the Green function Gpq includes contribu-
tions from all the possible virtual fluctuations p ↔ q′ and
q ↔ p′. Let us take the configurations p = d1d2d3 and q =
d2d3 as an example. The fluctuation between them, involving
the d (p, q) = d1 orbital, incorporates the virtual loss and
recapture of all the holes occupying the different orbitals in
p (d1, d2, and d3), through the summation over q′ in Eq. (10).

In the same way, it includes the capture and subsequent loss of
holes in the orbitals not present in q (d1, d4, and d5), through
the summation over p′.

The occurrence probabilities of each configuration, in-
dicated by 〈| 3

2 , M〉
p
〈 3

2 , M|
p
〉 = 〈 3

2 〉
p

and 〈|1, M〉q〈1, M|q〉 =
〈1〉q, are given by〈

3
2

〉
p
= 1

π

∫ ∞

−∞
dω f<(ω)ImGpq(ω), (13)

〈1〉q = 1

π

∫ ∞

−∞
dω f>(ω)ImGpq(ω). (14)

We can construct the one-particle Green function
Gdiσ (t ′, t ) = iθ (t ′ − t ) 〈{c†diσ

(t ′), cdiσ (t )}〉 by using Eqs. (3)
and (5):

Gdiσ = 2
∑
p,q

δdi,d (p,q)Gpq. (15)

The spectral density defined by Gdiσ ,

ρdiσ (ω) = 1

π
ImGdiσ (ω), (16)

represents the energy distribution of all the fluctuations in-
volving configurations p and q where the orbital di is occupied
in the configuration p and it is empty in the configuration q.
Then, the mean hole occupation obtained taking into account
Eq. (3),

〈
c†diσ

cdiσ

〉 =
∫ ∞

−∞
dω f<(ω)ρdiσ (ω), (17)

gives the contribution to the occupation of the di orbital
provided only by the S = 3/2 configurations. The total hole
occupation of the di orbital, which also includes the contribu-
tion from the configurations with S = 1, is given by

odi = 4
∑
p�di

〈
3
2

〉
p
+ 3

∑
q�di

〈1〉q , (18)

where p � di (q � di) indicates the sum over the configura-
tions p (q) in which di is occupied, and the sum over σ was
performed.

D. Symmetry considerations

The atomic configurations can be classified according to
the symmetry group of the occupied orbitals (A1, E1, E2). For
instance, the configurations p = d1d2d4 and p = d1d3d4 have
occupied orbitals with the same symmetry, namely A1 (d1),
E1 (d2/d3) and E2 (d4). Then, we have five nonequivalent
possibilities for S = 3/2 (labeled with P) and five for S = 1
(labeled with Q), as it is shown in Table II. For each set P
(Q) there are wP (wQ) equivalent configurations degenerated
in energy, also indicated in Table II.

The five types of configurations for each value of the total
spin S lead to the 11 nonequivalent fluctuations (NEF) shown
in Table III. The symmetry of the orbital involved in the
fluctuation, D(P, Q), is shown in the same table. wPQ indicates
the number of possible equivalent transitions of this type for
the active orbital. To illustrate, in the fluctuation between
P = E1E1E2 and Q = E1E2, numbered as 2 in Table III,
for a given active orbital with symmetry D = E1 there are
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TABLE II. The five nonequivalent possibilities for both, S = 3/2
(P) and S = 1 (Q), to accommodate the corresponding holes into the
three symmetry groups: E1, E2, and A1. wP (wQ) is the number of
equivalent configurations in each set.

P wP Q wQ

E1E1E2 2 E1E1 1
E1E2E2 2 E1E2 4
A1E1E1 1 E2E2 1
A1E1E2 4 A1E1 2
A1E2E2 1 A1E2 2

two possibilities for the occupied E2 orbital (d4 or d5). Then,
wPQ = 2 in this case.

We should notice that the 11 NEF lead to only 11 nonequiv-
alent Gpq in Eq. (8). These nonequivalent Green functions
correspond to the fluctuations of Table III and will be iden-
tified with GPQ. The same notation can be used with the rest
of the terms in Eq. (8) (�PQ, OPQ, �PQ). In the same way,
the energy levels εdi and the noninteracting self-energies �0

di

depend only on the symmetry group to which the orbital di

belongs, therefore we indicate the three possibilities as εD and
�0

D, with D = E1, E2, A1. Similarly, the one-particle Green
functions defined by Eq. (15) depend only on D and can
be expressed in terms of the non equivalent GPQ and their
weights wPQ:

GDσ = 2
∑
P,Q

δD,D(P,Q)wPQGPQ, (19)

as well as the corresponding spectral densities

ρD(ω) =
∑

σ

1

π
ImGDσ (ω), (20)

where we sum over σ for convenience.

IV. HAMILTONIAN PARAMETERS

The accuracy of our results relies on an accurate calcu-
lation of the different terms that define the proposed ionic
Hamiltonian [Eq. (2)]. The first term of Eq. (2) requires the
electronic structure of the unperturbed surface, which is calcu-
lated by performing a DFT simulation of the graphene without
the adatom. In this section, we detail the calculation of the
other two terms of Eq. (2): the atom-band coupling terms Vkdi ,
which determine the Hamiltonian parameters V pq

kMσ [Eq. (4)],
and the total energies ESp[q] of the atomic configurations
which lead to the single particle energy levels definition.

A. Atom-band coupling terms

The self-energies and atom-band crossed terms, which
determine the required Green functions in Eqs. (8) and (9),
rely on an adequate computation of the coupling terms Vnkdi

(n is the band index, which will be written explicitly in this
section).

Our calculation of Vnkdi is based on a linear combination
of atomic orbitals (LCAO) expansion of the surface wave-
function ψnk [41]. In the LCAO method ψnk is expressed
in terms of atomic orbitals χα (r − Rs), corresponding to the
α orbital of the s atom of the surface, located in Rs. After
choosing an adequate Bravais lattice and a base, each atom is
univocally located with a basis vector Bb and a lattice vector
Ll , Rs = Ll + Bb, and for every atom s we can find its basis
b(s) and lattice l (s) index. The Bloch theorem leads to the
following expression:

ψnk(r) =
∑
α,s

cnk
αb(s)e

ik·Ll (s)χα (r − Rs), (21)

where the coefficients cnk
αb define the surface density matrix in

the symmetrically orthonormalized atomic basis:

ραβst (ε) =
∑
n,k

eik·(Ll (t )−Ll (s) )cnk∗
αb(s)c

nk
βb(t )δ(εnk − ε). (22)

By using the bond-pair model, the Vnkdi couplings are calcu-
lated as [41]:

Vnkdi =
∑
α,s

cnk
αb(s)e

ik·Ll (s)Vαsdi , (23)

where Vαsdi is the coupling between the α orbital of the s
surface atom and the di orbital of the adatom, symmetrically
orthogonalized first in the dimeric subspace and then referred
to the symmetrically orthogonalized surface atom states [41].
The Vαsdi couplings include one and two electron integrals
computed within a mean field approximation and using the
atomic basis set provided by Huzinaga [50,51].

According to Eq. (23), the square modulus of Vnkdi results

∣∣Vnkdi

∣∣2 =
∑

α,β,s,t

(
eik·(Ll (t )−Ll (s) )cnk∗

αb(s)c
nk
βb(t )

)
V ∗

αsdi
Vβtdi . (24)

By using Eqs. (22) and (24), we can evaluate any sum over the
indices n, k involving |Vnkdi |2 and a given function h(εnk, . . . )

TABLE III. Nonequivalent fluctuations between the five sets of configurations with three holes (P) and the five with two holes (Q) of the
Co orbitals splitted into the three symmetry groups. The symmetry of the active orbital involved in the transition is indicated by D(P, Q) and
the number of equivalent transitions for the active orbital by wPQ.

Fluctuation 1 2 3 4 5 6 7 8 9 10 11

P E1E1E2 E1E1E2 E1E2E2 E1E2E2 A1E1E1 A1E1E1 A1E1E2 A1E1E2 A1E1E2 A1E2E2 A1E2E2
Q E1E1 E1E2 E1E2 E2E2 E1E1 A1E1 A1E1 E1E2 A1E2 A1E2 E2E2
D(P, Q) E2 E1 E2 E1 A1 E1 E2 A1 E1 E2 A1
wPQ 1 2 2 1 1 1 2 4 2 1 1
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FIG. 1. DOS and band structure of pure graphene (upper left) and square modulus of the atom-band couplings |Vnkdi |2 for the five d orbitals
of Co at the equilibrium distance on the hollow position. The colors show the correspondence between the graphene bands n and the |Vnkdi |2.
The contour plots show the |Vnkdi |2 for each orbital for the π and π∗ bands. The k path followed in the plots (K
MK) is indicated in the
contour plots. The jumps observed at the K point for the π and π∗ bands and at the 
 point for some σ bands are not numerical artifacts and
they correspond to an accumulation of contour lines in the contour plots.

as follows:∑
n,k

∣∣Vnkdi

∣∣2
h(εnk, . . . )

=
∑

α,β,s,t

V ∗
αsdi

Vβtdi ×
∫ ∞

−∞
dεραβst (ε)h(ε, . . . ). (25)

For �0
di

in Eq. (12), h(εnk, . . . ) = 1/(ω − εnk − iη).
Note that by using Eq. (25), we build the self-energies and

other quantities related to Vnkdi from the density matrix of the
surface without the impurity, avoiding supercell effects that
are present in other methods [12,14]. Also, we use a graphene
primitive cell to calculate the coefficients cnk

αb, which allows us
to keep track of the nk state to which each impurity orbital is
coupled [Eq. (24)].

In Fig. 1, we show the |Vnkdi |2 quantities computed using
Eq. (24) for each di Co orbital, in correspondence with the
graphene bands and for the equilibrium distance (1.52 Å) of
the Co atom adsorbed on the hollow position. The contour
plots show the |Vnkdi |2 corresponding to the π and π∗ bands in

the first Brillouin zone. It becomes evident the small coupling
of the A1 group with the graphene bands, which is larger
for low-lying bands. The antisymmetry between the E1 and
E2 groups is remarkable [8,12]: while the E1 group strongly
couples with the π band and almost nothing with the π∗,
the behavior of the orbitals of the E2 group is precisely
the inverse, with similar magnitudes. Notice that, despite the
symmetry shared by the orbitals in the E1 (E2) group, each
orbital couples with different regions of the first Brillouin
zone. In particular, each orbital of the E1 (E2) group presents
a strong coupling with the π (π∗) band in different M points,
where the van Hove singularities are located.

By using Eqs. (12) and (25), we obtain the noninteracting
self-energies �0

D. Figure 2 shows the real (�0
D) and imaginary

(
0
D) parts of �0

D for each symmetry group. In panels (a) and
(b), we compare the obtained Anderson width 
0

D with results
from previous works [11,12] for the same system. An overall
agreement is observed. However, notice that our calculation
leads to a smooth 
0

D, like the one obtained in Ref. [12]
by using a tight-binding approximation. The somehow noisy
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FIG. 2. Our calculated 
0
d compared with those from

Refs. [11,12] for (a) E1 and (b) E2 groups. (c) Presents
comparatively our calculated 
0

d for the three symmetry groups, (d) is
a zoom and (e) corresponds to the real part of the noninteracting
self-energy, �0

d .

behavior of the other calculations is attributed to supercell
effects [12], which are absent in our approach. The prefer-
ential coupling of the E1 (E2) group with the π (π∗) band
is expressed through an asymmetry of the 
0

D for each group:
the coupling is stronger at ω < 0 eV (ω > 0 eV), with peaks
related to the van Hove singularities in the M points of the first
Brillouin zone [12].

For the calculated equilibrium distance, both 
0
E1 and 
0

E2
have the same slope when ω → 0. Moreover, both 
0

D are
practically specular images around ω = 0, that is 
0

E1(ω) ≈

0

E2(−ω). This is caused by the similar values of the atomic
hoppings Vαsdi for the E1 and E2 orbitals at the equilibrium
distance of 1.52 Å. When the Co-graphene distance is in-
creased, the relative height of the the E1 peak with respect to
the E2 one increases, since the coupling is more favorable for
this symmetry (the E1 orbitals are located out of the xy plane).
The opposite occurs if the atom-surface distance is smaller
than 1.52 Å: in this case, the coupling of the E2 orbitals,
located on the xy plane, becomes more favorable and the peak
in 
0

E2 grows with respect to the one in 
0
E1. Although each

orbital of both groups, E1 and E2, couples differently with
the respective band (see Fig. 1), the resulting 
0

D depends only
on the symmetry group. Nevertheless, the underlying different
couplings Vnkdi could be still probed in systems with these
peculiarities by, for instance, azimuthal angle dependent ion
scattering spectroscopy [52].

The real part of the noninteracting self-energy �0
D

[Fig. 2(e)] will shift the εE1 level to higher energies, the εE2

level to lower energies and will have almost no effect on εA1.
This effect is further discussed in the next section.

B. Energy levels

The computation of the orbital energies εD is a chal-
lenging task and usually involves several approximations.
The energy levels are generally estimated from DFT calcu-
lations, which requires to account for double counting cor-
rections of difficult determination [8,11,12,53]. In addition,

FIG. 3. (a) Energy levels as a function of the Co-graphene dis-
tance z for each group, shown relative to the vacuum. The asymptotic
value E∗

I and the work function of graphene � are indicated. The
detail at the Co equilibrium position (1.52 Å) shows the level
positions with respect to the graphene Fermi level (EF ). (b) Co LDOS
obtained with DFT compared with the results of the simplified model
(SM) described in the text.

the noninteracting system solved by the DFT method in
principle do not give reliable energy eigenstates for the real
system [54].

We obtain the one electron energy levels corresponding
to the transitions occurring in the presence of the surface as
the the difference between the total energies of the atomic
configurations involved, εd (p,q) = E 3

2 ,p − E1,q. The total ener-
gies ES,p[q] are calculated from a mean field approximation of
the many-body Hamiltonian that describes the atom-surface
interaction, by considering a second order expansion in the
atomic overlap of the symmetrically orthogonalized basis set
[41] (see Appendix B).

In the calculation of the total energies, we take into ac-
count the electron that is transferred from the Co atom to
the graphene surface in the equilibrium configuration, by
distributing it among the 72 C atoms of the supercell (≈0.014
electrons per C atom). The long range interactions are also
included by means of the image potential 1/4z, which defines
the dependence of the energy levels with the normal distance
to the surface z (in a.u.), for distances larger than zc = 4 Å
[55,56].

Far from the surface, the ground state of the Co atom
corresponds to the electronic configuration 3d74s2. At the
equilibrium position, our DFT calculations suggest that the
configuration fluctuates between 3d7 and 3d8, with only one
electron distributed in the s and p orbitals. In order to approxi-
mate the situation near the surface we refer the energy levels to
an asymptotic value calculated from the measured energies of
the excited neutral (3d84s1) and ionic (3d74s1) configurations,
E∗

I = E (3d84s1) − E (3d74s1) = 7.76 eV [57] (see Fig. 3).
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Finally, the energy levels are measured with respect to the
graphene Fermi level (EF ), by assuming a work function � =
4.5 eV [58,59]. The resulting εD for each symmetry group as
a function of the Co-graphene distance are shown in Fig. 3(a).

Clearly, a variation of either the matching distance of the
image potential zc or the graphene work function � introduces
changes in the absolute value of the energy levels, although
these variations do not affect the splitting between the levels
predicted by our calculation. In order to check the reliability
of the obtained energy values, we computed the local spectral
density in the Co atom by using a simplified model which dis-
regards the correlation among the configurations introduced
via the interaction with the band states. This result is obtained
by keeping only the terms with q′ = q and p′ = p in Eq. (10),
and doing the same in the expression for �pq [see Eq. (A15)].
The spectral density computed by using this model is then
compared with the result obtained from the DFT calculation
in Fig. 3(b).

The E2 and A1 spectral densities show resonances that
are in good agreement with the DFT results. On the other
hand, the E1 resonance, located at ω ≈ 0 eV in the DFT
LDOS, is shifted towards higher energies when using our
simplified calculation. The position of the E1 resonance is
related to the shift produced by the real part of the self-energy
�0

E1 [see Fig. 2(e)]. The marked decrease of �0
E1(ω) in the

range −2 eV � ω � 0 eV leads to a small variation of the E1
resonance position in this range of ω values. Then, an overall
good agreement is obtained between the simplified model and
the DFT results, supporting the proposed calculation of the
energy levels. Different proposals in this direction have been
developed to obtain the energy levels, e.g., by matching the
result from a Hartree-Fock approximation of the Anderson
Hamiltonian to the DFT LDOS [53].

In summary, we take as reference values for the Co energy
levels εE1 = −0.50 eV, εE2 = −0.55 eV, and εA1 = −0.65 eV,
measured with respect to the graphene Fermi level. Neverthe-
less, we will also analyze the effect of rigid variations of these
reference energy levels on the physical quantities of interest.

V. CO-GRAPHENE SYSTEM IN EQUILIBRIUM

A. Occurrence probabilities and spectral densities

The proposed approach allows to identify the weight of
each atomic configuration in the ground state of the interact-
ing system. In Figs. 4(a) and 4(b), we show the occurrence
probability of each set of equivalent configurations P and Q
of Table II, calculated in the following way:〈

3
2

〉
P =

∑
M,p∈P

〈∣∣ 3
2 , M

〉
p

〈
3
2 , M

∣∣
p

〉
, (26)

〈1〉Q =
∑

M,q∈Q

〈|1, M〉q 〈1, M|q〉 . (27)

In Eq. (26), we sum over the wP equivalent configurations
of the P set and the four equivalent M possibilities for S =
3/2. Similarly, in Eq. (27) the sum is over the wQ equivalent
configurations of the Q set and the three projections of S = 1.

In Fig. 4(c), we present the total hole occupation for each
symmetry group, calculated by using Eq. (18). To facilitate
the analysis, panel (d) shows the shifted energy levels in the

FIG. 4. Occurrence probabilities for the configurations with
(a) three and (b) two holes. (c) Hole occupation per symmetry group.
(d) Shifted energy levels εD + �0

D(εD ) for the noninteracting case,
broadened by 
0

D(εD ). The results are shown as a function of the
energy level position εE1 after shifting rigidly the reference levels
εE1 = −0.55 eV (indicated by a dotted line), εE2 = −0.50 eV, and
εA1 = −0.65 eV.

noninteracting case, εS
D = εD + �0

D(εD), broadened by

0

D(εD). The results are presented as a function of the
εE1 energy level position, used to indicate a rigid shift
of the energy levels with respect to the reference values
εE1 = −0.55 eV, εE2 = −0.50 eV, and εA1 = −0.65 eV
calculated in Sec. IV B.

When the broadened energy levels are well below the
Fermi level, the probability of occurrence of the states with
three holes is practically zero [Fig. 4(a)], and only the con-
figurations with two holes are occupied [Fig. 4(b)]. In this
situation, the splitting between the energy levels is not relevant
and all the two holes configurations have the same probability
of occurrence. The different values in Fig. 4(b) are due
to the different wQ equivalent configurations in each Q set
[Eq. (27)].

When εE1 ≈ −2.5 eV there is an abrupt increase in the
occurrence probability of the E1E1 configuration [Fig. 4(b)].
This change corresponds to the sudden increase in �0

E1
[Fig. 2(e)] which produces a jump in the shifted energy level
εS

E1 [Fig. 4(d)]. The εS
E1 level is then clearly separated from the

other two levels and situated closer to EF , increasing in this
way the probability of being occupied by holes [Fig. 4(c)].

The next abrupt change in the E1E1 occurrence proba-
bility, at εE1 ≈ −1 eV, corresponds to the broadened energy
level εS

E1 crossing the Fermi level, as it is seen in panel (d). At
this single hole energy the configuration E1E1E2 becomes
the dominant one. The width of the E2 level allows fluctua-
tions involving this orbital, while the two E1 orbitals remain
preferentially occupied by holes. As a consequence, the hole
occupation of E2 [panel (c)] presents a sudden increase that is
responsible for the change observed in the total occupation
shown in the same panel. This behavior, also observed in
Ref. [8], is a signal of a transition to a ground state with
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a predominant weight of the S = 3/2 configurations, being
E1E1E2 the most probable. The active orbital involved in this
transition belongs to the E2 symmetry group.

At εE1 � 1 eV, all the energy levels are well defined
above the Fermi level and the occurrence probabilities tend
to an equal value for all the configurations with three holes.
As before, the different values are only due to the differ-
ent number of equivalent configurations wP in each P set
[Eq. (26)].

The value εE1 = −0.55 eV, indicated with a dotted line in
Fig. 4, corresponds to the reference energy levels. For these
levels, the corresponding shifted values are εS

E1 = 0.64 eV,
εS

E2 = −0.67 eV and εS
A1 = −0.48 eV. The shifts caused

by �0
D change the ordering of the levels to εS

E2 < εS
A1 <

εS
E1, which is consistent with previous results [8,12]. From

Fig. 4(a), we observe that the three-hole set E1E1E2 is
the most probable at the reference energy levels, with an
occurrence probability of 0.62. However, there is also an
important contribution (0.35) from the two-hole state E1E2
(panel (b)). This mixture of configurations with S = 3/2 and
1 clearly corresponds to a mixed-valence regime. The electron
occupation at the reference energy levels for the E1, E2, and
A1 groups, derived from Fig. 4(c), correspond to 2.32, 3.04,
and 1.98, respectively. These values are consistent with our
calculated DFT occupations presented in Sec. II and also with
previous results [8,11].

In Fig. 5, we present the spectral densities ρD calculated
from Eq. (20), for each symmetry group and at different
energy level positions. The possible fluctuations involving the
active orbital D are contained in the Green functions GPQ

with D(P, Q) = D (Table III). The positions and widths of
the peaks corresponding to each GPQ are determined by the
self-energies �PQ defined by Eq. (10). Each �PQ contains
contributions from the different orbitals, with weights that
depend on the involved configurations P and Q. The involved
virtual transitions generate structures in the spectral densi-
ties, related to the presence of electronic correlation in a
multiorbital system [43,60]. The dominant fluctuations that
contribute to the spectral densities ρD are indicated with labels
in Fig. 5, showing the three and two holes configurations, P
and Q, that fluctuate. Spectral weight at ω > 0 eV indicates
the occurrence probability of the three holes configurations P
with the active orbital occupied, while at ω < 0 eV it gives the
probability of the two holes configurations Q with the active
orbital empty.

We start our analysis at the reference energy level posi-
tions, corresponding to εE1 = −0.55 eV. The main contribu-
tion to ρE1 in Fig. 5(a) is given by the fluctuation between
the configurations with the highest occurrence probabilities,
namely, E1E1E2 and E1E2 [Figs. 4(a) and 4(b)], being E1
the active orbital. In a similar way, the fluctuation between
E1E1E2 and E1E1 is the main contribution to ρE2 [panel
(b)]. These three configurations (E1E1E2, E1E2, and E1E1)
represent around 95% of the total occurrence probability,
and therefore the fluctuations corresponding to the transitions
between these states dominate the spectral densities. Both
resonancelike peaks occur at ω > 0 eV, indicating that the
three holes configuration E1E1E2 is the most probable.

In the case of ρA1 [Fig. 5(c)], there is a small contribution
to the spectral density that arises from the fluctuation between

FIG. 5. Spectral densities ρD calculated at several values of the
energy levels, keeping constant their splitting and indicating their
positions with the value of εE1. The main resonance in each case
is associated to the fluctuation between the three and two holes
configurations labeled with P (upper line) and Q (lower line). The
inset in (a) shows a zoom near zero, where other fluctuations of
lower probability can be observed. The insets in (c) show the spectral
densities for the levels well below and well above the Fermi level.

the configurations E1E1 and A1E1E1. Given that 
0
A1 ≈

0 eV near the Fermi level, this low probability transition is
only possible due to the interaction between the d orbitals
mediated by the graphene bands. The A1E1E1 configuration
also introduces a small contribution to ρE1, related to the
fluctuation to the A1E1 state [inset of Fig. 5(a)]. These small
contributions are enhanced as the occurrence probability of
the A1E1E1 configuration increases, which occurs when the
energy levels are shifted towards higher energies [Fig. 4(a)],
or when the temperature is increased (see Sec. V C).

When the levels are shifted towards lower energies (εE1 =
−1.05 eV), the main peak observed in ρE1 tends to disappear,
while the one in ρA1 increases [Figs. 5(a) and 5(c)]. This
occurs in coincidence with the change of the preferential
configuration, from E1E1E2 to E1E1 (Fig. 4). The vanishing
E1 peak has been related to a decrease in the interaction width

0

E1(ω) when ω < 0 eV [8], but 
0
E1 actually increases in this

region [Fig. 2(c)]. Our calculations suggest instead the follow-
ing interpretation. When −2.5 eV � εE1 � −1.0 eV, a S = 1
state dominates, being the two holes configuration E1E1 the
most stable [Fig. 4(b)]. Then, the most important fluctuations
involve the capture of a hole in the E1E1 configuration, being
either A1 or E2 the active orbitals, but not E1, which is
already completely occupied. The peaks in ρE2 and ρA1 at
ω < 0 eV indicate precisely these transitions, between E1E1
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FIG. 6. Spectral densities ρD calculated at several Fermi level
shifts. The energy levels are maintained at the position corresponding
to εE1 = 2.45 eV from the Fermi level in all cases.

and E1E1E2 or A1E1E1. The fact that the peak in ρE1 do
not cross ω = 0 eV when lowering the energy levels indicates
that the three hole configurations E1E1E2 is more favorable
than E1E2, since the weight of the former is enhanced by the
virtual fluctuations of the most probable configuration E1E1.
To summarize, at εE1 = −1.05 eV, only the orbitals other than
E1 give place to appreciable peaks in the spectral density at
ω < 0 eV, since the capture of a hole is only possible in those
orbitals.

If the energy levels are positioned well below or well above
the Fermi level, the orbitals become practically degenerated
and their energy widths become comparable. Then, the spec-
tral densities for the three groups are similar and the spectral
weight is only significant either below or above the Fermi
level, indicating a ground state with a well defined total spin
for the Co adatom, S = 1 or S = 3/2, respectively [insets of
Fig. 5(c)].

The spin fluctuation S to S − 1/2 in the adsorbed atom is
related to an antiferromagnetic interaction with the surface
when the spin S corresponds to the ground state, and in this
case a Kondo resonance is expected [61]. The absence of the
Kondo structure in the spectral densities for the energy level
positions corresponding to εE1 = 2.45 eV [inset of Fig. 5(c)]
is due to the null density of states of graphene at the Fermi
level. This situation is modified in doped graphene, where
EF is shifted with respect to the Dirac point. In Fig. 6, we
present the spectral densities ρE1 and ρE2 for several shifts
of EF and by keeping the one particle energy levels in the
position corresponding to εE1 = 2.45 eV with respect to EF .
We observe that a Kondo peak begins to emerge in both ρE1

and ρE2 when the Fermi level is 0.5 eV below the Dirac
point. Note that ρE1 (ρE2) presents a second peak at −0.05 eV
(0.05 eV), introduced by the self-energies [Eq. (10)] at the
difference of the energy levels εE1 = 2.45 eV and εE2 =
2.50 eV. Even in this condition, no Kondo peak is expected
in ρA1, due to the negligible coupling of the A1 orbital with
graphene.

B. Approximations by reducing the configuration space

We will analyze two further approximations obtained by
restricting the space of configurations and, consequently, the
involved fluctuations. Given that the DFT calculations show

FIG. 7. Occurrence probabilities for the configurations with
(a) S = 3/2 and (b) S = 1, calculated by including 11 NEF (full
line), 4 NEF (dotted line), and 2 NEF (dashed line) as a function
of the energy level positions. Spectral densities obtained from each
approximation for (c) E1 and (d) E2 orbitals, at the reference energy
levels (shown with a doted line in the upper panels). The insets show
a zoom near zero, where structures appearing in the 11 NEF case can
be appreciated.

that the A1 orbital is nearly completely empty of holes,
restricting the space to the configurations in which this orbital
is empty should be a reasonable approximation. In this case,
the space is given by 4 NEF (1–4 in Table III). As a second
approximation, and considering that the DFT calculations
suggest a hole occupation in the E2 orbitals between 0 and
1, we keep the configurations with up to one hole in these
orbitals, which gives two possible NEF (1 and 2 in Table III).
Then, we have three levels of approximation: the complete
calculation with 11 NEF, the calculation including only the
configurations without holes in A1 (4 NEF) and finally the
one restricted to the configurations with no holes in A1 and up
to one hole in E2 (2 NEF).

Since the 2 and 4 NEF approximations assume that A1 is
empty of holes, they are expected to reproduce the results of
the total space (11 NEF) in the region where A1 has a very low
occupation, that is the range −2.0 eV � εE1 � 0.5 eV [see
Fig. 4(c)]. In Fig. 7, we compare the occurrence probabilities
calculated by using the three approximations as a function of
the energy level positions, and also the spectral densities at the
reference energy levels.

As expected, we observe a good agreement between the
three approximations in the range where A1 is completely
empty of holes. Above εE1 ≈ 0.5 eV the 2 and 4 NEF ap-
proximations predict a similar occurrence probability of the
E1E1E2 configuration, which is higher than the probability
obtained with 11 NEF. Around the reference energy levels
(εE1 = −0.55 eV), the 4 NEF calculation provides a good
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description of the orbital occupations, compared with the 11
NEF results.

In Figs. 7(c) and 7(d), we can see that, although the oc-
currence probabilities are similar for the three approximations
at the reference energy levels, the spectral densities show
quite important differences. First, the calculation with the
complete subspace (11 NEF) takes into account the A1 orbital
and therefore it allows to calculate the associated spectral
density ρA1. Also, the peak in ρE1, related to the fluctuation
between the configurations A1E1E1 and A1E1 for the 11
NEF calculation [inset of Fig. 7(c)], is absent in the other
approximations where A1 is ignored. Then, an important fea-
ture of the ρE1 spectral density around the Fermi level is lost
when the A1 orbital is eliminated from the calculation. Even
when the A1 occupation is negligible, including the possibility
of occupation of this orbital in the configuration space in-
creases the number of virtual transitions that become available
for the other orbitals. A similar effect occurs in the case of
ρE2, as it is seen in the inset of Fig. 7(d). In this case, the peak
corresponds to the fluctuation between the configurations
A1E1E2 and A1E1.

The change in the shape of ρE1 in the 2 NEF approx-
imation [Fig. 7(c)] is due to the elimination of the con-
figurations with two holes in the E2 orbitals. The main
peak in the spectral density is related to the fluctuation
between the configurations E1E1E2 and E1E2. In the 4
NEF case, the contributions of the virtual fluctuations from
Q = E1E2 are given by P′ = E1E1E2 and P′ = E1E2E2,
while in the 2 NEF case the contribution is only given by
P′ = E1E1E2. This difference introduced in the self-energy
[Eq. (10)] is responsible for the change of the ρE1 spectral
density when going from the 4 NEF to the 2 NEF approxi-
mation. For ρE2 in Fig. 7(d), the main peak of the spectral
density is related to the fluctuation between the configurations
E1E1E2 and E1E1. These configurations do not present vir-
tual fluctuations to states with two holes in E2, so that the self-
energy corresponding to this transition is the same in both,
4 NEF and 2 NEF calculations. Notice that no change in the
main peaks is observed when the space is restricted from 11 to
4 NEF. In this case, the virtual fluctuations that are neglected
are the ones having A1 as the active orbital, involving 
A1 ≈
0 eV. Since 
A1 is negligible compared with 
E1 and 
E2,
the elimination of these transitions does not affect the main
resonancelike peaks.

C. Temperature behavior

The spectral densities per symmetry group ρD, calculated
from Eq. (20) at the reference values of the energy levels,
are presented in Fig. 8 for different temperatures. Notice that
at the extremely high temperatures included in the calcula-
tions, it is expected the adatom desorption, the formation of
defects and the graphene decomposition [62,63]. However,
these theoretical conditions are useful to test the behavior of
the model. The resonancelike peaks that appear in the spectral
densities are identified with the fluctuations of Table III.
The total spectral density, obtained as the sum of the five
orbital spectral densities, is presented in the same figure. The
occurrence probabilities and hole occupations are also shown
as a function of the temperature.

FIG. 8. [(a)–(c)] Spectral densities at several temperatures, for
the three symmetry groups and (d) total spectral density. [(e) and
(f)] Occurrence probabilities for the configurations with three and
two holes as a function of the temperature. (g) Variation of the hole
occupation as a function of the temperature.

In Figs. 8(a)–8(c), new peaks appear in the spectral den-
sities as the temperature is increased and the occupation of
the lower probability configurations becomes significant. In
the case of ρE1 [panel (a)], it is observed an enhancement
of the small peak corresponding to the fluctuation between
A1E1E1 and A1E1, discussed in Sec. V A. In addition, a
fluctuation involving the configurations A1E1E2 and A1E2
becomes possible at high temperature. An analogous behavior
is observed for ρE2 and ρA1 in panels (b) and (c). In Fig. 8(e),
we observe that the occurrence probability of the three holes
configuration A1E1E2 increases from a negligible value at
4.2 K (≈10−3) to 0.11 at 4000 K. Since this configuration
includes the three symmetry groups, its contribution can be
observed in the three spectral densities [peaks labeled with
A1E1E2 in panels (a) to (c)]. The probability of A1E1E1
also increases in a similar magnitude, and it is observed in
the enhancement of the corresponding peaks in ρE1 and ρA1.
In a similar way, the increase of the occurrence probability
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of the two holes configurations [Fig. 8(f)] is related to the
enhancement of the corresponding peaks. This is the case
of the A1E1 configuration, which contributes to ρE1 and
ρE2. The remaining fluctuations, such as between A1E2E2
and E2E2, are related to configurations with a very low
occurrence probability even at high temperature, and are not
observed in the spectral densities.

It is clear from Figs. 8(e) and 8(f) that the temperature
increase produces a redistribution of the probabilities of the
different configurations. The E1E1E2 occupation, which at
4.2 K is 0.61, decreases to 0.24 at 4000 K and becomes
comparable to the occupation of practically the whole rest
of three holes configurations (≈0.1). The only exception is
A1E2E2, the configuration without holes in E1, which is the
least favorable with an occupation of ≈0.01. Similarly, at high
temperature the probabilities of the two holes configurations
in Fig. 8(f) become comparable. As a result of the redistri-
bution of probabilities, the temperature increase produces a
slight decrease of the total hole occupation, from 2.65 to 2.52
[panel (g)].

The results presented in Fig. 8 show a good qualitative
agreement with those of Ref. [8] (Fig. 4 of this reference),
obtained using the GGA+OCA method. Our approach allows
us to identify the development of the many-body structures in
the spectral density with fluctuations between configurations
which become accessible as the temperature is increased.

VI. CO-GRAPHENE SYSTEM OUT-OF-EQUILIBRIUM

A. Theoretical considerations and parameter calculation

The Green-Keldysh functions (6) and (7) are appropriate
for solving quantum systems out-of-equilibrium. The current
I between the graphene surface (s) and a tip (t) through the
Co atom is computed from the time derivative of the average
occupation number 〈nνkσ 〉 in one of the leads ν = s, t . The
current from the lead ν to the other is given by [64]

Iν = −2e

h̄

∑
k, σ, M
p, q ∈ p

Im
{
V pq∗

νkMσ

〈∣∣ 3
2 , M

〉
p
〈1, M − σ |q cνkσ 〉 }

.

(28)
This expression can be written as

Iν = 4e

h

∑
p,q∈p

∫ ∞

−∞
dε

(
�0

νd (p,q)(ε)ReFpq(ε)

+
0
νd (p,q)(ε)ImKνpq(ε)

)
, (29)

where Kνpq(ε) = Fpq(ε) − 2(2 fν<(ε) − 1)Gpq(ε) [see
Eq. (A14) in Appendix A]. The Fermi function of each
lead fν< is defined using the respective chemical potential
μν . In equilibrium the fluctuation-dissipation relation
Fpq(ε) = 2i(2 f<(ε) − 1)ImGpq(ε) is satisfied and the current
becomes zero.

We modeled the tip-atom-surface system by considering
the atom-surface and the atom-tip interactions independently,
which is an adequate approximation for the electronic trans-
port in the tunneling regime [65]. For the calculation of the
atom-tip system we followed a procedure similar to the one
described in Sec. III for the computation of the Co-graphene
Hamiltonian parameters. First, we performed a DFT compu-

FIG. 9. (a) Co-tip noninteracting width 
0
tD per symmetry group.

(b) Geometry of the system. (c) Scheme indicating the position of the
graphene Dirac point (DP) relative to the chemical potential of the
surface μs, the Co energy levels εD and their shift �εD, the position
of the tip chemical potential μt when a bias voltage Vs is applied and
the interaction between the Co atom and each lead represented by

0

sD and 
0
tD.

tation of an isolated Pt tip. We modeled six layers of a 4 × 4
supercell of Pt(111), with three additional layers forming a
pyramid, which is shown in Fig. 9(b). The three top layers
were kept fixed at their bulk equilibrium positions and the
rest of the atoms were allowed to relax. Once calculated the
density matrix of the isolated Pt tip, the dimeric coupling
between Co and Pt atoms were calculated by using the bond-
pair model described in Sec. IV A. Finally, the noninteracting
self-energy (Eq. (12)) corresponding to the tip located on
top of the Co atom was computed. The widths 
0

tD due to
the Co-tip interaction are shown for each symmetry group in
Fig. 9(a), by considering a Co-tip distance of 5 Å.

Because of their symmetry, each Co orbital couples dif-
ferently with the tip on top of the atom, being the A1 orbital
the most favorable. The E1 orbitals, dxz and dyz, are spatially
located out of the surface plane and also couple with the tip.
On the contrary, the E2 orbitals are located on the surface
plane and their couplings are negligible. On the other hand,
the coupling of the A1 orbital with the graphene is negligible
near the Fermi level [
0

sA1(0) ≈ 0 eV], so that this orbital
does not provide a direct conduction channel [8]. Then, only
the E1 orbitals couple to both, the graphene and the tip, and
are expected to provide the conduction channels registered by
STM. This can be better understood using a simplified version
of Eq. (29), where current conservation per channel and a
near-equilibrium situation are assumed to calculate the current
from t to s [39,66,67]:

I = 8e

h

∑
p,q∈p

∫ ∞

−∞
dε
eff

d (p,q)(ε)( ft<(ε) − fs<(ε))ImGpq(ε).

(30)

The effective width introduced in Eq. (30) is given by

eff

di
= 2
0

tdi

0

sdi
/(
0

tdi
+ 
0

sdi
) [39]. For the E1 and E2 or-

bitals, 
0
tdi

<< 
0
sdi

and therefore 
eff
di

≈ 
0
tdi

. Then, the E2
orbitals do not provide an effective current channel due to
the negligible interaction of these orbitals with the tip. The
same conclusion applies for the A1 orbital, in this case due
to the negligible interaction with the surface, 
eff

A1 ≈ 
0
sdi

.
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In summary, only the E1 channels contribute significantly to
the electronic transport through the Co atom.

B. Analysis of the differential conductance

The STM spectra of Co atoms deposited on back-gated
graphene grown on SiO2 have been measured for differ-
ent back-gate voltages VG [18]. Among the several fea-
tures found in the differential conductance spectra shown in
Ref. [18], we will focus on the resonance peaks (labeled
with A, B, C, and D) and the related S peak of Fig. 2 of
the cited work, associated with the electronic structure of
the Co impurity.

The gate potential VG applied in the experiment shifts the
chemical potential μs of graphene [18]. The approaches used
to model the μ shift include the calculation of the system
for different values of electron doping [13,14] and the direct
variation of μs [8], which is used in this work. It is worth
noting that the VG-induced shift of μs is not the only effect
to take into account. As pointed out in Ref. [18], the work
function difference between the surface and the tip and the
application of the bias voltage Vs also induces a μ shift, that
varies with the value of Vs. Consistently with Ref. [18], we
define the bias potential Vs as the voltage of the surface with
respect to the tip, so that the chemical potential of the tip
corresponds to μt = eVs (μs is chosen as zero for all the
calculations). In addition, when the tip is right above the Co
adatom, the atom states are shifted in energy [18]. Also, when
VG varies, the change in the doping induces an additional
shifting in the Co levels.

We consider independent variations of μs and εD, in order
to facilitate the analysis and identify the influence of each
parameter in the calculated spectra. We use as reference the
Dirac point, and define EG as the shift of the Dirac point
with respect to the Fermi level of the graphene due to the
gate potential. For a negative gate potential (VG < 0), the
corresponding shift is towards positive values (EG > 0) and
the Dirac point is at higher energies with respect to μs = 0 eV
[see Fig. 9(c)]. The magnitude of EG can be estimated from
the shifting of the Dirac point reported in Ref. [18], where the
maximum shift measured was ≈0.25 eV.

In addition, we have to consider the shift of the Co energy
levels �εD. The shift due to the presence of the Pt tip can
be estimated using the bond-pairs model, as it was done in
Sec. IV B to obtain the energy levels. For the tip at 5 Å from
the Co adatom, the resulting value is �εD = 0.03 eV. The
change in the graphene doping by the applied VG and the
variation of Vs also affect the adatom levels [18]. To analyze
these effects we proposed a variation of �εD between −0.1 eV
and 0.1 eV. In this range of analyzed values of EG and �εD,
no Kondo-like structures are expected (see Sec. V A).

In Fig. 10, we present the differential conductance dI/dVs

as a function of Vs, computed from Eq. (29) for several
values of EG and �εD. The conditions EG = 0 eV and �εD =
0 eV (bottom panel of Fig. 10, full line curve) are the same
as in the equilibrium calculations at the reference energy
levels of Sec. V. We identify the peak that appears in the
spectrum at Vs = −0.08 eV with the fluctuation between the
configurations A1E1E1 and A1E1 [see inset of Fig. 5(a)].

FIG. 10. Differential conductance for several EG shifts. The
Dirac point position with respect to μs = 0 eV corresponds to EG and
is indicated with an arrow. The calculations are made for different
rigid shifts of the Co energy levels �εD.

The low occurrence probabilities of these configurations lead
to the small intensity of the resonance. Notice that the peak
width (0.03 V at half maximum) resembles the width of the
resonance features observed in Ref. [18] (peaks labeled with
A, B, C, D). The increase in the conductance at high Vs values
is due to the peak associated with the fluctuation between the
E1E1E2 and E1E2 configurations [see Fig. 5(a)].

We see that the peak related to the configurations A1E1E1
and A1E1, located at Vs = −0.08 V for EG = 0 eV, is shifted
towards higher values of Vs when EG is increased. Its displace-
ment follows that of the Dirac point, which is located at EG

by definition. By considering the variation of EG from 0.00 to
0.25 eV, the position of the peak observed in our calculation is
in good agreement with the peak labeled with A in Ref. [18].
However, we should point out that the variation of VG in the
experiment is not directly related to this EG variation. Instead,
the measurement starts at a value of EG > 0 eV, due to the
doping of the graphene grown on the SiO2 substrate and the
presence of the Pt tip. On the other hand, and as it was stated
above, there is an additional contribution to the energy shift
EG that depends on the bias voltage Vs [18]. For Vs < 0 V, the
additional band-shift due to Vs leaves the Dirac point closer
to μs, as if EG were smaller. The shifting is in the opposite
direction when Vs > 0 V: the Dirac point is further from μs,
as if EG were larger. As a result, the features observed at
a given EG will correspond to the spectra calculated at a
smaller EG for Vs < 0 V and at a larger EG for Vs > 0 V.
The magnitude of this shift is ≈0.05 eV for the range of
Vs explored in the experiment [18]. Then, a measure at, for
example, EG = 0.05 eV will be more similar to our result
with EG = 0.10 eV for Vs > 0 V and with EG = 0.00 eV for
Vs < 0 V. Taking into account this effect, the peak observed
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in our calculation is in qualitative agreement with the one
observed in the measurement. Nevertheless, we have to say
that the uncertainty in the experimental positions of the peaks
together with the approximated determination of the chemical
potential and the level shifts in the theoretical model, make
difficult a direct comparison.

The resonance observed in our calculation is produced
by fluctuations involving the low-probability configurations
A1E1E1 and A1E1, suggesting that further features could
appear if more configurations were considered. This assertion
can be tested by expanding the space of configurations used
in this work, which was restricted to the states with two and
three holes. It would be of particular interest to include in the
selected space the configurations with a single hole, allowing
transitions to states with S = 1/2, which are suggested for this
system in other theoretical calculations [3,12,15–17].

We discuss now the effect of the energy shift �εD in
Fig. 10, in relation to the S peak observed in the experiment
[18]. The S peak is related to the ionization of the Co atom
when Vs is great enough to cause the resonance feature to cross
the Fermi level [18]. The S peak is observed at Vs > 0 V when
the resonance is below 0 eV and vice versa. Take as example
the spectrum for EG = 0.05 eV in Fig. 10, expected for a EG =
0.00 eV in the measurement made for Vs > 0 V. At sufficiently
high Vs, the Co energy levels are shifted closer to the Dirac
point (curve corresponding to �εD = 0.10 eV), where the
interaction width is lower and consequently the resonance
is sharper. Then, the bias potential applied, Vs > 0 V, shifts
and sharpen the resonance, which is seen as the narrow S
peak in the spectra when it crosses the Fermi level. On the
other hand, when the measurement is made at a higher EG

and for Vs < 0 V, the resonance now located above 0 eV will
be shifted towards lower energies until it crosses the Fermi
level. Considering the value EG = 0.15 eV in Fig. 10, the
peak located at Vs = 0.08 V when �εD = 0 eV will be shifted
towards lower values and broadened when the measure is done
at Vs < 0 V. Then, the related S peak, measured at Vs < 0 V
when the resonance crosses the Fermi level, will be wider than
the original peak, like the spectrum for �εD = −0.10 eV in
our calculation.

VII. CONCLUSIONS

We analyzed the multiorbital electronic correlation in a
Co atom adsorbed on graphene. From DFT calculations, we
obtained the adatom equilibrium position and orbital occu-
pations, which suggested that the more probable electronic
configurations of the Co adatom are those with total spin
S = 3/2 and S = 1. Then, we described the interacting system
by using the Anderson Hamiltonian in its ionic form, obtained
by projecting it in the selected space of atomic configurations.
The Green-Keldysh functions used to obtained the physical
quantities were solved using the Equation of Motion method.
This approach allowed a precise identification of the config-
urations and the fluctuations between them, which determine
the electronic structure of the system.

The Hamiltonian parameters were obtained by using the
bond-pair model, which allowed us to analyze the coupling
of the Co orbitals with the different graphene bands without
supercell effects and to determine the one particle energy

levels involved in the adsorbate spin and charge fluctuations.
It was observed the preferential coupling of the E1 orbitals
to the graphene π band and of the E2 orbitals to the π∗
band. In spite of the shared symmetry, the orbitals of each
symmetry group couples with different regions of the first
Brillouin zone, in correspondence with the geometry of the
orbitals. Naturally, the different couplings lead to a noninter-
acting hybridization function only dependent on the orbital
symmetry.

The calculations in the equilibrium situation were in agree-
ment with previous findings and allowed to elucidate some
aspects of the Co on graphene system. At the calculated
reference energy level positions, the system is in a mixed
valence regime, with a preferential occupation of the S =
3/2 configuration E1E1E2. When lowering the energy lev-
els, there is a transition to a ground state with a larger
weight of the S = 1 configurations, in which the two holes
are preferentially located in the E1 orbitals. In the oppo-
site case, when the ground state is mainly defined by the
S = 3/2 configurations, the predicted Kondo resonance only
appears in a doped graphene with an appreciable DOS at the
Fermi level.

The calculated spectral densities showed several reso-
nancelike peaks, related to the fluctuations between the dif-
ferent configurations. This many-body signature in the system
is a direct expression of the configurations with higher prob-
ability. It was observed a small peak in the spectral density
of the E1 orbitals, related to virtual fluctuations between the
A1E1E1 and A1E1 configurations, both with a low occur-
rence probability. This peak is absent when the configurations
with holes in the A1 orbital are not considered, showing the
importance of selecting an adequate space for projecting the
Anderson Hamiltonian.

The suppression of the main peak in the E1 spectral density
when lowering the energy levels, previously attributed to a
variation in the interaction width, was found to be instead
a phenomenon inherent to the multiorbital characteristic of
the system: the E1 orbitals are completely occupied, and the
fluctuations can only occur in the other orbitals. The marked
temperature dependence of the spectral densities is another
indication of electronic correlation effects. It was identified a
direct relation of the enhancement with the temperature of the
different peaks in the spectral densities with the increase in the
probability of the configurations involved in the fluctuations.

The differential conductance spectra given by a bias po-
tential applied to a Pt tip on top of the Co adatom were
calculated using the Keldysh formalism. Only the E1 orbitals
couple with both, the surface and the tip, and therefore can
contribute to the current measured in a STM experiment. The
peak related to fluctuations involving the low-probability con-
figurations A1E1E1 and A1E1 was related to resonancelike
features observed in the measured conductance spectra.
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APPENDIX A: GREEN FUNCTIONS CALCULATION

The required Green functions Gpq and Fpq of Eqs. (6) and (7) are calculated using the following expressions:

(ω − εd (p,q) − �pq(ω))Gpq(ω) = Opq + �pq(ω), (A1)

(ω − εd (p,q) − �∗
pq(ω))Fpq(ω) = �pq(ω)Gpq(ω) + ϒpq(ω). (A2)

The occupation term, Opq = 〈 3
2 〉

p
+ 〈1〉q, is calculated from the occurrence probabilities, given by

〈
3
2

〉
p = 1

π

∫ ∞

−∞
dωImG<

pq(ω), (A3)

〈1〉q = 1

π

∫ ∞

−∞
dωImG>

pq(ω). (A4)

Here, ImG≶
pq(ω) = 1

4 Im{Fpq(ω) ± 2Gpq(ω)} for the out-of-equilibrium situation. In equilibrium,

Fpq(ω) = 2i(2 f<(ω) − 1)ImGpq(ω), (A5)

and ImG≶
pq(ω) = f≶(ω)ImGpq(ω). The terms �pq and �pq can be expressed as

Xpq(ω) =
∑

ν

∑
q′∈p

X >
νd (p′q)(ω + εd (p′q) − εd (pq) ) + 4

3

∑
ν

∑
p′�q

X <
νd (p′q)(ω + εd (p′q) − εd (pq) ), (A6)

where X should be replaced by � and �, respectively. The index ν = t, s denotes the surface and tip sides in the out-of-
equilibrium case, and reduces to only the surface in equilibrium. The self-energy �

<[>]
νdi

and its out-of-equilibrium counterpart

�
<[>]
νd are given by

�
<[>]
νdi

(ω̃) =
∫ ∞

−∞
dε

fν<[>](ε)
0
νdi

(ε)

ω̃ − ε − iη
, (A7)

�
<[>]
νdi

(ω̃) = 2i(2 fν<(ω̃) − 1) fν<[>](ω̃)
0
νd (ω̃), (A8)

where the width 
0
νd (ω̃) is the imaginary part of the noninteracting self-energy of each side,

�0
νdi

(ω) =
∑

k

∣∣Vνkdi

∣∣2

ω − ενk − iη
. (A9)

In the derivation of Eq. (A6), the degeneracy in σ and M allows us to do the following sum:∑
σ ′

∣∣V pq
νkM ′σ ′

∣∣2 = Vνkd (p,q), (A10)

∑
σ ′

∣∣V pq
νk(M ′+σ ′ )σ ′

∣∣2 = 4

3
Vνkd (p,q), (A11)

where V pq
νkM ′σ ′ is given by Eq. (4). The result is independent of M ′, σ ′ and introduces the factors 1 and 4/3 of Eq. (A6).

In the derivation of the equations of motion, crossed atom-band terms with the form

CpqMσ

νkσ = 〈∣∣ 3
2 , M

〉
p
〈1, M − σ |q cνkσ 〉 (A12)

are obtained [38]. In equilibrium these terms are calculated as follows:

CpqMσ

νkσ = 1

π
V pq

νkMσ Im

{∫ ∞

−∞
dω′ fν<(ω′)

GMσ
pq (ω′)

ω′ − εk − iη

}
, (A13)

while for the out-of-equilibrium situation the expression is the following:

CpqMσ

νkσ = −i
1

4π
V pq

νkMσ

∫ ∞

−∞
dω′

(
F Mσ

pq (ω′) − (2 fν<(εk ) − 1)GMσ
pq (ω′)

)
ω′ − εk + iη

. (A14)

Again using degeneracy, we can express the contribution of these crossed atom-band terms, given by �pq and ϒpq in Eqs. (A1)
and (A2), as

Ypq(ω) =
∑

ν

∑
q′∈p

Y C
νp′q(ω + εd (p′q) − εd (pq) ) − 4

3

∑
ν

∑
p′�q

Y C
νp′q(ω + εd (p′q) − εd (pq) ), (A15)
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where Y should be replaced by � and ϒ , respectively. The terms �C
νp′q′ and ϒC

νp′q′ are given by

�C
νp′q′ (ω̃) = �A

νp′q′ (ω̃) + i�B
νp′q′ (ω̃), (A16)

ϒC
νp′q′ (ω̃) = 2i(2 fν<(ω̃) − 1)

(
Im�A

νp′q′ + iIm�B
νp′q′

)
, (A17)

with

�A
νp′q′ (ω̃) = + 1

π

∫ ∞

−∞
dω′ fν<(ω′)

ω′ − ω̃ + iη

(
�0

νd (p′q′ )(ω̃)ImGp′q′ (ω′) − Im
{
�0

νd (p′q′ )(ω
′)Gp′q′ (ω′)

})
(A18)

+ 1

4π

∫ ∞

−∞
dω′ 1

ω′ − ω̃ + iη

0

νd (p′q′ )(ω
′)ReFp′q′ (ω′)

+ 1

4π

∫ ∞

−∞
dω′ 1

ω′ − ω̃ + iη

(
�0

νd (p′q′ )(ω̃) − �0
νd (p′q′ )(ω

′)
)
(ImFp′q′ (ω′) − 2(2 f <

ν (ω′) − 1)ImGp′q′ (ω′)), (A19)

�B
νp′q′ (ω̃) = 1

4π

∫ ∞

−∞
dω′ 1

ω′ − ω̃ + iη

(
�0

νd (p′q′ )(ω
′) − �0

νd (p′q′ )(ω̃)
)
ReFp′q′ (ω′)

+ 1

4π

∫ ∞

−∞
dω′ 1

ω′ − ω̃ + iη

0

νd (p′q′ )(ω
′)(ImFp′q′ (ω′) − 2(2 f <

ν (ω′) − 1)ImGp′q′ (ω′)). (A20)

In equilibrium the term �A
νp′q′ reduces to only the first line, while �B

νp′q′ = 0.

APPENDIX B: TOTAL ENERGY CALCULATION

After the many body Hamiltonian that describes the atom-surface interacting system is written as a superposition of bond
pairs, all the parameters except the hopping terms are expanded up to a second order in the atomic overlap Sdiαs (recall that α

labels the orbitals of the s atom of the surface) [41,68]. The overlap expansion was successfully used with overlap values as large
as 0.7 [41]. The total energies are finally given by the expression

ES,p[q] =
∑
di,σ

〈
ndiσ

〉 (
εHFC

diσ,p[q] −
∑

s

VZsdi +
∑
α,s

(
J0

diαs 〈nαsσ̄ 〉 + J ′
diαs 〈nαsσ 〉) −

∑
α,s

SdiαsVαsdi + 1

4

∑
α,s

S2
diαs�Ediαs,p[q]

)
. (B1)

The short-range electron-nuclei interactions (VZsdi ) and the electron-electron direct (Jdiαs) and exchange (Jx
diαs) interactions

are included. We define J ′
diαs = Jdiαs − Jx

diαs. Both Jdiαs and J ′
diαs are also calculated up to a second order in Sdiαs. The terms with

superscript 0, as J0
diαs, correspond to the zero order in Sdiαs. In the last term of Eq. (B1), �Ediαs,p[q] is the difference between the

energies of the adatom and the surface atoms.
The orbital occupation 〈ndiσ 〉 corresponds to the occupation of the di orbital of the atom in the p[q] configuration. Similarly,

〈nαsσ 〉 corresponds to the average occupation of the atomic orbitals of the surface atoms. In addition, εHFC
diσ,p[q] is the Hartree-Fock

orbital energy εHF
diσ,p[q] corrected by double counting:

εHFC
diσ,p[q] = εHF

diσ,p[q] − 1

2
U 0

di
〈ndi σ̄ 〉 + 1

2

∑
d j �=di

(
J0

did j

〈
ndj σ̄

〉 + J ′
did j

〈
ndjσ

〉 )
, (B2)

being U 0
di

the Coulomb interaction in the same orbital di. See Ref. [41] for details on the method.

[1] W. Han, R. K. Kawakami, M. Gmitra, and J. Fabian, Nat.
Nanotechnol. 9, 794 (2014).

[2] B. Dlubak, M. B. Martin, C. Deranlot, B. Servet, S. Xavier, R.
Mattana, M. Sprinkle, C. Berger, W. A. De Heer, F. Petroff, A.
Anane, P. Seneor, and A. Fert, Nat. Phys. 8, 557 (2012).

[3] T. O. Wehling, A. I. Lichtenstein, and M. I. Katsnelson, Phys.
Rev. B 84, 235110 (2011).

[4] O. V. Yazyev and L. Helm, Phys. Rev. B 75, 125408 (2007).
[5] J. Ren, H. Guo, J. Pan, Y. Y. Zhang, X. Wu, H. G. Luo,

S. Du, S. T. Pantelides, and H. J. Gao, Nano Lett. 14, 4011
(2014).

[6] F. Donati, Q. Dubout, G. Autès, F. Patthey, F. Calleja, P.
Gambardella, O. V. Yazyev, and H. Brune, Phys. Rev. Lett. 111,
236801 (2013).

[7] D. Pesin and A. H. MacDonald, Nat. Mater. 11, 409 (2012).
[8] D. Jacob and G. Kotliar, Phys. Rev. B 82, 085423 (2010).
[9] A. C. Hewson, The Kondo Problem to Heavy Fermions (Cam-

bridge University Press, Cambridge, UK, 1993).
[10] J. C. Cuevas and E. Scheer, Molecular Electronics (World

Scientific, Singapore, 2010).
[11] R. Mozara, M. Valentyuk, I. Krivenko, E. Sasioglu, J. Kolorenc,

and A. I. Lichtenstein, Phys. Rev. B 97, 085133 (2018).

125419-16

https://doi.org/10.1038/nnano.2014.214
https://doi.org/10.1038/nnano.2014.214
https://doi.org/10.1038/nnano.2014.214
https://doi.org/10.1038/nnano.2014.214
https://doi.org/10.1038/nphys2331
https://doi.org/10.1038/nphys2331
https://doi.org/10.1038/nphys2331
https://doi.org/10.1038/nphys2331
https://doi.org/10.1103/PhysRevB.84.235110
https://doi.org/10.1103/PhysRevB.84.235110
https://doi.org/10.1103/PhysRevB.84.235110
https://doi.org/10.1103/PhysRevB.84.235110
https://doi.org/10.1103/PhysRevB.75.125408
https://doi.org/10.1103/PhysRevB.75.125408
https://doi.org/10.1103/PhysRevB.75.125408
https://doi.org/10.1103/PhysRevB.75.125408
https://doi.org/10.1021/nl501425n
https://doi.org/10.1021/nl501425n
https://doi.org/10.1021/nl501425n
https://doi.org/10.1021/nl501425n
https://doi.org/10.1103/PhysRevLett.111.236801
https://doi.org/10.1103/PhysRevLett.111.236801
https://doi.org/10.1103/PhysRevLett.111.236801
https://doi.org/10.1103/PhysRevLett.111.236801
https://doi.org/10.1038/nmat3305
https://doi.org/10.1038/nmat3305
https://doi.org/10.1038/nmat3305
https://doi.org/10.1038/nmat3305
https://doi.org/10.1103/PhysRevB.82.085423
https://doi.org/10.1103/PhysRevB.82.085423
https://doi.org/10.1103/PhysRevB.82.085423
https://doi.org/10.1103/PhysRevB.82.085423
https://doi.org/10.1103/PhysRevB.97.085133
https://doi.org/10.1103/PhysRevB.97.085133
https://doi.org/10.1103/PhysRevB.97.085133
https://doi.org/10.1103/PhysRevB.97.085133


MULTIORBITAL ELECTRONIC CORRELATION EFFECTS … PHYSICAL REVIEW B 101, 125419 (2020)

[12] T. O. Wehling, A. V. Balatsky, M. I. Katsnelson, A. I.
Lichtenstein, and A. Rosch, Phys. Rev. B 81, 115427 (2010).

[13] A. Saffarzadeh and G. Kirczenow, Phys. Rev. B 85, 245429
(2012).

[14] K. T. Chan, H. Lee, and M. L. Cohen, Phys. Rev. B 83, 035405
(2011).

[15] A. N. Rudenko, F. J. Keil, M. I. Katsnelson, and A. I.
Lichtenstein, Phys. Rev. B 86, 075422 (2012).

[16] Y. Virgus, W. Purwanto, H. Krakauer, and S. Zhang, Phys. Rev.
Lett. 113, 175502 (2014).

[17] Y. Virgus, W. Purwanto, H. Krakauer, and S. Zhang, Phys. Rev.
B 86, 241406(R) (2012).

[18] V. W. Brar, R. Decker, H. M. Solowan, Y. Wang, L. Maserati,
K. T. Chan, H. Lee, Ã. O. Girit, A. Zettl, S. G. Louie, M. L.
Cohen, and M. F. Crommie, Nat. Phys. 7, 43 (2011).

[19] T. O. Wehling, H. P. Dahal, A. I. Lichtenstein, M. I. Katsnelson,
H. C. Manoharan, and A. V. Balatsky, Phys. Rev. B 81, 085413
(2010).

[20] Y. Yagi, T. M. Briere, M. H. F. Sluiter, V. Kumar, A. A. Farajian,
and Y. Kawazoe, Phys. Rev. B 69, 075414 (2004).

[21] L. Hu, X. Hu, X. Wu, C. Du, Y. Dai, and J. Deng, Phys. B:
Condens. Matter 405, 3337 (2010).

[22] A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B
52, R5467 (1995).

[23] P. W. Anderson, Phys. Rev. 124, 41 (1961).
[24] K. G. Wilson and J. Kogut, Phys. Rep. 12, 75 (1974).
[25] R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys. 80, 395

(2008).
[26] M. Caffarel and W. Krauth, Phys. Rev. Lett. 72, 1545 (1994).
[27] P. Coleman, Phys. Rev. B 29, 3035 (1984).
[28] K. Haule, S. Kirchner, J. Kroha, and P. Wölfle, Phys. Rev. B 64,

155111 (2001).
[29] D. Jacob, K. Haule, and G. Kotliar, Phys. Rev. Lett. 103, 016803

(2009).
[30] C. Lacroix, J. Phys. F: Met. Phys. 11, 2389 (2000).
[31] K. Kang and B. I. Min, Phys. Rev. B 52, 10689 (1995).
[32] E. C. Goldberg, F. Flores, and R. C. Monreal, Phys. Rev. B 71,

035112 (2005).
[33] Q. Feng, Y. Z. Zhang, and H. O. Jeschke, Phys. Rev. B 79,

235112 (2009).
[34] Q. Feng and P. M. Oppeneer, Phys. Rev. B 86, 035107 (2012).
[35] Y. Meir, N. S. Wingreen, and P. A. Lee, Phys. Rev. Lett. 70,

2601 (1993).
[36] L. L. Hirst, Adv. Phys. 27, 231 (1978).
[37] L. V. Keldysh, J. Exp. Theor. Phys. 20, 1018 (1965).
[38] M. A. Romero, F. Flores, and E. C. Goldberg, Phys. Rev. B 80,

235427 (2009).
[39] E. C. Goldberg and F. Flores, J. Phys.: Condens. Matter 25,

225001 (2013).
[40] E. C. Goldberg and F. Flores, Phys. Rev. B 96, 115439

(2017).
[41] P. G. Bolcatto, E. C. Goldberg, and M. C. G. Passeggi, Phys.

Rev. B 58, 5007 (1998).

[42] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O.
Parcollet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865 (2006).

[43] B. Surer, M. Troyer, P. Werner, T. O. Wehling, A. M. Läuchli,
A. Wilhelm, and A. I. Lichtenstein, Phys. Rev. B 85, 085114
(2012).

[44] P. J. Feibelman, Phys. Rev. B 35, 2626 (1987).
[45] C. Verdozzi, P. A. Schultz, R. Wu, A. H. Edwards, and N.

Kioussis, Phys. Rev. B 66, 125408 (2002).
[46] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
[47] J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78,

1396 (1997).
[48] S. G. Ovchinnikov and V. V. Val’kov, Hubbard Operators in

the Theory of Strongly Correlated Electrons (Imperial College
Press, London, UK, 2004).

[49] F. Bonetto, C. Gonzalez, and E. C. Goldberg, Phys. Rev. B 93,
195439 (2016).

[50] S. Huzinaga, J. Chem. Phys. 42, 1293 (1965).
[51] S. Huzinaga, J. Andzelm, M. Klobukowsky, E. Radzio-

Andzelm, Y. Sakai, and H. Tatewaki, Gaussian Basis Set for
Molecular Calculations (Elsevier, Amsterdam, 1984).

[52] J. W. Rabalais, Principles and Applications of Ion Scattering
Spectrometry (Wiley-Interscience, New Jersey, 2003).

[53] P. P. Baruselli, R. Requist, A. Smogunov, M. Fabrizio, and E.
Tosatti, Phys. Rev. B 92, 045119 (2015).

[54] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[55] V. M. Silkin, J. Zhao, F. Guinea, E. V. Chulkov, P. M.

Echenique, and H. Petek, Phys. Rev. B 80, 121408(R) (2009).
[56] F. Bonetto, M. A. Romero, E. A. García, R. A. Vidal, J. Ferrón,

and E. C. Goldberg, Phys. Rev. B 78, 075422 (2008).
[57] A. Radzig and B. Smirnov, Reference Data on Atoms,

Molecules, and Ions (Springer, Berlin, Germany, 1985).
[58] K. Xu, C. Zeng, Q. Zhang, R. Yan, P. Ye, K. Wang, A. C.

Seabaugh, H. G. Xing, J. S. Suehle, C. A. Richter, D. J.
Gundlach, and N. V. Nguyen, Nano Lett. 13, 131 (2013).

[59] S.-J. Liang and L. K. Ang, Phys. Rev. Appl. 3, 014002 (2015).
[60] N. Grewe, T. Jabben, and S. Schmitt, Eur. Phys. J. B 68, 23

(2009).
[61] F. Flores and E. C. Goldberg, J. Phys.: Condens. Matter 29,

055602 (2017).
[62] F. Liu, M. Wang, Y. Chen, and J. Gao, J. Solid State Chem. 276,

100 (2019).
[63] A. E. Galashev and O. R. Rakhmanova, Phys. Usp. 57, 970

(2014).
[64] A.-P. Jauho, N. S. Wingreen, and Y. Meir, Phys. Rev. B 50, 5528

(1994).
[65] J. M. Blanco, C. Gonzalez, P. Jelinek, J. Ortega, F. Flores, and

R. Perez, Phys. Rev. B 70, 085405 (2004).
[66] Y. Meir, N. S. Wingreen, and P. A. Lee, Phys. Rev. Lett. 66,

3048 (1991).
[67] Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).
[68] J. O. Lugo, L. I. Vergara, P. G. Bolcatto, and E. C. Goldberg,

Phys. Rev. A 65, 022503 (2002).

125419-17

https://doi.org/10.1103/PhysRevB.81.115427
https://doi.org/10.1103/PhysRevB.81.115427
https://doi.org/10.1103/PhysRevB.81.115427
https://doi.org/10.1103/PhysRevB.81.115427
https://doi.org/10.1103/PhysRevB.85.245429
https://doi.org/10.1103/PhysRevB.85.245429
https://doi.org/10.1103/PhysRevB.85.245429
https://doi.org/10.1103/PhysRevB.85.245429
https://doi.org/10.1103/PhysRevB.83.035405
https://doi.org/10.1103/PhysRevB.83.035405
https://doi.org/10.1103/PhysRevB.83.035405
https://doi.org/10.1103/PhysRevB.83.035405
https://doi.org/10.1103/PhysRevB.86.075422
https://doi.org/10.1103/PhysRevB.86.075422
https://doi.org/10.1103/PhysRevB.86.075422
https://doi.org/10.1103/PhysRevB.86.075422
https://doi.org/10.1103/PhysRevLett.113.175502
https://doi.org/10.1103/PhysRevLett.113.175502
https://doi.org/10.1103/PhysRevLett.113.175502
https://doi.org/10.1103/PhysRevLett.113.175502
https://doi.org/10.1103/PhysRevB.86.241406
https://doi.org/10.1103/PhysRevB.86.241406
https://doi.org/10.1103/PhysRevB.86.241406
https://doi.org/10.1103/PhysRevB.86.241406
https://doi.org/10.1038/nphys1807
https://doi.org/10.1038/nphys1807
https://doi.org/10.1038/nphys1807
https://doi.org/10.1038/nphys1807
https://doi.org/10.1103/PhysRevB.81.085413
https://doi.org/10.1103/PhysRevB.81.085413
https://doi.org/10.1103/PhysRevB.81.085413
https://doi.org/10.1103/PhysRevB.81.085413
https://doi.org/10.1103/PhysRevB.69.075414
https://doi.org/10.1103/PhysRevB.69.075414
https://doi.org/10.1103/PhysRevB.69.075414
https://doi.org/10.1103/PhysRevB.69.075414
https://doi.org/10.1016/j.physb.2010.05.001
https://doi.org/10.1016/j.physb.2010.05.001
https://doi.org/10.1016/j.physb.2010.05.001
https://doi.org/10.1016/j.physb.2010.05.001
https://doi.org/10.1103/PhysRevB.52.R5467
https://doi.org/10.1103/PhysRevB.52.R5467
https://doi.org/10.1103/PhysRevB.52.R5467
https://doi.org/10.1103/PhysRevB.52.R5467
https://doi.org/10.1103/PhysRev.124.41
https://doi.org/10.1103/PhysRev.124.41
https://doi.org/10.1103/PhysRev.124.41
https://doi.org/10.1103/PhysRev.124.41
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1103/RevModPhys.80.395
https://doi.org/10.1103/RevModPhys.80.395
https://doi.org/10.1103/RevModPhys.80.395
https://doi.org/10.1103/RevModPhys.80.395
https://doi.org/10.1103/PhysRevLett.72.1545
https://doi.org/10.1103/PhysRevLett.72.1545
https://doi.org/10.1103/PhysRevLett.72.1545
https://doi.org/10.1103/PhysRevLett.72.1545
https://doi.org/10.1103/PhysRevB.29.3035
https://doi.org/10.1103/PhysRevB.29.3035
https://doi.org/10.1103/PhysRevB.29.3035
https://doi.org/10.1103/PhysRevB.29.3035
https://doi.org/10.1103/PhysRevB.64.155111
https://doi.org/10.1103/PhysRevB.64.155111
https://doi.org/10.1103/PhysRevB.64.155111
https://doi.org/10.1103/PhysRevB.64.155111
https://doi.org/10.1103/PhysRevLett.103.016803
https://doi.org/10.1103/PhysRevLett.103.016803
https://doi.org/10.1103/PhysRevLett.103.016803
https://doi.org/10.1103/PhysRevLett.103.016803
https://doi.org/10.1088/0305-4608/11/11/020
https://doi.org/10.1088/0305-4608/11/11/020
https://doi.org/10.1088/0305-4608/11/11/020
https://doi.org/10.1088/0305-4608/11/11/020
https://doi.org/10.1103/PhysRevB.52.10689
https://doi.org/10.1103/PhysRevB.52.10689
https://doi.org/10.1103/PhysRevB.52.10689
https://doi.org/10.1103/PhysRevB.52.10689
https://doi.org/10.1103/PhysRevB.71.035112
https://doi.org/10.1103/PhysRevB.71.035112
https://doi.org/10.1103/PhysRevB.71.035112
https://doi.org/10.1103/PhysRevB.71.035112
https://doi.org/10.1103/PhysRevB.79.235112
https://doi.org/10.1103/PhysRevB.79.235112
https://doi.org/10.1103/PhysRevB.79.235112
https://doi.org/10.1103/PhysRevB.79.235112
https://doi.org/10.1103/PhysRevB.86.035107
https://doi.org/10.1103/PhysRevB.86.035107
https://doi.org/10.1103/PhysRevB.86.035107
https://doi.org/10.1103/PhysRevB.86.035107
https://doi.org/10.1103/PhysRevLett.70.2601
https://doi.org/10.1103/PhysRevLett.70.2601
https://doi.org/10.1103/PhysRevLett.70.2601
https://doi.org/10.1103/PhysRevLett.70.2601
https://doi.org/10.1080/00018737800101374
https://doi.org/10.1080/00018737800101374
https://doi.org/10.1080/00018737800101374
https://doi.org/10.1080/00018737800101374
https://doi.org/10.1103/PhysRevB.80.235427
https://doi.org/10.1103/PhysRevB.80.235427
https://doi.org/10.1103/PhysRevB.80.235427
https://doi.org/10.1103/PhysRevB.80.235427
https://doi.org/10.1088/0953-8984/25/22/225001
https://doi.org/10.1088/0953-8984/25/22/225001
https://doi.org/10.1088/0953-8984/25/22/225001
https://doi.org/10.1088/0953-8984/25/22/225001
https://doi.org/10.1103/PhysRevB.96.115439
https://doi.org/10.1103/PhysRevB.96.115439
https://doi.org/10.1103/PhysRevB.96.115439
https://doi.org/10.1103/PhysRevB.96.115439
https://doi.org/10.1103/PhysRevB.58.5007
https://doi.org/10.1103/PhysRevB.58.5007
https://doi.org/10.1103/PhysRevB.58.5007
https://doi.org/10.1103/PhysRevB.58.5007
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/RevModPhys.78.865
https://doi.org/10.1103/PhysRevB.85.085114
https://doi.org/10.1103/PhysRevB.85.085114
https://doi.org/10.1103/PhysRevB.85.085114
https://doi.org/10.1103/PhysRevB.85.085114
https://doi.org/10.1103/PhysRevB.35.2626
https://doi.org/10.1103/PhysRevB.35.2626
https://doi.org/10.1103/PhysRevB.35.2626
https://doi.org/10.1103/PhysRevB.35.2626
https://doi.org/10.1103/PhysRevB.66.125408
https://doi.org/10.1103/PhysRevB.66.125408
https://doi.org/10.1103/PhysRevB.66.125408
https://doi.org/10.1103/PhysRevB.66.125408
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.78.1396
https://doi.org/10.1103/PhysRevLett.78.1396
https://doi.org/10.1103/PhysRevLett.78.1396
https://doi.org/10.1103/PhysRevLett.78.1396
https://doi.org/10.1103/PhysRevB.93.195439
https://doi.org/10.1103/PhysRevB.93.195439
https://doi.org/10.1103/PhysRevB.93.195439
https://doi.org/10.1103/PhysRevB.93.195439
https://doi.org/10.1063/1.1696113
https://doi.org/10.1063/1.1696113
https://doi.org/10.1063/1.1696113
https://doi.org/10.1063/1.1696113
https://doi.org/10.1103/PhysRevB.92.045119
https://doi.org/10.1103/PhysRevB.92.045119
https://doi.org/10.1103/PhysRevB.92.045119
https://doi.org/10.1103/PhysRevB.92.045119
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRevB.80.121408
https://doi.org/10.1103/PhysRevB.80.121408
https://doi.org/10.1103/PhysRevB.80.121408
https://doi.org/10.1103/PhysRevB.80.121408
https://doi.org/10.1103/PhysRevB.78.075422
https://doi.org/10.1103/PhysRevB.78.075422
https://doi.org/10.1103/PhysRevB.78.075422
https://doi.org/10.1103/PhysRevB.78.075422
https://doi.org/10.1021/nl303669w
https://doi.org/10.1021/nl303669w
https://doi.org/10.1021/nl303669w
https://doi.org/10.1021/nl303669w
https://doi.org/10.1103/PhysRevApplied.3.014002
https://doi.org/10.1103/PhysRevApplied.3.014002
https://doi.org/10.1103/PhysRevApplied.3.014002
https://doi.org/10.1103/PhysRevApplied.3.014002
https://doi.org/10.1140/epjb/e2009-00064-0
https://doi.org/10.1140/epjb/e2009-00064-0
https://doi.org/10.1140/epjb/e2009-00064-0
https://doi.org/10.1140/epjb/e2009-00064-0
https://doi.org/10.1088/1361-648X/aa4dda
https://doi.org/10.1088/1361-648X/aa4dda
https://doi.org/10.1088/1361-648X/aa4dda
https://doi.org/10.1088/1361-648X/aa4dda
https://doi.org/10.1016/j.jssc.2019.04.008
https://doi.org/10.1016/j.jssc.2019.04.008
https://doi.org/10.1016/j.jssc.2019.04.008
https://doi.org/10.1016/j.jssc.2019.04.008
https://doi.org/10.3367/UFNe.0184.201410c.1045
https://doi.org/10.3367/UFNe.0184.201410c.1045
https://doi.org/10.3367/UFNe.0184.201410c.1045
https://doi.org/10.3367/UFNe.0184.201410c.1045
https://doi.org/10.1103/PhysRevB.50.5528
https://doi.org/10.1103/PhysRevB.50.5528
https://doi.org/10.1103/PhysRevB.50.5528
https://doi.org/10.1103/PhysRevB.50.5528
https://doi.org/10.1103/PhysRevB.70.085405
https://doi.org/10.1103/PhysRevB.70.085405
https://doi.org/10.1103/PhysRevB.70.085405
https://doi.org/10.1103/PhysRevB.70.085405
https://doi.org/10.1103/PhysRevLett.66.3048
https://doi.org/10.1103/PhysRevLett.66.3048
https://doi.org/10.1103/PhysRevLett.66.3048
https://doi.org/10.1103/PhysRevLett.66.3048
https://doi.org/10.1103/PhysRevLett.68.2512
https://doi.org/10.1103/PhysRevLett.68.2512
https://doi.org/10.1103/PhysRevLett.68.2512
https://doi.org/10.1103/PhysRevLett.68.2512
https://doi.org/10.1103/PhysRevA.65.022503
https://doi.org/10.1103/PhysRevA.65.022503
https://doi.org/10.1103/PhysRevA.65.022503
https://doi.org/10.1103/PhysRevA.65.022503

