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Abstract

We prove the almost sure convergence in the sense of Schwartz distributions of certain random series.
This result is useful to construct some type of fractional random fields. These series resemble the
Karhunen—Loéve expansions.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Stochastic fields with 1/f spectral behavior, first introduced by Kolmogorov in the context of
turbulent flows, have numerous applications in engineering, general science and whenever strong
long-range (long memory) dependence (LRD) phenomena appear.
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A long memory process or field X(x) with spectral density ®@y(w) (Section 3.1) verifies
the following spectral condition (see Beran, 1994, Reed et al., 1995): there exist f and c¢f
such that

Dy (w)
ol = (1)
w— Cf|(U|

As some authors have pointed out (Medina and Cernuschi Frias, 2002; Bojdecki and Gorostiza,
1999) this suggests looking for a relation between these processes and certain fractional
integration differencing operators (see Egs. (19), (20)). Considering these processes not as point
processes but as random elements in a space of distributions (in the Schwartz sense), we provide a
method to construct a series which converges a.s. to a generalized fractional random field, that is,
in the weak-* topology of the dual space of an appropriate linear vector space. The natural space
is Z(RY). In particular, it is useful to obtain random fields which show LRD or more generally
with spectral density of the form

Dy(w) =1+ o) 7o™ yeRsp, 0<a<d/2. ®)

Processes of this type are sometimes considered as solutions of the d-dimensional fractional order
differential equation:

(I — A2 (=AY X =1, (3)

where 7 is white noise and A denotes the Laplacian operator. Here we construct series such that
given {¢,}, a set of independent, identically distributed random variables, then if {g;}, is a set of
appropriate functions, then

o0
Z él’lgﬂ = X’
n

where X verifies condition (2) and the convergence is a.s. in the sense of Schwartz distributions.
The general discussion follows some of the ideas developed in Angulo and Ruiz-Medina (1997),
Medina and Cernuschi Frias (2002) and Yves Meyer et al. (1999).

This work is organized as follows: first we give some definitions and auxiliary results
(Section 2), and finally in Section 3 we describe a general method to construct a random series
which converges (a.s.) to a generalized random field with a prescribed covariance structure
(Theorem 3.1). This result which is interesting on its own, combined with some results on
fractional integration, is in particular very useful for constructing a series which converges to a
random field with spectral density as (2) (Theorem 3.3).

2. Some definitions and auxiliary results

Remark. In the following, if x € CY (d>1) we will denote its usual norm by |x| and
Supp(f) = Cl{x : f(x)#0}.

The Schwartz class of functions #(R?) is defined as the linear space of smooth functions
rapidly decreasing at infinity, together with its derivatives. This means that ¢ € %(R?) whenever
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¢ € C®°(RY) and
d
10 0
sup [ bl —5+

— e — P(x1,. .., Xg)| <00 Vo, ;€N
(X1se) R i oxl' o o

endowed with its usual topology. We will denote by Z(R?) the space of functions which are in
C*(R?) and have compact support. Both spaces are topological vector spaces (Stein and Weiss,
1970), and their duals are denoted as %'(R?) (tempered distributions) and Z'(R?) (distributions),
respectively. Clearly, Z(RY) c #(R?) and then %' (RY) c Z'(RY).

2.1. Fourier transforms
The Fourier transform f of f € #(R) is defined as
F(o) =F@) = [ e ax

from this # can be defined, as usual as a linear map % : L'(RY)—C ¢([R2d), or as an isometry on
L*(RY) and by duality over the class of tempered distributions, that is, # : &'(RY)— %' (R?).

Definition 1. The Sobolev spaces H* (Calderon, 1976) are defined as

H'(RY) = {f e Y (RY): / (@)A1 + o>’ da)<oo}. 4)
Rd
2.1.1. Remark
Let s € R, then H*(R?) is a Hilbert space with the product (.,.); : H*(R?) x H*(R%)—~C
(o = [ H)1 +0P) do. “

Definition 2. For f, g € 2(R?) we define the pairing (.,.) : Z(R?) x Z(RY)—>R as

o) = [ 190,

This can be extended by a density argument over I” x L7, 1/p+ 1/q = 1 (when p = 2 this is the
usual inner product) or H® x H™.

Definition 3. Let V and W be two R(C) vectorial spaces. Then the vectorial space of all bounded
linear mappings with domain in V and range in W is denoted by £(V, W).

2.2. Generalized stochastic processes

In the following (2, % ,P) will denote a probability space. A generalized stochastic process
is a random element in Z'(R?) (or in %/(RY)). This means that if we Q and ¢ € #(RY)
then a generalized stochastic process X(x) is defined by the random variable X(¢): Q—R
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(Rozanov, 1969):
X(0) = Yoo = [ X

where the last equality may be only formal. The covariance functional is defined by the bilinear
form I' : Z2(R?) x 2(R)—~R

I'y(u,v) = EX(1) X (v).

If I'y(u,v) can be written as I y(u,v) = (u, R+*v) where R(x) may be a generalized
function, sometimes, it informally as E[X(x)X(x")] = R(x — x'). For example, if X'(x) is the white
noise R(x) = d(x) in the sense of (J,u) = u(0), then I'(u,v) = [ u(x)v(x)dx for all u and v in
Z(RY). If Rg&”’(ﬂ%"), it is also possible to define the spectral density of the process as
Oy =FR=R.

The following result will be useful.

Theorem 2.1 (Variant of the Shannon—Kotoélnikov theorem). If f € L*(R?) is such that Supp(f) C
[— 40, Ao]? with Jo< 1/2, then there exists 0 € S (RY) such that

f@)=Y" fo(e — k). (6)
kez?
Proof. Let f (x) =D repif (x + k) be the periodization of f. The identification ]7 with the torus
~ ~ . . 2 Tdy ~
verifies € LA(T?) € L\(TY), and, if f~3, coare™ 2%, then limj 00 3y, axe~ 20k 7L

f and
in L'(TY) for a suitable domain D; ¢ RY. Now, we can take 0(x) € #(R?) such that

/é 1: |CL),‘|</10
@=90, Joil=1- 0,

and define S;(x) = ﬁ(x)zke D, are~>™%% On the other hand f = fé; then, it is easy to show that
lim o0 IS — f 1l 1 g, = 0. This implies lim;_. o Sup,,cpe[Si(w) — f(@)| = 0, but (see Stein and
Weiss, 1970) ax = f(k). Then

Si@) =Y [ - k).

kED;’
Then (6) follows immediately from this. [

Now, we can prove the following proposition, which is an easily extended d-dimensional
version of a result of Yves Meyer et al. (1999).
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Proposition 2.1. Let f € L*(RY) be with the same hypotheses of the previous theorem. Then

1/2
|V'||HX<K(s)<Z )1+ |k|2)S> :

kez?

Proof. Recall Peetre’s inequality (1 + (a + b)*)* <2"I(1 + a®)*!(1 + b*)*, and by Theorem 2.1 we
have

2
Rd Rd

kez!
<[ Y i@y dedo
kez? kez?

where v (w) = |0(w — k)|'/* and
() = [FION(L+ [KI)2292(1 + o] — [kI2)H/10(e0 — k)2
Since 0(x) € #(R?) we have C =", 4 v3(®) = 374 |0(w — k)| <00 and
K2 = [ (140l = K106 0l do
< R(}(l + o — k10w — k)| do < co.

Then,

/R V@FP(+ 0P) do<CK() Y (FPA+IKPY. O

kez?

2.3. Some auxiliary results on a.s. convergence

The following mimic a celebrated theorem of Kolmogorov about the convergence of sums of
independent random variables, but here we need a version for random elements (for a definition
of random element see Taylor, 1978) in a Hilbert space (Kahane, 1985).

Theorem 2.2. Let {&) be a sequence of independent random variables in L*(Q, 7 ,P) such that
E¢ =0 and {f,} is a sequence in H a Hilbert space. If

> EIELIS 7 < o0, (7
n=1

then S, converges in H a.s., where X = &f , and Sy, = >3 X .

S, are well-defined random elements in H as a consequence of Lemma 2.1.5 or 2.1.1 by Taylor
(1978).
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2.3.1. A basic result

In finite measure spaces there is a basic relationship between almost everywhere (almost sure)
convergence and convergence in norm (mean convergence) (Billingsley, 1968, 1994). For this
purpose we need the following definition.

Definition 4. Let {£,}, be a sequence of random variables. We say that {&,}, is uniformly
integrable if

lim sup / |E,|dP = 0. (®)
{1€a1>0}

oA—> 00 n

Then the following can be proved (Billingsley, 1968, 1994).

Theorem 2.3. Let p=1 and {&,}, C LF(Q,F,P) be a sequence, such that ¢,— & a.s. as n—00.
Then, E|&, — &P —0 when n—> o0 <= {|&,|'},, is uniformly integrable.

It is easy to prove that a sufficient condition for {£,}, to be uniformly integrable is
Je>0, K >0 such that E|¢,|'"* <K Vn. )

3. Main results

In this section we will prove in Theorem 3.1 that given T € L(L*(R%), L”(R?) it is possible to
construct a series which converges almost surely to a generalized random field, namely X, with
covariance functional I'y(¢,y) = (¢, T o T*y) with ¢, ¥ € Z(R?). This result will be used in
Section 3.1, Theorem 3.3 to construct a generalized fractional random field.

In the following 7 will denote any o-algebra on Q for which the family {¢,f,}, is measurable
considering the g-algebra B(Z'(R?)). {f .1, and {&,}, are as above.

Theorem 3.1. Let {&,},en C LY(Q,F,P) be a sequence of independent identically distributed
random variables such that EC, =0 . If {f,},en is an orthonormal basis of L*(RY) and T e
LLHRY), LP(RY)) with p=1, then:

n=0

converges to a generalized process a.s.
(I) The covariance functional of X, I'y : Z(RY) x Z(R)—R is ['x($, ) = (¢, T o T*Y).
(I11) Given ¢ € Z(RY), then

X(p) = i ENTS,, @) in the LX(Q, 7 ,P) sense. (11)
n=0

Proof (Part I). Let {Q,}, be a denumerable family of disjoint cubes such that by some translation
7, equals (—1/2, 1/2]? and RY = |_|pr. Then by Proposition 2.1,

kez¢

1/2
(T Do, | s < K(s) (Z (T )1, ()%, (1 + |k|2)S> ,
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with
(TS, )lQ (0| = K(1f, )lQ er)| and e = e 1 Si-1/2,1/21
Then,

Z 1T g, 117 < Z K(s) 3" (T )10, ()P + [KP)'.
kez!
Taking s = —d, and since e, € L”(R%), 1/p+1/p' =1 and Supp((7f,)1g,) = Supp(ex), the last
term equals

> K1+ k)™ Z (Tf 1o, el

kez?
= > K1+ kP “’Z [ T e) P < D K+ k1) T e}
kez? kezd
<D KOO+ kK el <K” / (1 1x) ™ dx|Q, 7 < 0. (12)
kez? :

Since {&,},en are independent random variables for which we can assume, without loss of
generality, E|£,|> = 1, then

S RGP ), 130 = D (T g, 1170 <oo.

By Theorem 2.2 and Remark 2.1.1 we have |}, in(Tf N, |l y-« <00 a.s. But convergence in
H~? ~ (H%* implies convergence in %' (R?) c Z'(RY).

(Part IN.If X : Q— Z'(R%) is the limit field, then its covariance is I'x(¢, V) = EX(¢)X (). This
is well defined since X (¢) is a random variable as a consequence of Lemma 2.2.1 in Taylor (1978),
since ¢ is Borel-measurable and X is % -measurable as a consequence of Lemma 2.1.3 in Taylor
(1978, p. 22), since X,, = Y 1o &, Tf ,, is F -measurable (Taylor, 1978, Lemma 2.1.5, p. 24).

In order to prove that EX,,(¢)X,,,(y)—EX(P)XW) = (¢, T o T*y) when m—>o0, with
b,y € 2(RY), first we prove the uniform integrability of the sequence {X,(¢)X,,(})},,. This
result will follow if we find £>0, K> 0 such that

E[X($)X ()" <K Vim. (13)
Given ¢ € 2(RY) let us call ¢,, = (Tf s @) = (f 1 T*®), ¢c:=(ci),, € RV; then
E[ X () = E( > c,-c,-ckc,é,-é,-ék@),
ijkl=0

but, since the ¢, are independent, we have the following factorization: d;;.;:=E(;{;¢r &) =
E(E)E(EEkE) =0 whenever i#j,k,l. From this fact and since the ¢, are identically
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distributed, we get

(E|)?)>  whenever two pairs of indexes are equal,
djjpr = E& 4 ifi=j=k=1I,
0 whenever only one index differs from the others.

From this,

m

EX, (@) =D dEIGIT+3 ) dgEG )
i=0

ij=0 i#j
<SEIG I~ IT Gl gy + 31T Dl 0, (14)
<SEIE e+ DITH MNP g, <00 (15)

Now, since E|X ()X mW)><EIX m( @)D > E|Xn())H"? and from (14) condition (13) is
verified for ¢ = 1=EX,,($) X;u(y)—EX(9)X () = I'x(¢, ) when m—>oc.

Let us prove that I'y(¢,¥) = (¢, T o T*Y). Given m, let us define the bilinear form I, :
(R x Z(RY)—R as follows:

Let kp(x,p) =i _o E&GE TS () Tf (»), and for ¢,y € Z(R?), define
Fan = [ [ koo dsdy

Since {¢,},cn 1s @ sequence of independent random variables with Var(£,) = 1 and E[&,] = 0, then
E¢, &, = dum. From this it follows that k,,(x,y) = >/, Tf 1(x)If (). Hence,

Fm((bs W) = /[Red <Z /Rd Tfk(X)lp(X) defk(y)> ¢(y) dy
k=0
-/ T(; | o dxfk(w) P dy

= /Rd (Z /Rdfk(X)TW(x) dek(y)> T*$(y)dy. 16)
k=0

Then, if P, € #(L*(R?) is the orthogonal projection over Span{f,....f,,}, (16) equals
(P o T, T*¢>L2(Rd), and since the {f,}, is complete, given £>0, there exists M(e) € N such
that || Py, 0 T*¢ — Tl 2 <e/IIT*Yll ;2 if m=>M. On the other hand, (¢, T o T*Y) = (T*¢, T*Y),
and from these facts, taking for example m > M(¢), it follows that

|<¢a To T*l//> - Fm((:ba l//)l = |<T*¢’ T*lﬁ) —(Py 0 T*(Z)v T*¢>|
=PuoT"¢—T¢, TY)|
SIT YN pllPro T — T*¢l 2 <e. (17)

(Part III). From Egs. (14), (15), given ¢ € Z(R?) we have that {|X,(¢)*}, is uniformly
integrable, since condition (9) is verified for ¢ = 2. Since X ,(¢)—> X (¢) a.s. from Part I, then from
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Theorem 2.3 we have

lim E|X,(p) - X(p)? =0. O

3.1. Some consequences and applications: Construction of a fractional random field

We will need the following well-known result:

Theorem 3.2. Let T € L(LP(RY), LY(RY)); if T conmute with translations then there exists a unique
tempered distribution p such that for every f € #(RY): Tf = uxf.

Then, from the above theorem and the definition of Fourier transform of a distribution, we
have the following immediate and intuitive result on the covariance functional of the limit process
X of Proposition 3.1: if T is translation invariant (conmute with translations) and u € %/(R?) is
the distribution of Theorem 3.2, then

Fx@) = [ 4 )P do. (18)

Moreover, @x(w) = |fi(w)|*. The previous results are useful for constructing random fields with
spectral behaviour given by Eq. (2). For this purpose we need some results on fractional
potentials.

_Let us consider the usual Laplacian of f:Af = Z _, (© 2f /ax2) Then at least formally,
Af (w) = —(2n) |w|2f (w). From this we could define the operators ( A %/2

(=07 =77 'en) TS (19)
The formal manipulations have a precise meaning (Stein, 1970).

Definition 5. Let 0<a<d. For f € #(R?) we can define its Riesz potential:

(&= [ TV

7@ S |x =y
where (o)) = 19?2 («/2)/I'(d /2 — o/2).

dy, (20)

This linear operator has the following properties (Stein, 1970).

Proposition 3.1. Let 0<o<d. Then: (a) The Fourier transform of |x|™"* is y(o)(2n) *|w|™* in the
sense

[ omas = [ een ol p)do
R

for all ¢ € F(RY).
(b) The Fourier transform of ((— A)_“/ 21)(x) is (2n)_°‘|co|_°‘f (w) in the sense

[0 nmeds = [ foren ol o) do
R R

for all f,g € F(RY).
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It is easy to check that Vf € #(RY): if o+ f<d then (—A)™*(—=A)P%f) = (=A)~TP2(r);
and A(=A)f) = (=)' "*2(f),

We recall the following bound for these operators acting in L7(R?) (Calderon, 1960, Stein,
1970).

Proposition 3.2 (Hardy, Littlewood and Sobolev). Let 0<o<d, 1<p<qg<oo and 1/q=1/
p—o/d. Then:

(@) Vf € L2(RY), the integral that defines (—A)_“/ 2f converges a.e.
®) If p>1 then

1(=A) "l 10 < Cpgllf Il - 1)

Remark. These operators are the inverses of the (positive) fractional powers of the Laplacian
operator. For the class #(R?), (—A)‘°‘/2 is given by

AP = e Y@o-9]  dy
R e et

This expression follows from Stein (1970, Section 6.10), and from this formula a short proof of the
existence of the fractional Brownian field with exponent o/2 can be given (Bojdecki and
Gorostiza, 1999).

Now, introduce another fractional integration operator defined formally as

I —N"f =771+ 1P 7S (22)
This operator is continuous (Stein, 1970).

Proposition 3.3. If s<0 and p=1, (I — A)S/ 2. (R — LP(RY) defines a continuous linear
operator, i.e. there exists C,>0 such that

I = A2l < Collf Il -

With all this, now we can claim the following assertion on fractional random fields.

Theorem 3.3. If T = (—A)"™*(I — A)™/? with 0<a<d /2, y>0, then the series defined by (10)
converges to a generalized stochastic field with spectral density as (2).

Proof. The operator T is a well-defined bounded linear operator as a consequence of Theorems
3.2 and 3.3; moreover it maps L*(R?) into 17(R?) for some p>1 which depends on o. Then the
desired result follows from Theorems 3.1 and 3.2, and Eq. (18). [J

It is straightforward to see from the proof of Proposition 3.1 that this assertion may fail if
a>d/2. In Anh et al. (1999), by means of operators (22) and (20) is proved the existence of a
process with spectral density as (2) with a € (0, d). This result is based on the following assertion:
if D ¢ R? is a measurable bounded domain, there exists C> 0 such that for every /' € L*(R%) and

Supp(f) ¢ D

/ (—A) *f(@)Pdw<C / ()P do. (23)
Rll R(/
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But this is false for a>d/2: take D = B(0, 1) the ball of radius 1 and f = 1. We prove that for
such f, (—A)f“/ 2f does not belong to L*(RY). From (20) we have

_ 1 dy
(—A)*f(x) = —
4 (@) Jay Ix — y|**

but |x — y|<[x| + [yI<|x| + 1, then (Ix| + D™ < |x — y| = if [y|<1, so
|B(0, 1)|

(|X| + 1)—zl+o<

for all x € R?. Then we have the following bound:

I(=A)"*f(x)| =K

I(=A) 1)1 > / (Ix] + D722 dx | B(O, 1)
Rtl

=K / (r+ D)2 =1 4y = kB(d, d — 2x),
0

but this expression for Euler’s beta function converges if and only if d>0 and d — 2a>0.
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