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On twisted conjugacy classes
of type D in sporadic simple groups

F. Fantino and L. Vendramin

Abstract. We determine twisted conjugacy classes of type D associated with

the sporadic simple groups. This is an important step in the program of
the classification of finite-dimensional pointed Hopf algebras with non-abelian
coradical. As a by-product we prove that every complex finite-dimensional
pointed Hopf algebra over the group of automorphisms of M12, J2, Suz, He,
HN , T is the group algebra. In the appendix we improve the study of conju-
gacy classes of type D of sporadic simple groups.

1. Introduction

A fundamental step in the classification of finite-dimensional complex pointed
Hopf algebras, in the context of the Lifting method [AS1], is the determination of
all finite-dimensional Nichols algebras of braided vector spaces arising from Yetter-
Drinfled modules over groups. This problem can be reformulated in other terms:
to study finite-dimensional Nichols algebras of braided vector spaces arising from
pairs (X, q), where X is a rack and q is a 2-cocycle of X.

A useful strategy to deal with this problem is to discard those pairs (X, q) whose
associated Nichols algebra is infinite dimensional. A powerful tool to discard such
pairs is the notion of rack of type D [AFGV1]. This notion is based on the theory of
Weyl groupoids developed in [AHS] and [HS]. The importance of racks of type D
lies in the following fact: if X is a rack of type D then the Nichols algebra associated
to (X, q) is infinite-dimensional for all 2-cocycle q. The property of being of type
D is well-behaved with respect to monomorphisms and epimorphisms, see Remark
2.2. On the other hand, it is well-known that a finite rack can be decomposed as an
union of indecomposable subracks. Further, every indecomposable rack X admits
a surjection X → Y , where Y is a simple rack, and the classification of finite simple
racks is known, see [AG] and [J]. These facts and the ubiquity of racks of type
D suggests a powerful approach for the classification problem of finite-dimensional
pointed Hopf algebras over non-abelian groups: to classify finite simple racks of
type D. This program was described in [AFGaV, §2] and successfully applied to
the classification of finite-dimensional pointed Hopf algebras over the alternating
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simple groups [AFGV1] and over many of the sporadic simple groups [AFGV3].
This paper is a contribution to this program.

Towards the classification of simple racks of type D, we study an important
family of simple racks: the twisted conjugacy classes of a sporadic simple group
L. Our aim is to classify which of these racks are of type D. For that purpose, we
use the fact that these racks can be realized as conjugacy classes of the group of
automorphisms of L. The main result of our work is the following theorem.

Theorem 1.1. Let L be one of the simple groups

M12, M22, J2, J3, Suz, HS, McL, He, F i22, ON, F i′24, HN, T.

Let O be a conjugacy class of Aut(L) not contained in L which is not listed in Table
1. Then O is of type D.

Table 1. Classes not of type D

Aut(M22) 2B
Aut(HS) 2C
Aut(Fi22) 2D
Aut(J3) 34A, 34B
Aut(ON) 38A, 38B, 38C
Aut(McL) 22A, 22B
Aut(Fi′24) 2C

Notice that the groups in Theorem 1.1 are the only sporadic simple groups
with non-trivial outer automorphism group. Theorem 1.1 with [AFGV3] and the
lifting method [AS1] imply the following classification result.

Corollary 1.2. Let L be one of the simple groups

M12, J2, Suz, He, HN, T.

Then Aut(L) does not have non-trivial finite-dimensional complex pointed Hopf
algebras. �

The study of twisted conjugacy classes of sporadic groups is suitable for be-
ing attacked case-by-case with the help of computer calculations. The strategy for
proving Theorem 1.1 is the same as in [AFGV2, AFGV3]. We use the computer
algebra system GAP to perform the computations [GAP] [B] [WPN+] [WWT+].
The main scripts and log files of this work can be found in: http://www.famaf.

unc.edu.ar/∼fantino/fv.tar.gz or http://mate.dm.uba.ar/∼lvendram/
fv.tar.gz.

The paper is organized as follows. In Section 2 we deal with the basic definitions
and the basic techniques for studying Nichols algebras over simple racks. The proof
of the main result is given in Section 3. In the appendix we improve the classification
of racks of type D given in [AFGV3, Table 2]. With the exception of the Monster
group, conjugacy classes of type D in sporadic simple groups are classified, see
Remark 4.13.
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2. Preliminaries

We refer to [AS2] for generalities about Nichols algebras and to [AG] for
generalities about racks and their cohomologies in the context of Nichols algebras.
We follow [CCNPW] for the notations concerning the sporadic simple groups.

A rack is a pair (X, �), where X is a non-empty set and � : X × X → X is
a map (considered as a binary operation on X) such that the map ϕx : X → X,
ϕx(y) = x � y, is bijective for all x ∈ X, and x � (y � z) = (x � y) � (x � z) for all
x, y, z ∈ X. A subrack of a rack X is a non-empty subset Y ⊆ X such that (Y, �)
is also a rack. A rack X is said to be a quandle if x � x = x for all x ∈ X. All the
racks considered in this work are indeed quandles.

A rack (X, �) is said to be of type D if it contains a decomposable subrack
Y = R � S such that r � (s � (r � s)) �= s for some r ∈ R, s ∈ S.

Remark 2.1. Let G be a group. A conjugacy class O of G is of type D if and
only if there exist r, s ∈ O such that (rs)2 �= (sr)2 and r and s are not conjugate in
the group generated by r and s, see [AFGV3, Subsection 2.2].

Remark 2.2. Racks of type D have the following properties:

(i) If Y ⊆ X is a subrack of type D, then X is of type D.
(ii) If Z is a finite rack and p : Z → X is an epimorphism, then X of type D

implies Z of type D.

The following result is the reason why it is important to study racks of type D.
This theorem is based on [AHS] and [HS].

Theorem 2.3. [AFGV1, Thm. 3.6] Let X be a finite rack of type D. Then
the Nichols algebra associated with the pair (X, q) is infinite-dimensional for all
2-cocycles q. �

A rack is simple if it has no quotients except itself and the one-element rack.
We recall the classification of finite simple racks given in [AG, Theorems 3.9 and
3.12], see also [J]. A finite simple rack belongs to one of the following classes:

(a) simple affine racks;
(b) non-trivial conjugacy classes of non-abelian finite simple groups;
(c) non-trivial twisted conjugacy classes of non-abelian finite simple groups;
(d) simple twisted homogeneous racks.

In this paper we study non-trivial twisted conjugacy classes of type D of spo-
radic simple groups. These racks belong to the class (c) mentioned above.

2.1. Twisted conjugacy classes. Let G be a finite group and u ∈ Aut(G).
The group G acts on itself by y ⇀u x = y x u(y−1) for all x, y ∈ G. The orbit of
x under this action will be called the u-twisted conjugacy class of x and it will be
denoted by OG,u

x . It is easy to prove that the orbit OG,u
x is a rack with

y �u z = y u(z y−1)

for all y, z ∈ OG,u
x . Notice that OG,id

x is a conjugacy class in G.
We write Out(G) := Aut(G)/ Inn(G) for the group of outer automorphisms of

G and π : Aut(G) → Out(G) for the canonical surjection.
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Assume that Out(G) �= 1. Let u ∈ Aut(G) such that π(u) �= 1. Every u-twisted
conjugacy class in G is isomorphic (as a rack) to a conjugacy class in the semidirect
product G� 〈u〉. Indeed,

OG�〈u〉,id
(x,u) = OG,u

x × {u}

for all x ∈ G. Therefore the problem of determining u-twisted conjugacy classes of
type D in G can be reduced to study conjugacy classes of type D in G � 〈u〉 and
contained in G× {u}.

2.2. Conjugacy classes to study. Let L be one of the simple groups

M12, M22, J2, J3, Suz, HS, McL, He, F i22, ON, F i′24, HN, T.

It is well-known that Aut(L) 
 L � Z2 [CCNPW]. Hence, since L is a normal
subgroup of L�Z2, it is possible to compute the list of conjugacy classes of Aut(L)
not contained in L from the character table of Aut(L), see for example [I]. For that
purpose, we use the GAP function ClassPositionsOfDerivedSubgroup. See the
file classes.log for the information concerning the conjugacy classes of Aut(L)
not contained in L.

2.3. Strategy. Our aim is to classify twisted conjugacy classes of sporadic
simple groups of type D. By Subsection 2.1, we need to consider the conjugacy
classes in Aut(L) \ L, where L is a sporadic simple group with Out(L) �= 1. The
strategy for studying these conjugacy classes is essentially based on studying conju-
gacy classes of type D in maximal subgroups of Aut(L). See [AFGV2, Subsection
1.1] for an exposition about the algorithms used.

2.4. Useful lemmata. Let G be a non-abelian group and g ∈ G. We write
gG for the conjugacy class of g in G. Let

Mg = {M : M is a maximal subgroup of G and gG ∩M �= ∅}.

Lemma 2.4 (Breuer). Assume that for all M ∈ Mg there exists m ∈ M such
that

gG ∩M ⊆ mM ⊆ gG.

If gG is of type D, then there exist N ∈ Mg and n ∈ N such that nN is of type D.

Proof. Since gG is of type D, there exist r, s ∈ gG such that (rs)2 �= (sr)2

and rH ∩ sH = ∅ for H = 〈r, s〉. Since rH ∩ sH = ∅ and rH ∪ sH ⊆ gG, the group
H is contained in some maximal subgroup N ∈ Mg. Hence r, s ∈ gG ∩N ⊆ nN for
some n ∈ N and the claim follows. �

Lemma 2.5. Let O be a conjugacy class of G and let H be a subgroup of G
such that O contains two conjugacy classes O1, O2 of H. Assume that there exist
r ∈ O1 and s ∈ O2 such that (rs)2 does not belong to the centralizer of r in G.
Then O is of type D.

Proof. Notice that (rs)2 = (sr)2 if and only if (rs)2 commutes with r. Then
the claim follows. �

Lemma 2.6. Let O be a conjugacy class of involutions of G. Then O is of type
D if and only if there exist r, s ∈ O such that the order of rs is even and greater
or equal to 6.
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Proof. Assume that |rs| = n. Then 〈r, s〉 
 Dn and the claim follows; see
[AFGV3, §1.8]. �

3. Proof of Theorem 1.1

The claim concerning the automorphism groups of M12 and J2 follows from the
application of [AFGV3, Algorithm I]. The claim for the automorphism groups of
M22, Suz, HS, He, Fi22 and T follows from the application of [AFGV3, Algorithm
III]. There is one log file for each of these groups, see Table 2. The automorphism
groups of J3, ON , McL, HN and Fi′24 are studied in Subsections 3.1, 3.2 and 3.3,
respectively.

Table 2. Log files

L log file L log file
M12 M12.2.log HS HS.2.log

M22 M22.2.log He He.2.log

J2 J2.2.log Fi22 Fi22.2.log

Suz Suz.2.log T T.2.log

3.1. The groups Aut(J3), Aut(ON) and Aut(McL).

Lemma 3.1.

(1) A conjugacy class O of Aut(J3) \ J3 is of type D if and only if O /∈
{34A, 34B}.

(2) A conjugacy class O of Aut(ON) \ ON is of type D if and only if O /∈
{38A, 38B, 38C}.

(3) A conjugacy class O of Aut(McL) \ McL is of type D if and only if
O /∈ {22A, 22B}.

Proof. We first prove (1). We claim that the classes 34A, 34B are not of type
D. Let G = Aut(J3) and let g be a representative of the conjugacy class 34A (the
proof for the class 34B is analogous). By [CCNPW], the only maximal subgroup
containing elements of order 34 is M4 
 PSL(2, 17)×Z2. Further, it is easy to see
that M4 ∈ Mg satisfies gG ∩ M4 ⊆ mM4 ⊆ gG for some m ∈ M4 and the class
mM4 is not of type D. Hence Lemma 2.4 applies. See the file J3.2/34AB.log for
more information. To prove that the remaining conjugacy classes are of type D,
apply [AFGV3, Algorithm III]. See the file J3.2/J3.2.log for more information.

Now we prove (2). We claim that the classes 38A, 38B, 38C of Aut(ON)
are not of type D. The only maximal subgroup (up to conjugation) of Aut(ON)
containing elements of order 38 is the second maximal subgroup M2. By Lemma
2.4, it suffices to prove that the classes 38a, 38b, 38c of M2 are not of type D.
This follows from a direct GAP computation. See the file ON.2/38ABC.log for more
information. To prove that the remaining conjugacy classes are of type D we apply
[AFGV3, Algorithm III]. See the file ON.2/ON.2.log for more information.

Now we prove (3). We claim that the classes 22A, 22B of Aut(McL) are not of
type D. The only maximal subgroup (up to conjugation) of Aut(McL) containing
elements of order 22 is the 8th maximal subgroup M8. By Lemma 2.4, it suffices to
prove that the classes 22a, 22b of M8 are not of type D. This follows from a direct



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

252 FANTINO AND VENDRAMIN

GAP computation. See the file McL.2/22AB.log for more information. To prove
that the remaining conjugacy classes are of type D, apply [AFGV3, Algorithm
III]. See the file McL.2/McL.2.log for more information. �

3.2. The group Aut(HN).

Lemma 3.2. All the conjugacy classes in Aut(HN) \HN are of type D.

Proof. With GAP it is possible to obtain the information related to the fusion
of the conjugacy classes from the maximal subgroups of Aut(HN) into Aut(HN).
The following table shows the maximal subgroup (and the log file) used and the
conjugacy classes of Aut(HN) of type D.

File Classes
M2 4D,4E,4F,6D,6E,6F,8C,8D,10G,10H,12D

12E,14B,18A,20F,24A,28A,30C,42A,60A
M13 8F,24B,24C
M9 8E
M7 20E,20G,20H,20I,40B,40C,40D
M3 44A,44B

It remains to prove that the class 2C is of type D. By [AFGV1, Thm. 4.1], the
class of transpositions in S12 is the unique class of involutions which is not of type
D. But there are three different conjugacy classes of involutions of the maximal
subgroup M2 
 S12 contained in the class 2C of Aut(HN) and hence the latter is
of type D. �

3.3. The group Aut(Fi′24).

Lemma 3.3. Let O be a conjugacy class of Aut(Fi′24)\Fi′24. Then O is of type
D if and only if O /∈ {2C}.

Proof. As before, we study conjugacy classes in certain maximal subgroups.
See the following table for more information:

File Classes
M5 4G, 12N, 12U, 12V, 12Y, 24H, 40A
M17 30G
M18 18O
M9 66A, 66B
M12 36D, 36G
M20 12A1, 28C, 28D

To prove that the classes 6V, 42D, 84A are of type D we use the maximal
subgroup M19 
 (Z7 � Z6) × S7. Notice that six conjugacy classes of M19 are
contained in the class 6V. Further, three of them are of type D. On the other hand,
the conjugacy classes of elements of order 42 and 84 in M19 are of type D.

The class 2D of Aut(Fi′24) contains the classes O1 = 2d and O2 = 2g of the
maximal subgroup M4 
 S3 × O+

8 (3).S3. With GAP we show that there exist
r ∈ O1 and s ∈ O2 such that (rs)2 has order 13 which does not divide order of the
centralizer of the conjugacy class 2A of Aut(Fi′24). Hence (rs)2 does not commute
with r and therefore Lemma 2.5 applies and hence 2D is of type D.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

TWISTED CONJUGACY CLASSES OF TYPE D IN SPORADIC SIMPLE GROUPS 253

Table 3. Classes in sporadic simple groups (different from the
Monster M) not of type D

Group Classes
T 2A

M11 8A, 8B, 11A, 11B
M12 11A, 11B
M22 11A, 11B
M23 23A, 23B
M24 23A, 23B
Ru 29A, 29B
Suz 3A
HS 11A, 11B
McL 11A, 11B
Co1 3A
Co2 2A, 23A, 23B
Co3 23A, 23B
J1 15A, 15B, 19A, 19B, 19C
J2 2A, 3A
J3 5A, 5B, 19A, 19B
J4 29A, 43A, 43B, 43C
Ly 37A, 37B, 67A, 67B, 67C
O′N 31A, 31B
Fi23 2A
Fi22 2A, 22A, 22B
Fi′24 29A, 29B
B 2A, 46A, 46B, 47A, 47B

The class 2C is not of type D. Indeed, for all r, s ∈ 2C, the order of rs is 1,
2 or 3; for this we use the GAP function ClassMultiplicationCoefficient. By
Lemma 2.6, the claim holds.

For studying the remaining conjugacy classes we use the maximal subgroup
M2 
 Z2 × Fi23. By [AFGV3, Thm. II], every conjugacy class of M2 with
representative of order distinct from 2 is of type D, see Proposition 4.3 in the
appendix. Hence the claim follows. �

4. Appendix: the sporadic simple groups

In this appendix we improve some of the results obtained in [AFGV3]. We
remark that it is important to know if a rack X is of type D. By Theorem 2.3, if
X is of type D, then dimB(X, q) = ∞ for any 2-cocycle q of X, and hence the
calculation of the 2-cocycles of X is not needed. Further, as a corollary we obtain
that the Nichols algebras associated with any rack Y containing X and for any rack
Z having X as a quotient are also infinite-dimensional; see [AFGaV] or [AFGV3].
Indeed, since any finite rack has a projection onto a simple rack, this shows the
intrinsic importance of a conjugacy class of being of type D, not just for the specific
group where it lives but to the whole classification program of finite-dimensional
Nichols algebras associated to racks.
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Table 3 contains the list of conjugacy classes of sporadic simple groups which
are not of type D. The open cases are listed in Remark 4.13.

4.1. The groups T and Suz.

Proposition 4.1.

(1) A conjugacy class O of T is of type D if and only if O �= 2A.
(2) A conjugacy class O of Suz is of type D if and only if O �= 3A.

Proof. It follows from [AFGV3, Table 2] and a direct computer calculation.
See the log files for details. �

4.2. The groups ON , McL, Co3, Ru, HS and J3.

Proposition 4.2.

(1) A conjugacy class of ON is of type D if and only if it is different from
31A and 31B.

(2) A conjugacy class of McL is of type D if and only if it is different from
11A and 11B.

(3) A conjugacy class of Co3 is of type D if and only if it is different from
23A and 23B.

(4) A conjugacy class of Ru is of type D if and only if it is different from 29A
and 29B.

(5) A conjugacy class of HS is of type D if and only if it is different from
11A and 11B.

(6) A conjugacy class of J3 is of type D if and only if it is different from 5A,
5B, 19A and 19B.

Proof. We prove (1). By [AFGV3, Table 2], it remains to prove that the
classes 31A, 31B are not of type D. Let g be a representative for the conjugacy class
31A of G = ON (the proof for the class 31B is analogous). By [CCNPW], the
only maximal subgroups (up to conjugacy) containing elements of order 31 are M7

and M8. Further, M7 
 M8 
 PSL(2, 7) and it is easy to see that if M = M7

(or M8) then gG ∩ M ⊆ mM ⊆ gG for some m ∈ M . Since the conjugacy class
mM is not of type D for all m ∈ M of order 31, Lemma 2.4 applies.

To prove (2) the maximal subgroups to use are the Mathieu groups M11 and
M22. Then the claim follows from Lemma 2.4 and [AFGV3, Table 2]. To prove (3)
the maximal subgroups to use are the Mathieu groups M23. The proofs for (4)–(6)
are similar. �

4.3. The group Fi23.

Proposition 4.3. Let O be a conjugacy class of Fi23. Then O is of type D if
and only if O is not 2A.

Proof.
1 By [AFGV3, Table 2], it remains to prove that the classes 23A,

23B are of type D. Let N denote the normal subgroup of order 211 in the maximal
subgroup M6 
 211.M23 of Fi23, and let x be an element of order 23 in the
factor group M6/N . All preimages of x under the natural epimorphism from M6

to M6/N have order 23, they are conjugate in M6, and their squares are also
conjugate in M6. Take a preimage r of x under the natural epimorphism, choose

1This proposition is due to the referee.
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a nonidentity element n ∈ N , and set s = r2n. Then r and s are conjugate in M6.
Moreover, (rs)2 and (sr)2 = r−1(rs)2r are different. Indeed, (rs)2 = (r3n)2 = r6n′,
with n′ := (r−3nr3)n, whereas (sr)2 = r6(r−1n′r).

The group U generated by r and s is also generated by r and n, and since
r acts irreducibly on N , we get that U is a semidirect product of N and 〈r〉. In
particular, r and s are not conjugate in U . Hence, the class of r in M6 is of type
D. �

4.4. The group Fi22.

Proposition 4.4 (Breuer). Let O be a conjugacy class of Fi22. Then O is of
type D if and only if O /∈ {2A, 22A, 22B}.

Proof. By [AFGV3, Table 2], it remains to prove that the classes 22A, 22B
are not of type D. Assume that the class 22A of Fi22 is of type D (the proof for the
class 22B is analogous). Let r and s be elements of the class 22A such that r and
s are not conjugate in the group H = 〈r, s〉. By the fusion of conjugacy classes, H
is a proper subgroup of some maximal subgroup M isomorphic to 2.U6(2). Notice
that the center of M is Z(M) = 〈z〉 
 Z2. Using the GAP function PowerMap we
get r11 = s11 = z and hence Z(M) ⊆ H. We claim that the elements rZ(M)
and sZ(M) are not conjugate in the quotient H/Z(M). Let p : H → H/Z(M) be
the canonical projection, and let x ∈ H such that p(x)p(r)p(x)−1 = p(s). Then
xrx−1 ∈ {s, sz} and hence xrx−1 = s since sz has order 11. Now the claim follows
from the following lemma. �

Lemma 4.5. Let Q = U6(2) and x, y ∈ Q be two elements of order 11 such that
xQ = yQ. Assume that x and y are not conjugate in the subgroup 〈x, y〉. Then
〈x, y〉 
 Z11.

Proof. Let U = 〈x, y〉. Since xQ = yQ and xU �= yU , U is a proper subgroup
of a maximal subgroup M and M 
 U5(2) or M 
 M22. The only maximal
subgroup of M which contains elements of order 11 is isomorphic to L2(11) and
hence we may assume that U is a proper subgroup of L2(11) because L2(11) has
exactly two conjugacy classes of elements of order 11. The only maximal subgroups
of L2(11) that contain elements of order 11 are isomorphic to Z11 � Z5. These
groups have exactly two conjugacy classes of elements of order 11 and hence U
must be a proper subgroup of Z11 � Z5. From this the claim follows. �

4.5. The group Co2.

Proposition 4.6. Let O be a conjugacy class of Co2. Then O is of type D if
and only if O /∈ {2A, 23A, 23B}.

Proof. By [AFGV3, Table 2], it remains to prove that the classes 23A, 23B
are not of type D. This follows from the following lemma. �

Lemma 4.7. Let Q = Co2 and x, y ∈ Q be two elements of order 23 such that
xQ = yQ. Assume that x and y are not conjugate in the subgroup 〈x, y〉. Then
〈x, y〉 
 Z23.

Proof. Let U = 〈x, y〉. Since xQ = yQ and xU �= yU , U is a proper subgroup
of a maximal subgroup M and M 
 M23. The only maximal subgroup of M
which contains elements of order 23 is isomorphic to Z23 �Z11. These groups have
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exactly two conjugacy classes of elements of order 23 and hence U must be a proper
subgroup of Z23 � Z11. From this the claim follows. �

4.6. The group J4.

Proposition 4.8. Let O be a conjugacy class of J4. Then O is of type D if
and only if O /∈ {29A, 43A, 43B, 43C}.

Proof. By [AFGV3, Table 2] it remains to study the classes 29A, 37A, 37B,
37C, 43A, 43B, 43C. We split the proof into two steps.

Step 1. The classes 29A, 43A, 43B, 43C of J4 are not of type D.

This is similar to the proof of Proposition 4.2. See the files in the folder J4 for
more information.

Step 2. The classes 37A, 37B, 37C of J4 are of type D.

The class 37A of J4 contains the classes O1 = 37a and O2 = 37d of the maximal
subgroup M5 
 U3(11).2. With GAP we show that there exist r ∈ O1 and s ∈ O2

such that (rs)2 has order 5. The centralizer associated with the conjugacy class
37A of J4 is isomorphic to Z37 and therefore (rs)2 does not commute with r. Hence
Lemma 2.5 applies and the claim follows. The proof for the classes 37B, 37C of J4
is analogous, see the file J4/37ABC.log for more information. �

4.7. The group Ly.

Proposition 4.9. Let O be a conjugacy class of Ly. Then O is of type D if
and only if O /∈ {37A, 37B, 67A, 67B, 67C}.

Proof. By [AFGV3, Table 2], it remains to study the classes 33A, 33B, 37A,
37B, 37C, 37C, 67A, 67B, 67C. We split the proof into two steps.

Step 1. The classes 37A, 37B, 67A, 67B, 67C of Ly are not of type D.

It is similar to the proof of Proposition 4.2. See the files Ly/37AB.log and
Ly/67ABC.log for more information.

Step 2. The classes 33A, 33B of Ly are of type D.

It suffices to prove that the classes 33A and 33B of the maximal subgroup
3.McL.2 are of type D. This follows from Lemma 2.5 with the subgroup 3.McL.
See the file Ly/33AB.log for more information. �

4.8. The group Fi′24.

Proposition 4.10. A conjugacy class O of Fi′24 is of type D if and only if
O /∈ {29A, 29B}.

Proof. By [AFGV3, Table 2], it remains to prove that the classes 23A, 23B,
27B, 27C, 33A, 33B, 39C, 39D of Fi′24 are of type D and that the classes 29A, 29B
are not. For the classes 23A and 23B the result follows from Proposition 4.3. The
following six classes can be treated by Lemma 2.5. The table below contains the
information concerning the maximal subgroups to use:

Classes Maximal subgroup Log file
27B,27C M5 F3+/27BC.log

33A,33B M4 F3+/33AB.log

39C,39D M3 F3+/39CD.log
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Now we prove that the classes 29A, 29B of Fi′24 are not of type D. The unique
maximal subgroup (up to conjugacy) that contains elements of order 29 is M25 

Z29 �Z14. This group has two classes of elements of order 29 and these classes are
not of type D. Therefore Lemma 2.4 applies. �

4.9. The group Co1.

Proposition 4.11. Let O be a conjugacy class of Co1. Then O is of type D if
and only if O /∈ {3A}.

Proof. By [AFGV3, Table 2], it remains to prove that the classes 23A, 23B
are of type D and that the class 3A is not of type D. The proof for the classes
23A and 23B is analogous to the proof of Proposition 4.3 using the maximal sub-
group M3 
 211 : M24. The claim for the class 3A follows from a straightforward
computer calculation. �

4.10. The group B.

Proposition 4.12. Let O be a non-trivial conjugacy class of B. Then O is of
type D if and only if O /∈ {2A, 46A, 46B, 47A, 47B}.

Proof. By [AFGV3], it remains to study the conjugacy classes 2A, 16C, 16D,
32A, 32B, 32C, 32D, 34A, 46A, 46B, 47A, 47B. We split the proof into several steps.

Step 1. The conjugacy class 2A is not of type D.

With the GAP function ClassMultiplicationCoefficient we see that for all
r, s ∈ 2A, |rs| is 1, 2, 3 or 4. Then the claim follows from Lemma 2.6.

Step 2. The conjugacy classes 46A, 46B of B are not of type D.

Assume that the class 46A of B is of type D (the proof for the class 46B is
analogous). Let r and s be elements of the class 46A such that r and s are not
conjugate in the group H = 〈r, s〉. By the fusion of conjugacy classes, H is a
proper subgroup of some maximal subgroup M isomorphic to 21+22.Co2. Notice
that the center of M is Z(M) = 〈z〉 
 Z2. With the GAP function PowerMap we
get r23 = s23 = z and hence Z(M) ⊆ H. We claim that the elements rZ(M)
and sZ(M) are not conjugate in the quotient H/Z(M). Let p : H → H/Z(M) be
the canonical projection, and let x ∈ H such that p(x)p(r)p(x)−1 = p(s). Then
xrx−1 ∈ {s, sz} and hence xrx−1 = s since sz has order 23. Now the claim follows
from Lemma 4.7.

Step 3. The conjugacy classes 47A, 47B of B are not of type D.

It is easy to check that the only maximal subgroup of B (up to conjugacy)
which contains elements of order 47 is M30 
 Z47 � Z23. (This is the only non-
abelian group of order 1081.) This group has two conjugacy classes of elements of
order 47 and these classes are not of type D. Then the claim follows from Lemma
2.4.

Step 4. The class 34A of B is of type D.

The conjugacy classes O1 = 34d and O2 = 34f of the first maximal
subgroup of B are contained in the class 34A of B. With the GAP functions
ClassMultiplicationCoefficient and PowerMap we see that there exist r ∈ O1

and s ∈ O2 such that |(rs)2| = 5. Since the centralizer corresponding to the class
34A has order 68, the claim follows from Lemma 2.5.
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Step 5. The classes 16C, 16D of B are of type D.

Let O be the conjugacy class 16C (resp. 16D) of B. The conjugacy classes O1 =
16g (resp. 16a) andO2 = 16n (resp. 16f) of the first maximal subgroup ofB are con-
tained in the class O. With the GAP functions ClassMultiplicationCoefficient
and PowerMap it is easy to see that there exist r ∈ O1 and s ∈ O2 such that (rs)2

has order 5. Since the centralizer corresponding to the class O has order 211, the
claim follows from Lemma 2.5.

Step 6. The classes 32A, 32B, 32C, 32D of B are of type D.

Let O be the conjugacy class 32A of B. We use the GAP function
PossibleClassFusions to obtain a list with all the possible fusions from the
maximal subgroup M6 into B. As in the previous step, with the GAP functions
ClassMultiplicationCoefficient and PowerMap it is easy to show that if O1 and
O2 are two different conjugacy classes of M6 contained in the class O of B, then
there exist r ∈ O1 and s ∈ O2 such that (rs)2 has order 5. Since the centralizer
related to the class O has size 27, the claim follows from Lemma 2.5. The proof for
the claim concerning the classes 32B, 32C, 32D is analogous. �

Remark 4.13. The following conjugacy classes of the Monster group M are not
known to be of type D: 32A, 32B, 41A, 46A, 46B, 47A, 47B, 59A, 59B, 69A, 69B,
71A, 71B, 87A, 87B, 92A, 92B, 94A, 94B. These are the only open cases related to
the problem of classifying conjugacy classes of type D in sporadic simple groups.

Remark 4.14. It is still unknown whether the Nichols algebras associated with
the classes 22A, 22B of Fi22, the classes 46A, 46B of B, and the classes 32A, 32B,
46A, 46B, 92A, 92B, 94A, 94B of M are finite-dimensional.
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