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a b s t r a c t

Changes in forest cover in agricultural landscapes affect biodiversity. Its management needs some in-
dications about scale to predict occurrence of populations and communities. In this study we considered
a forest cover index to predict bird species and community patterns in agricultural landscapes in south-
western France. We used generalized linear models for that purpose with prediction driven by wooded
areas’ spatial distribution at nine different radii.

Using 1064 point counts, we modelled the distribution of 10 bird species whose habitat preferences
are spread along a landscape opening gradient. We also modelled the distribution of species richness for
farmland species and for forest species. We used satellite images to construct a ‘wood/non-wood’ map
and calculated a forest index, considering the surface area of wooded areas at nine radii from 110 m to
910 m. The models’ predictive quality was determined by the AUC (for predicted presences) and r (for
predicted species richness) criteria.

We found that the forest cover was a good predictor of the distribution of seven bird species in
agricultural landscapes (mean AUC for the seven species ¼ 0.74 for the radius 110 m). Species richness of
farmland and forest birds was satisfactorily predicted by the models (r ¼ 0.55 and 0.49, respectively, for
the radius 110 m). The presence of the studied species and species richness metrics were better predicted
at smaller scales (i.e. radii between 110 m and 310 m) within the range tested.

These results have implications for bird population management in agricultural landscapes since
better pinpointing the scale to predict species distributions will enhance targeting efforts to be made in
terms of landscape management.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In an agricultural environment, patches of woody vegetation
play a key role owing both to their presence for forest-habitat
specialist species, and to their absence for open-habitat specialist
species (Balent and Courtiade, 1992; Bennett, 1999; Bonthoux et al.,
2012). Any change in patchy or linear forest elements is therefore
likely to affect biodiversity in agricultural landscapes (Baz and
Garcia-Boyero, 1996; Geertsema et al., 2002; Holzkämper and
Seppelt, 2007; Jokimäki and Huhta, 1996; Renfrew and Ribic, 2008).
Changes in forest cover in an agricultural landscape occur on
different scales. Mobile animals, such as birds, can react quickly to
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such multi-scale modifications since they are likely to appraise
habitat features at a variety of scales (nest sites, territory, wider
landscape) (Skórka et al., 2006).

In order to conserve biodiversity in agricultural landscapes, it is
important to know on what scales the occurrence of targeted
species are best explained and predicted by forest cover (Coreau
and Martin, 2007) and whether the predictions vary according to
the scale at which habitat variables are measured (Grand and
Cushman, 2003; Pickett and Siriwardena, 2011). Is the optimum
scale for predicting species distribution different from one species
to another or does it exist a unique scale of prediction for the whole
community?

To evaluate the impact of the modification in forest cover on
biodiversity, we have to be able to measure the influence of this
discontinuous forest patches at any point in a territory in a
continuous way. To assess the effects of forest fragments on species’
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Table 1
(a) Latin and common names of bird species, habitat type (open, forest or inter-
mediate), occurrences, and mean AUC values for the best radius and (b) species
richness for the farmland and forest birds and mean Rho values for the best radius.

(a)

Latin species name Common species
name

Occurrence
number

Type
of habitat

Mean
AUC value

Alauda arvensis Skylark 356 Open 0.71
Emberiza calandara Corn bunting 314 Open 0.68
Erithacus rubecula European robin 651 Forest 0.81
Fringilla coelebs Common chaffinch 535 Forest 0.73
Lullula arborea Woodlark 66 Intermediate 0.65
Phylloscopus

collybita
Common chiffchaff 663 Forest 0.71

Sylvia communis Common
whitethroat

347 Intermediate 0.71

Saxicola torquata European stonechat 212 Open 0.70
Turdus philomelus Song thrush 205 Forest 0.81
Troglodytes

troglodytes
Eurasian wren 693 Intermediate 0.73

(b)

Community species richness Mean (min; max) Mean Rho value

Farmland birds 2.72 (0; 10) 0.55
Forest birds 3.05 (0; 8) 0.50
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distribution the authors generally use landscape indicators that
involve several forest cover components, e.g. patch area and
morphology, between patches connectivity and isolation. These
indicators often produce redundant information owing to the
crossed correlations between these environmental variables
(Lescourret and Genard, 1994). In this study, we used the Neigh-
bouring Forest Cover (NFC index) proposed by Lauga and Joachim
(1992) and Lauga et al. (1996). The NFC includes the main charac-
teristics of the wooded islets: the extent of the forest patches’ and
the distance between the patch and the calculation point.

Bird species represent good model organisms sensitive to
changes in forest cover (Cushman and McGarigal, 2003) and are
likely to respond differently to the NFC calculated at different radii,
representing different spatial scales of potential species’ responses
to forest spatial distribution. Balent and Courtiade (1992), Berg
(2002) or Moreira et al. (2005) have shown that wooded ele-
ments are major factors for explaining the assembly of bird species
in agricultural habitats. Lauga and Joachim (1992) showed that NFC
was a good predictor of three species of forest birds: the song
thrush (Turdus philomelos), the common chaffinch (Phylloscopus
collybita) and the European robin (Erithacus rubecula).

Here we tested the validity of the NFC as a good predictor of (i)
the distribution of 10 agricultural landscape species positioned
along a forest to open landscape gradient and (ii) the species
richness of farmland and forest birds. Using this index measured at
nine different radii we estimated the predictive performance of the
individual species and species richness distribution models to
determine whether there was an optimum radius for predicting the
distribution of ten bird species found in the study area and two
species richness metrics using the NFC.
2. Methods

2.1. Study area, sampling design and bird species

The study area is located on the “Vallées et Coteaux de Gas-
cogne” Long Term Ecological Research (LTER) site in South West
France centred on the point with geographic coordinates
N43�1505300, E0�5105000. It is a hilly region where agriculture is
devoted to mixed crop-livestock systems and landscapes are a
mosaic of diversified land uses including forest patches and
hedgerows. We carried out three bird survey campaigns, in 1990,
1995 and 1998, in a zone made up of wooded and unwooded areas
(Appendix 1). Bird sampling consisted of 1064 point counts (676
point counts in 1990, 280 in 1995 and 108 in 1998), using 125 m
point count radius which corresponds to the extent of the home
range for most species of passerine birds (East and Hofer, 1985;
Naefdaenzer, 1994). This large sample is well adapted to the
building of predictive models (Wisz et al., 2008).

Point counts were stratified according to the agricultural land-
scapes’ forest cover gradient (from 0 to 100% of forest cover,
mean ¼ 23%). The dominance of open spaces was linked to the fact
that this is an agricultural area with a dispersion of small wooded
fragments. Furthermore, because of the spatial resolution of the
Spot 4 satellite image used (20 m), the smallest wooded elements
and some hedgerows were under-represented. We continued to
use this map dating from 1998 with this resolution because we
wanted to be as synchronous as possible with the bird data dating
from the 90s.We checked that the forest cover in the study area had
remained stable between 1990 and 2000, corresponding to the
sampling period (Guyon et al., 1999; European forest map available
for these two 2 dates and Pekkarinen et al., 2009;<http://forest.jrc.
ec.europa.eu/forest-mapping/forest-cover-map).

The bird presenceeabsence data were taken from 20-min point
counts carried out each sampling year in the month of May be-
tween 6 and 11 a.m., during the peak of vocal activity, in the
absence of heavy wind and rain. Counting only began 3 min after
arrival at the point in order to limit the disturbances caused by the
observer to the detection of individuals.

We selected 10 species (Table 1) on the basis of their preference
along the forest to open landscape gradient (see Balent and
Courtiade, 1992), which made it possible to choose species associ-
ated with open, forest, and intermediate habitats. All the selected
species have an occurrence of more than 20 (Table 2) which is
sufficient to avoid problems of modelling rare species (Stockwell
and Peterson, 2002). We also calculated species richness for the
1064 point counts as the sum of all present species, excepted large
species (e.g. raptors, corvids) with home range larger than the point
count area, and human-related species (e.g. sparrows, swallows)
because they are gregarious and closely related to human settle-
ments. Because all bird species were not expected to respond
uniformly to the wooded gradient, we calculated separately rich-
ness for forest bird species (as identified in Balent and Courtiade,
1992) and for farmland bird species (as identified in Filippi-
Codaccioni et al., 2010). All scientific bird names are available in
Appendix 2.

2.2. Calculation of the forest influence index at different smoothing
radii

For each point count, we calculated the NFC, varying between
0 and 1, from the area of all the forest patches present in a given
radius, weighting it in inverse proportion to the distance of each
forest patch to the calculation point by means of a decreasing
exponential function (Lauga and Joachim, 1992). This is a contin-
uous variable that can be calculated at every point of the territory
(Lauga et al., 1996). The NFC is calculated using a binary classifi-
cation of a Spot 4 image taken from a satellite in 1998. Each pixel
(20� 20 m) takes the value 1 or 0 depending onwhether or not the
pixel is wooded. A layer with the 1064 georeferenced point counts
is superimposed to the classified image. We obtained these maps
using the Idrisi software after a supervised image classification. The
radius referred to the shortest distance (i.e. in an orthogonal di-
rection) between the focal cell and the side of the square window.
We calculated the NFC for nine different concentric radii (Table 2).
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Table 2
Correspondence in number of pixels and surface area (ha) of the nine smoothing
radii used for square moving window to calculate the Neighbouring Forest Cover: 1
pixel ¼ 20m.

Radius abbreviation Radius size (m) Number of pixels Area (ha)

R1 110 11� 11 4.84
R2 210 21� 21 17.64
R3 310 31� 31 38.44
R4 410 41� 41 67.24
R5 510 51� 51 104.04
R6 610 61� 61 148.84
R7 710 71� 71 201.64
R8 810 81� 81 262.44
R9 910 91� 91 331.24
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2.3. Modelling and estimate of the predictive quality of the models

The different steps of the analysis are illustrated Fig. 1. We
constructed generalized linear models (GLMs) with binomial dis-
tribution to link the presenceeabsence data of each species to the
NFC measured at nine different radii. We used GLMs with Poisson
distribution to model species richness metrics (nine models per
species and per species richness metric). We compared models
with and without quadratic term of NFC on the basis of the Akaike
Information Criterion (AIC) (Burnham and Anderson, 2002). AIC is a
parsimonious approach that covers both model fit and parameter
number. We tested the predictive performance of models with the
smallest AIC values.

To account for spatial autocorrelation, we added auto-covariate
terms (i.e. autologistic and autopoisson models, Augustin et al.,
1996; Lichstein et al., 2002). These terms estimated how much
the response variable at one site reflects the response values at
neighbouring sites. To check whether each level term properly
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Fig. 1. Summary of statistical analysis for the n ¼ 10 species (- - -) and the k ¼ 2
communities ( ). NFC: neighbouring forest cover index, P/A: presence/absence of
birds, SR: species richness, SBB: spatial block bootstrap, rs: resampling, AUC: area
under roc curve, and r: Spearman rank correlation value.
accounted for autocorrelation, we used difference of coding test
(Guyon, 1995, p. 195), it is an efficient test and the reference dis-
tribution is a c2.

To assess the predictive performance of the models for the
selected 10 species, we compared the predictions and the obser-
vations using the AUC “Area Under the ROC Curve” criterion (Egan,
1975). This criterion is often used to assess the capability of the
models to distinguish between occupied sites and unoccupied sites
(Pearce and Ferrier, 2000). The reliability of the predictions is
considered to be null for AUC values lower than 0.5, poor when the
AUC values are comprised between 0.5 and 0.7, satisfactory for
values between 0.7 and 0.8 and good when they are higher than 0.8
(Metz, 1986; Swets, 1988; Manel et al., 1999). We compared pre-
dictions and observations of species richness metrics using the
Spearman Rank Correlation (r coefficient). This method provides an
indication of similarity between the ranks of the observed and
predicted values. It varies from �1 to þ1. The correlation is
considered to be weak for r values between 0 and 0.25 (or 0 and e

0.25), fair for r values between 0.25 and 0.5 (or �0.25 and �0.5),
moderately strong for r values between 0.50 and 0.75 (or �0.5
and �0.75) and very strong for r values higher than 0.75 (or �0.75)
(Colton, 1974).

We used a bootstrap procedure to get the variation of the AUC
and r coefficients. Because there were spatial dependence and the
locations of point counts were irregularly spaced, we used the
procedure of boostrap with spatial block described in Lahiri and
Zhu (2006). With respect to the correlation study based on autor-
egressive models, we chose a grid for the bootstrap block that
corresponded to a square of 5 lines and 5 rows of the grid part of the
sample.

3. Results

3.1. Responses to NFC index

The direction of the response curves differed depending on the
species (Fig. 2). Five species had a probability of occurrence which
decreased with the NFC and five species had a probability of
occurrence which increased with the NFC. For some species, the
shape of the response changed among radii. For example, for
common chaffinch the response was linear for smaller radii and
became quadratic with the increase in the radius size.

3.2. NFC index as predictor of bird distribution

In this part, we present AUC value for each species for the best
radius. The European robin and the song thrush had AUC values
higher than or equal to 0.8 (Table 1a). In 6 cases out of 10 (for
skylark, common chaffinch, common chiffchaff, common white-
throat, European stonechat and Eurasian wren) the AUC values
were satisfactory and comprised between 0.7 and 0.8. The species
corn bunting and woodlark had a poor AUC value (0.68 and 0.65,
respectively) (Table 1a). Mean r values calculated from the species
richness of farmland and forest birds were moderately strong
(Table 1b).

3.3. NFC radius and prediction of bird species distribution

The differences between the AUC values for the different radii
were quite small but were nevertheless sufficient to determine
optimum radii for the different species. Optimum radii for pre-
dicting the distribution of skylark were 110 m and 210 m, corre-
sponding to a surface area between 5 and 18 ha (Fig. 3a). For
predicting the distribution of corn bunting, woodlark and European
robin, optimum radii were 110 m to 310 m which, on the moving



Fig. 2. (a) Probability of occurrence of the 10 bird species and (b) species richness of farmland and forest birds, in function of the Neighbouring Forest Cover (NFC) (R1: black; R2:
blue; R3: green; R4: yellow; R5: orange; R6: red; R7: pink; R8: purple; R9: brown). Letters in brackets refer to the habitat type of bird species (O for open, C for closed and I for
intermediate). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Box plots of (a) the AUC values for the 10 bird species and (b) the Rho values for the farmland and forest birds, in function of the Neighbouring Forest Cover (NFC) calculated
at different smoothing radii. The vertical lines represent the interquartile intervals and the circles represent the exterior values.

C. Pelosi et al. / Journal of Environmental Management 136 (2014) 54e6158



Fig. 3. (continued).
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square window, corresponded to a surface area between 5 and
38 ha. For common chaffinch and European stonechat, the opti-
mum radii were 210 m and 310 m (Fig. 3a; Table 2). For common
chiffchaff the optimum was situated between 38 and 104 ha
whereas it was between 67 and 104 ha for song thrush and at
104 ha for Eurasianwren (Fig. 3a). Lastly, the results did not make it
possible to determine precisely an optimum radius for the species
common whitethroat (between 110 m and 610 m) (Fig. 3a).

Moreover, the differences between the r values allowed deter-
mining optimum radii for the species richness metrics. Optimum
radii for predicting the distribution of farmland birds were 110 m
and 210 m, corresponding to a surface area between 5 and 18 ha
(Fig. 3b). It was not possible to determine precisely an optimum
radius for the species richness in forest birds (between 110 m and
410 m) (Fig. 3b).

4. Discussion

The NFC (Neighbouring Forest Cover) is a good predictor of
distribution for most of the bird species examined in this study. The
AUC values are at least satisfactory (AUC �0.7) in 70% of cases. They
were lower than 0.7 for two open-habitat species (corn bunting and
European stonechat) and one intermediate-habitat species
(woodlark). In agreement with the results obtained by Lauga and
Joachim (1992) for three forest-habitat species, the presencee
absence of species favoured by forest cover is well predicted by the
model developed in this study. This is the case for the European
robin, a strictly forest species in South West France (AUC ¼ 0.81).
The three other forest-habitat species (common chaffinch, common
chiffchaff and song trush) were also predicted well by the models.
Among the most poorly predicted species were two open-habitat
specialist species (corn bunting and European stonechat), and
one-intermediate species (woodlark), which had the lowest mean
AUC value. However, mean AUC values for these three species were
close to 0.7 that corresponds to a satisfactory value (see Section
2.3). The presenceeabsence of open-habitat species is thus well
predicted by themodel, but not as well as for forest-habitat species.
This result can be explained by the fact that themodel does not take
into account the agricultural landscape elements likely to influence
those open-habitat species, e.g. hedges or grasslands. This is
particularly true for woodlark which is considered to be associated
with shrub cover (Nikolov, 2010) that the NFC does not take into
account. Instead, most of the biological needs (i.e. nesting, feeding)
are taken into account with the NCF for forest-habitat species.
Species richness of both farmland and forest bird species were
moderately predicted by the models using the NFC, showing that
the NFC is also a satisfactory predictor of species richness of open
and forest-habitat specialist birds in agricultural landscapes.

To summarise, the used model reliably predicts the distribution
of bird species that show an increasing or decreasing monotonic
response to forest cover, using only a satellite image with a mod-
erate spatial resolution (i.e. 20 m), which only captures the largest
forest patches. Our results are in agreement with those of Segurado
and Araujo (2004) and of Hernandez et al. (2006) who show that
the end-of-gradient species (forest and open habitat) are better
predicted than those in the middle of the gradient. These species
can be seen as specialists for which it is easier to determine and
predict habitat preferences than for generalists.

The comparison of the predictive performance of the model at
different radii for each species shows moderate differences be-
tween species. Moreover, generally, one species well predicted well
at 110 m remains well predicted at 710 m even if the general trend
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tends towards degradation in the models’ predictive performance
when the smoothing radius increases from 110 m to 710 m. Opti-
mum radii for predicting the distribution of the studied bird species
range between 110 and 310 m or close to 510 m for some species. It
is important to note that for 6 of the 10 species studied, the opti-
mum radius for predicting the distribution is situated between
about 110 and 310 m, which show that it is possible to find a
common range of radii for the majority of the species. Indeed, these
species seem to be influencedmore by the local context than by the
landscape context because our results show that on average the
local distribution of species is predicted better with the local factors
(small smoothing radii). Likewise, Cushman and McGarigal (2004)
found that plot-level factors were better predictors of bird com-
munity structure than landscape-level factors in the Oregon Coast
Range. In complex Mediterranean landscapes Coreau and Martin
(2007) have shown that most bird species were correlated with
at least two different scales of landscape description. DeMars et al.
(2010) have shown the negligible impact of the landscape context,
measured at different scales, on the frequentation of isolated trees
by birds in agricultural landscapes, tree size and architecture being
more important factors. Pickett and Siriwardena (2011) have
demonstrated the influence of agricultural landscape heterogeneity
on the abundance of most bird species on different scales, but they
suggest that an increased heterogeneity does not always have a
positive effect, in particular on the abundance of rare species that
are under threat. The results are therefore variable from one study
to another, and even contradictory according to the landscape
context, the chosen species and the landscape description methods
used. The variety of ways of explaining the structure and dynamics
of landscapes using a multi-scale approach seems to us to consti-
tute an obstacle to the comparability of the results provided by
different studies. The NFC has the virtue of being simple and uni-
versal. It is possible everywhere today to obtain a binary wood/
non-wood map based on a satellite image. It is therefore possible
to compare the effect of a habitat on the presenceeabsence of birds
on different scales. We are currently considering an approach
which would combine, at every point of a territory, the influence of
woods, hedges, grasslands, crops and dwelling places, etc.

5. Conclusions

This study presents results that may be helpful for predicting
bird presenceeabsence and bird species richness in agricultural
landscapes. Although it is acknowledged in the literature that
species respond in different ways to their environment according to
their living traits and that they select their habitat according to
different factors, our study shows that the distribution of several
species of birds can be predicted effectively by the presence/
absence of wooded elements in their immediate environment (less
than 500 m). It is therefore possible, in the biogeographical and
landscape context of our study, to examine the surface area of the
wooded elements in areas of between 5 and 38 ha, corresponding
to the smoothing radii for which the models perform best, to pre-
dict the distribution of a bird population and for community con-
servation purposes. Further research will be required to confirm
and refine these results.
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