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 34 

Abstract: 35 

Dopamine is a neurotransmitter crucial for motor, motivational, and reward-related 36 

functions. Our aim was to determine the effect of a palatable maternal diet on the 37 

transcriptional regulation of dopaminergic-related genes during perinatal development of 38 

the offspring. For that, female offspring from dams fed with a control (CON) or a cafeteria 39 

(CAF) diet were sacrificed on embryonic day 21 (E21) and postnatal day 10 (PND10). 40 

Using micropunch techniques, ventral tegmental area (VTA) and nucleus accumbens(NAc) 41 

were isolated from brain´s offspring. Bioinformatic analysis of the promoter regions, 42 

mRNA quantification and methylation studies were done. The increase in tyroxine 43 

hidroxylase (TH), dopamine receptor (DRD) 1 and ghrelin receptor (GHSR) expression in 44 

VTA and NAc from E21 to PND10 was correlated with changes in DNA methylation of 45 

their promoter regions. Maternal diet did not affect the expression patterns in E21.At 46 

PND10, maternal CAF diet decreased the transcription of TH, GHSR, DRD2 and dopamine 47 

transporter (DAT) in VTA. Interestingly, the changes in TH, DRD2 and DAT expression 48 

were related to the methylation status of their promoters. In NAc, maternal CAF diet 49 

reduced DRD1, DRD2 and DAT expression in the offspring at PND10, although 50 

alternations in the methylation patterns were only detectedin DAT promoter. These results 51 

show the importance of maternal nutrition and provide novel insights into the mechanisms 52 

through which maternal junk-food feeding can affect reward system during development 53 

and early postnatal life. Particularly important is the expression decline of DRD2 given its 54 

physiological implication in obesity and addiction. 55 

 56 

Highlights  57 

1. Maternal cafeteria diet decreased the transcription of TH, DRD2 and DAT in the 58 

ventral tegmental area of neonatal offspring. 59 

2. In nucleus accumbens, maternal cafeteria diet reduced DRD1, DRD2 and DAT 60 

expression at postnatal day 10. 61 

3. The methylation status of dopaminergic gene promoters was affected by maternal 62 

diet. 63 
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Abbreviations  64 

ACT: activator 65 

AP: activator protein 66 

C/EBP: CCAAT/enhancer-binding protein 67 

CAF: cafeteria 68 

CRE: cAMP response element 69 

CREB: cAMP response element-binding protein 70 

DA: dopamine 71 

DAT: dopamine transporter 72 

DRD: dopamine receptor 73 

E: embryonic day 74 

GHSR: ghrelin receptor 75 

GRE: glucocorticoid response element 76 

HFD: high fat diet 77 

INH: inhibitor 78 

NAc: nucleus accumbens 79 

NF-1: nuclear factor 1 80 

NF-AT: nuclear factor of activated T cells  81 

Sp1: selective promoter factor 1 82 

TH:tyrosine hydroxylase  83 

VTA: ventral tegmental area 84 

 85 

Introduction 86 

Obesity represents one of the major public health problems in the world and it is mainly 87 

caused by overeating and physical inactivity. Palatable, or high-fat, high-sugar, foods 88 

activate the dopaminergic signaling pathways within the mesolimbic reward system 89 

(Berthoud, 2006; Fulton, 2010). Dopamine (DA) is a neurotransmitter crucial for motor, 90 

motivational, and reward-related functions of the central nervous system(Cragg and Rice, 91 

2004)and is also associated with the gratifying effects of sex and drugs of abuse (Nestler 92 

and Carlezon, 2006). This neurotransmitter is produced in the dopaminergic neurons of the 93 

ventral tegmental area (VTA)by the action of the tyrosine hydroxylase (TH) (Baik, 2013a, 94 
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2013b). Interestingly, it was shown that there is a high degree of co-expression of TH and 95 

ghrelin receptor (GHSR) in VTA in adults (Zigman et al., 2016a, 2016b). It is well known 96 

that ghrelin impairs VTA by inducing DA release and stimulating food intake (Fulton, 97 

2010); thus, GHSR-TH coexistence suggests a possible coordinated regulation of DA 98 

levels. VTA dopaminergic neurons project to the nucleus accumbens (NAc), where DA is 99 

released and binds to specific DA receptors (DRD1 and DRD2). This nucleus receives 100 

sensitive information from various regions, and then projects to the hypothalamic and 101 

midbrain areas that contribute to the motor action of food (Valdivia et al., 2014). NAc 102 

mediates reward effects in response to natural stimuli and is where termination of DA 103 

signaling occurs through reuptake by the active DA transporter (DAT)(Cragg and Rice, 104 

2004). Prolonged exposure to palatable food in adult rodents is associated with behavioral 105 

and neurophysiological adaptations comparable to those seen in drug addicts. In particular, 106 

desensitization of the central reward pathway, which then drives continued 107 

overconsumption(Ong and Muhlhausler, 2011). 108 

Several epidemiological and experimental studies have demonstrated that susceptibility to 109 

obesity can have its origins early in life and can be influenced by the nutritional experience 110 

during critical periods of fetal and early postnatal development. In rodents, an experimental 111 

model used to reproduce the characteristics of the Western obesogenic food is the cafeteria 112 

diet (CAF) (Sampey et al., 2011).Numerous authors reported that exposure to a maternal 113 

diet dominated by palatable food and/or high-fat diet before and during pregnancy and 114 

throughout lactation, disturb glucose and lipid homeostasis, predispose to adiposity, modify 115 

food preference, alter the development of the central reward circuitry and  modify the 116 

expression of brain genes such as DAT, DRD1 and DRD2 in the offspring after birth and 117 

later in life (Akyol et al., 2009; Bayol et al., 2007; Bayol et al., 2008; Chen et al., 2008; 118 

Ong et al., 2012; Ong and Muhlhausler, 2011; Sarker et al., 2018; Vucetic et al., 2010). 119 

However, there are no prior reports about the effects of these maternal diets on the 120 

dopaminergic reward system during perinatal periods. 121 

Metabolic and eating disorders are associated with alterations in the DNA methylation 122 

pattern of particularly genes, such as TH and DAT(Vucetic et al., 2012). DNA 123 

methylation represents one of the most important epigenetic mechanisms for blocking gene 124 

expression and implicates the addition of methyl groups to CpG dinucleotides. A CpG 125 

https://www.sciencedirect.com/topics/medicine-and-dentistry/dna-methylation
https://www.sciencedirect.com/topics/medicine-and-dentistry/dna-methylation
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cpg-site
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island is a DNA sequence generally greater than 250 bp that is rich in CpG sitesand, thus, 126 

ithas a key role in transcriptional control(Deaton and Bird, 2011).In this context, DNA 127 

methylation provides a mechanism by which maternal diet can modify the predispositionof 128 

the offspring to obesity-associated disordersor other pathologies.  129 

In the present study, we hypothesized that maternal CAF diet is associated with alterations 130 

in the epigenetic control of dopaminergic system of the reward pathway in early postnatal 131 

development. Thus, the objective of our work was to analyzed the transcriptional regulation 132 

of dopamine-related genes in the brain of female offspring (F1),from dams fed with 133 

standard chow and CAF diet,at embryonic day 21 (E21) and postnatal day 10 (PND10). 134 

The study was performed in two discrete brain reward areas, NAc and VTA, using 135 

microdissection techniques. This experimental model allowed us to study the individual 136 

and combined effects of age (E21 vs. PND10) and maternal diet (CON vs. CAF) on the 137 

mRNA expression of dopaminergic genes and the DNA methylation mechanisms that are 138 

involved in their control. 139 

 140 

Experimental Procedures 141 

 142 

Animals an experimental design 143 

Wistar female rats were obtained from the Department of Human Physiology of the School 144 

of Biochemistry and Sciences (UNL). All animals´ procedures were approved by the 145 

Ethical Committee of the School of Biochemistry and Biological Sciences (UNL, Santa Fe, 146 

Argentina) and designedin accordancewith the Guide for the Care and Use of Laboratory 147 

Animals issued by the U.S. National Academy of Sciences (Commission on Life Sciences, 148 

National Research Council, Institute of Laboratory Animal Resources, 1996). 149 

Rats were housed two per cage,at 22 ± 2 °C and with a 12-h light–dark cycle, and fed with 150 

either standard chow (CON) or a cafeteria diet (CAF) (N= 10/group) from weaning. The 151 

standard chow (Cooperación, ACA Nutricion Animal, Buenos Aires, Argentina) provided 152 

12.55 KJ/g, 5% energy as fat, 23% protein and 72% carbohydrate. The CAF diet was 153 

composed of standard chow and food that reflects variety, palatability, and energy density 154 

(parmesan cheese, cheese flavored snacks, crackers, sweet biscuits, pudding, and 155 

chocolate). This diet provided an average of 20.29 KJ/g, 49% of energy as fat, 7% as 156 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cpg-site
http://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/fat
http://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/carbohydrate
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protein, and 44% as carbohydrate, in addition to that provided by the standard chow. 157 

Dietary composition and treatment procedure are described in Lazzarino et al. (2017).  158 

On the 14th week of treatment,when CAF animals were significantly heavier of that than 159 

the CON, females were mated with male rats that were housed under standard laboratory 160 

conditions during all the experiment (22 ± 2 °C, 12-h light–dark cycle, fed with standard 161 

chow).After mating, each dam was single caged and continued with the respectively diet. 162 

Five dams per diet groupwere euthanized on embryonic day 21(E21).The rest of the 163 

animals (N=5/group) were maintained and at day 1 after delivery each litter was adjusted to 164 

8 pups per dam. At postnatal day 10 (PND10), pups were euthanized.During all the 165 

experimental period, dam body weight and energy intake were recorded weekly and litter 166 

weight was measured daily. After euthanization, female fetus and pups brains (named as 167 

E21-CAF, E21-CON, PND10-CAF and PND10-CON) were removed, frozen on dry ice 168 

and stored at −80 °C until sectioning for RNA and DNA analysis. 169 

 170 

Micropunches of VTA and NAc  171 

Following the procedure of microdissection technique described by Palkovits (Palkovits 172 

and Brownstein, 1988), embryo and pup brains were cut in a cryostat at −12 °C (serial 173 

coronal sections of 150μm).To identify and punch VTA and NAc regions, theatlas of the 174 

developing rat nervous system(Paxinos et al. 1994) and atlas of the postnatal rat brain in 175 

stereotaxic coordinates(Khazipov et al. 2015) were used. Both areas were removed 176 

bilaterally using a 0.5 mm stainless steel micropunch needlesand the reproducibility was 177 

checked analyzing the topography of the holes under a stereo microscope (Stemi 305, 178 

Zeiss, Oberkochen, Germany). Samples were stored at −80 °C until RNA and DNA 179 

isolation.  180 

 181 

Reverse transcription and real-time quantitative PCR analysis (qRT-PCR) 182 

VTA and NAc areas(N=8/group) were homogenized in TRIzol (Invitrogen, Carlsbad, CA, 183 

USA), and total RNA was isolated. 1 μg of RNA were reverse-transcribed into cDNA with 184 

Moloney Murine Leukemia Virus reverse transcriptase (10 units; Promega, Madison, WI, 185 

USA) as previously described(Rossetti et al., 2015) and final product was diluted with 186 

nuclease-free water to a final volume of 60 μl. 187 

http://www.sciencedirect.com/science/article/pii/S0303720717302538?via%3Dihub#bib46
http://www.sciencedirect.com/science/article/pii/S0303720717302538?via%3Dihub#bib46
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Reverse-transcribed products were combined with HOT FIRE Pol Eva Green qPCR Mix 188 

Plus (Solis BioDyne; Biocientífica, Rosario, Argentina) and 10 pmol of each primer 189 

(Invitrogen) and further amplified in duplicate using Real-Time DNA Step One Cycler 190 

(Applied Biosystems Inc., Foster City, CA, USA).The primer pairs used are detailed in 191 

Table 1 and the protocol for real-time quantitative PCR is described byRossetti et al. 192 

(2015). 193 

 194 

Table 1. Sequences of primer oligonucleotides for PCR amplification. 195 

Target Primer sense Primer antisense 

Temperature of 

annealing (°C) 

L19 

(housekeeping) 
5´- AGCCTGTGACTGTCCATTCC  -3´ 5´- TGGCAGTACCCTTCCTCTTC -3´ 

60 

TH 5´-TACCAAGATCAAACCTACCAGCC-3´ 5´-GGTCAAACTTCACAGAGAATGGG-3´ 58 

DRD1 5´-TCCAAGGTGACCAACTTCTT-3´ 5´-GTTACAAAAGGACCCAAAGG-3´ 55 

DRD2 5´-CCCAGCAGAAGGAGAAGAAA-3´ 5´-CAGGATGTGCGTGATGAAGA-3´ 55 

DAT  5´-CATCACCACCTCCATTAACTCC-3´ 5´-CATTGTGCTTCTGTGCCATG-3´ 56 

GHSR 5´-GCTCTGCAAACTCTTCCA-3´ 5´-AAGCAGATGGCGAAGTAG-3´ 56 

 196 

Bioinformatics 197 

TH, DRD1, DRD2, DAT and GHSR promoters were analyzed for: a) CpG islands using 198 

MethPrimer program (http://www.urogene.org/cgi-bin/methprimer/methprimer.cgi; 199 

RRID:SCR_010269); b)restriction sites for SmaI (New England BioLabs, Beverly, MA, 200 

USA), BstUI(New England BioLabs) or Mae II (Roche Applied Science, Indianapolis, IN, 201 

USA); and c) potential binding sites for transcription factors with the bioinformatic tool 202 

PROMO (http://alggen.lsi.upc.es/cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3; 203 

RRID: SCR_016926) (Messeguer et al., 2002). PCR primers were designed with the online 204 

software NCBI Primer-BLAST (National Center for Biotechnology; 205 

https://www.ncbi.nlm.nih.gov/tools/primer-blast/; RRID: SCR_003095; Table 2). 206 

 207 

Table 2. Sequences of primer oligonucleotides for PCR amplification to evaluate methylation sensitive sites in 208 

promoters. 209 

Target Primer sense Primer antisense 
Temperature of 

annealing (°C) 

TH IC 
5´- CCATCAGATTTACCTAGAAGC-3´ 

 

5´-TGAGACTATGAAGGGACATTG-3´ 

 

51.5 

http://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/promoter-genetics
http://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/cpg-site
http://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/restriction-site
http://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/binding-site
http://www.sciencedirect.com/topics/medicine-and-dentistry/transcription-factor
http://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/primer-molecular-biology
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
http://www.sciencedirect.com/science/article/pii/S0303720717302538?via%3Dihub#tbl2
http://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/methylation
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TH-MaeII 5´-ACAGCAGGCGTGGAGAGGAT-3´ 5´-TGGTGGTCCCGAGTTCTGTC-3´ 60 

TH-MaeII b 5´-CCTTAGGAAATCCAGCATGG-3´ 5´-ATTGCATCCACTGTCACAGG-3´ 57.7 

TH-MaeII c 5´-CATGTGGCTGCTCCTATGTA-3´ 5´-GAGAGAGATTGGCACACACA-3´ 52.6 

DRD1 IC 5´-GTGGTGAGAATCCCCTCAGG-3´ 5´-AGTTCCACAGGCGGAGAACC-3´ 55 

DRD1-MaeII 5´-CAGGCAAAGAGGTTCACAAG-3´ 5´-CCGCCATCTAAACAGTTACC-3´ 54.6 

DRD1-BstUI 5´-AGCAGGAAACCACAGGCACC-3´ 5´-GCTTCTGCGGTCAACTCACG-3´ 60 

DRD2 IC 5´-AATTCTGTGGTGCCTTCTCCT-3´ 5´-ATGGGGTCAATCCAGAGTAGA-3´ 55 

DRD2-BstUI 5´-AGTGCAGAGATAGTTCTGGG-3´ 5´-AGAAGCCACAGACTGTCGTT-3´ 63 

DAT IC 5´-TTTGGGGTCTCAACTAGAAA-3´ 5´-TAAGACCTTTTCAGAACCCA-3´ 55 

DAT- BstUI 

(a)/MaeII  
5´-CTTCTGACAACCTCGCTGGA-3´ 5´-GGGGCTTGACAGGAGTCTTT-3´ 

60 

DAT- BstUI 

(b)/SmaI 
5´-CGTACAACACCGAAGGAAGA-3´ 5´-CGAGGTTGTCAGAAGCAGAT-3´ 

57.7 

GHSR IC 5´-TCCAGCATACTCCTTATCCA-3´ 5´-TGGCAATCTTAGAACACACC 54.6 

GHSR-

BstUI(a)/SmaI 
5´-TACGCCACGGTCCTCACCAT-3´ 5´-ACGCTGGACACCCACACCAT-3´ 

61 

GHSR-

BstUI(b)/MaeII 
5´-TCTCCCTTTCCTCTCCAAGC-3´ 5´-TTCGTCAGGCAGTGAGTCGT-3´ 

61 

IC: Internal Control. 210 

 211 

Methylation-sensitive analysis  212 

Genomic DNA from VTA and NAc areas (N= 8/group) was isolated using the 213 

phenol/chloroform/isoamyl alcohol extraction and digested with 1 unit of  SmaI/Mae II or 214 

10 units of BstUI and 1X enzyme buffer for 1 h at 25°C, 60 °C or 50 °C, respectively. After 215 

purification with the Wizard SV gel and PCR Clean-Up System Kit (Promega, Madison, 216 

WI), an optimized qRT-PCR protocol was used to analyze the relative methylation levels of 217 

various regions of the TH, DRD1, DRD2,DAT and GHSR promoters (Table 2). The 218 

procedure for DNA amplification was previously described by our group in several studies 219 

(Lazzarino et al., 2017; Rossetti et al., 2018; Rossetti et al., 2016; Rossetti et al., 2015). 220 

 221 

Statistical analysis 222 

G Power software (http://www.gpower.hhu.de/; RRID:SCR_013726)was used to determine 223 

the sample size (Faul et al., 2007). To confirm the normal distribution of the data and 224 

variance homogeneity,Shapiro–Wilk test and Levene's test were performed. Weekly body 225 

weights,nutrient intake and energy intakewere analyzed using Student's T test; while a two-226 

way ANOVA followed by Bonferroni post-test was implemented to study the ageand diet 227 

http://www.gpower.hhu.de/
https://scicrunch.org/resolver/SCR_013726
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effects on mRNA and DNA methylation.All the datais expressed as the means ± SEM and 228 

was statistically analyzed using the IBM SPSS Statistics 19 software (IBM Inc.; 229 

RRID:SCR_002865), considering significant differences at p<0.05. 230 

 231 

Results 232 

Effects of CAF diet on dams´body weight, nutrient intake andenergy intake.  233 

The body weights of dams fed with CAF diet increased from week 10 of dietary 234 

intervention and on the 14th week of treatment (CAF: 266.5±2.92 g; CON: 240.5±3.1 g; 235 

p<0.05) females were mated with male rats. During pregnancy, CAF dams significantly 236 

increased gestational weight gain in comparison with those fed the control diet (Fig 1a). In 237 

addition, energy intakes over the pre-pregnancy (Week 2 to 14) and pregnancy (Week 16 to 238 

18) period remained significantly higher in CAF rats when compared with CON animals 239 

(Fig. 1b). Moreover, CAF ratsconsumed a significantly greater percentage of their daily 240 

energy intake as fat, and significantly less as protein than CON rats (Fig 1c), during all the 241 

experiment.  242 

 243 

 244 

 245 

 246 

 247 

 248 

 249 

 250 

 251 

 252 

 253 

 254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 

 264 

 265 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

50

100

150

200

250

300

350

400
CAF Dams

CON Dams

* * * *

Pre-gestational Gestational

*
*

*
*

*

*
*

*

Time (week)

B
o

d
y
 w

e
ig

h
t 

(g
)

A) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

50

100

150

200

250

300

350

400

450

*
* *

*
*

*

*

*

Pre-gestational Gestational

*
** *

*
* *

Time (week)

E
n

e
rg

y
 I

n
ta

k
e

 (
k

J
/d

a
y

)

B) 



10 

 

 266 

 267 

 268 

 269 

 270 

 271 
 272 

 273 

 274 

 275 

 276 

 277 

Fig 1. Body weight (A), energy intake (B) and nutrient intake (C) of dams fed with a control (CON) or a cafeteria 278 

(CAF) diet during pre-gestation (Week 1 to 14) and gestation (Week 15-18) periods(N=10/Group). * indicates 279 

significant differences at p < 0.05 vs. CONgroupby Student's T test. 280 

 281 

Effects of CAF diet on the body weight of the offspring. 282 

Pups of dams fed with a CAF diet had a significantly lower weight (p<0.05) than those 283 

from a CON diet from birth to PND10 (Fig. 2). It is interesting to note that during this 284 

period no apparent differences were detected in maternal behavior between CON and CAF 285 

groups. At E21no significant differences were detected (data not shown). 286 

 287 

 288 

Fig 2. Body weightof pups from dams fed with a control (PND10-CON) or a cafeteria (PND10-CAF) diet from 289 

birth up to post-natal day 10 (PND10).Values are means, with standard errors represented by vertical 290 

bars(N=16/Group). * indicates significant differences at p < 0.05 vs. CON groupby Student's T test. 291 

 292 

Maternal CAF diet modifies the mRNA expression of dopamine-related genes in the 293 

reward brain system of the offspring at early postnatal development. 294 
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To analyze the effect of maternal CAF diet on dopaminergic reward system in the offspring 295 

before and during gestation and lactation periods, we analyzed the expression of molecules 296 

that are involved in the synthesis, transport and reuptake of DA in two key regions of the 297 

reward system, VTA and NAc, at E21 and PND10.  298 

In VTA, the two-way ANOVA revealed interactions between age and maternal diet for the 299 

expression of TH (p <0.01, F = 8,804), DRD2 (p <0.05, F=4.875), DAT (p<0.01, F=13.93) 300 

and GHSR (p<0.001, F=8.458) (Fig 3A). Maternal CAF diet decreased the expression of 301 

these genes in the offspring in PND10 (DPN10-CAF vs DPN10-CON, p <0.05), without 302 

affecting expression in E21 (E21-CAF vs E21-CON, p >0.05). In addition, the increase in 303 

age generated an increase on their transcription (E21 vs DPN10, p<0.05). Related to DRD1, 304 

mRNA levels were not found to be modified by maternal diet in VTA, but age increased 305 

the expression in the offspring (E21 vs PND10, p <0.01, F =48.86, Fig 3A). 306 

In NAc, the expression of DRD1 (p<0.05,F=7.369), DRD2 (p<0.01,F=10.01) and DAT 307 

(p<0.01, F=15.29)was affected by the interactions between age and maternal diet (Fig 3B). 308 

Their expression decreased in the offspring of dams fed with CAF diet in PND10 (DPN10-309 

CAF vs DPN10-CON, p <0.05); however, no expression changes were observed in E21. 310 

Age generated an increase in the transcription of these genes (E21 vs DPN10, p<0.05). TH 311 

and GHSR mRNA levels were not found to be modified by maternal diet in NAc, but age 312 

improved the expression in the offspring (E21 vs PND10, p <0.05, FTH = 10.31, 313 

FGHSR=5.29, Fig 3B).  314 
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Fig 3. Analysis of relative mRNA levels of dopaminergic related-genes and ghrelin receptor in ventral tegmental 371 

area (VTA, A) and nucleus accumbens (NAc, B) of the offspring in embryonic day 21 and on post-natal day 10 372 

from dams fed with control (E21-CON and PND10-CON, respectively) or cafeteria (E21-CAF and PND10-CAF, 373 

respectively) diet.Relative amounts of mRNA in E21-CAF, PND10-CON and PND10-CAF are showedas fold changes 374 

from those of E21-CON. The means ± SEM (N=8/group) are represented by columns and error bars. Significant 375 

differences at p < 0.05 by Bonferroni’s test after two-way ANOVA are denoted by different letters. TH: tyrosine 376 

hydroxylase, DRD1: dopamine receptor 1, DRD2: dopamine receptor 2, DAT: dopamine transporter, GHSR: ghrelin 377 

receptor. 378 

 379 

Transcriptional regulation of dopaminergic-related genes by DNA methylation in the 380 

reward brain system during development and in response to the maternal diet. 381 

To determine if the changes observed in the transcript levels of those genes are related to 382 

DNA methylation modifications, we analyzed in silicothe promoter regions of TH, DRD1, 383 

DRD2, DAT and GHSR and we determined the methylation state in the E21-CON, E21-384 

CAF, PND10-CON and PND10-CAF groups (Fig. 4 and 5).  385 

In VTA, DNA methylation levels of TH-MaeII c (p <0.05, F =5.545, Fig 4A), DAT-SmaI 386 

(p <0.05, F =6.943, Fig 4D) and GHSR-SmaI (p <0.05, F =26.91, Fig 5) sites were affected 387 

by the interactions between age and maternal diet. In TH-MaeII c and DAT-SmaIsites, 388 

maternal CAF diet increases methylation in the offspring in PND10 (DPN10-CAF vs 389 

DPN10-CON, p <0.05); in GHSR-SmaI this occurs in E21 (E21-CAF vs E21-CON, p 390 

<0.05); and in DRD2-BstUI this arises at both stages (E21 and PND10, p<0.05, F=21.95, , 391 

Fig 4C). On the other hand, age decrease methylation levels of TH-MaeII c site in the 392 

offspring of dams fed with CON diet in PND10 (E21-CON vs DPN10-CON, p<0.05). In 393 

addition, age decrease methylation levels of DRD1-BstUI and GHSR-MaeII sites in the 394 

offspring of dams fed with both CON and CAF diet in PND10 (E21 vs DPN10, p<0.0001, 395 

FDRD1= 42.35 and FGHSR=68.51, Fig 4B and 5). No differences were observed in 396 

methylation in the others studied sites (data not shown).  397 

In NAc, DNA methylation levels of DAT-SmaI(p <0.05, F =15.17), TH-MaeII b(p <0.05, F 398 

=23.66) and DRD1-MaeII (p <0.05, F =29.88) siteswere affected by the interactions 399 

between age and maternal diet. In the first site, maternal CAF diet increased methylation in 400 

the offspring in PND10 (DPN10-CAF vs DPN10-CON, p <0.05). Age also increased 401 

methylation levels in this site in the offspring from dams fed with CAF diet (E21-CAF vs 402 

DPN10-CAF). Contrary, age decreased DNA methylation levels of TH-MaeII b (p <0.005, 403 
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F = 13.26) and DRD1-MaeII (p <0.0001, F = 33.07) sites in the offspring from dams fed 404 

with CON diet (E21-CON vs DPN10-CON). No differences were observed in methylation 405 

of DRD2, DAT and GHSR sites (data not shown). 406 

 407 

 408 

 409 

 410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 
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418 

 419 

Fig 4. Methylation analysis of dopaminergic related genes. Tyrosine hydroxylase (TH, A), dopamine receptor 1 420 

(DRD1, B),dopamine receptor 2 (DRD2, C) and dopamine transporter (DAT, D) promoters were studied in the ventral 421 

tegmental area (VTA) and/or nucleus accumbens (NAc).TATA box, predicted binding sites for transcription factor, CpG 422 

islands and CG target sites for digestion by the methylation-sensitive restriction enzymes are indicated.Offspring on 423 

embryonic day 21 and on post-natal day 10 from dams fed with control (E21-CON and PND10-CON, respectively) or 424 

cafeteria (E21-CAF and PND10, respectively) diet was evaluated. Methylation levels of promoters in E21-CAF, PND10-425 
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CON and PND10-CAF are showedas fold changes from those of E21-CON. The means ± SEM (N=8/group) are 426 

represented by columns and error bars. Significant differences at p < 0.05 by Bonferroni’s test after two-way ANOVA are 427 

denoted by different letters.ACT: activator, AP: activator protein, C/EBP: CCAAT/enhancer-binding protein, CRE: 428 

cAMP response element-binding protein, CREB: cAMP response element-binding protein, GRE: Glucocorticoid response 429 

element, INH: inhibitor, NF-1: nuclear factor 1, NF-AT: nuclear factor of activated T cells (NF-AT), Sp1: selective 430 

promoter factor 1.  431 

 432 

 433 

 434 

Fig 5. Methylation analysis of ghrelin receptor (GHSR) promoter in the ventral tegmental area (VTA).  The 435 

offspring brain on embryonic day 21 (E21) and on post-natal day 10 (PND10) from dams fed with control (CON) or 436 

cafeteria (CAF) diet wasstudied. TATA box, activator protein (AP), cAMP response element-binding protein (CREB), 437 

selective promoter factor 1 (Sp1), CpG islands and CG target sites forBstUI, MaeII and SmaIare described.Methylation 438 

levels of promoters in E21-CAF, PND10-CON and PND10-CAF are indicated as fold changes from those of E21-CON. 439 

The means ± SEM (N=8/group) are represented by columns and error bars. Significant differences at p < 0.05 by 440 

Bonferroni’s test after two-way ANOVA are denoted by different letters. 441 

 442 

DISCUSSION 443 

The principal aim of the present study was to determine whether exposure to maternal CAF 444 

feeding had an impact on dopaminergic reward pathways during perinatal period, selecting 445 

a representative point of the embryonic stage (E21) and the lactation period (PND10). 446 

Additionally, we analyzed the developmental profile of dopaminergic-related genes 447 

between both stages (E21 vs. PND10). We hypothesized that epigenetic modifications may 448 

be involved in the transcriptional control of these genes.  To our knowledge, this is the first 449 

study reporting that: 1)- increase mRNA expression of TH, DRD1 and GHSR genes from 450 

E21 to PND10 in females is regulated by methylation mechanisms in VTA and/or NAc; 451 

https://www.sciencedirect.com/topics/medicine-and-dentistry/epigenetic-modification
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and 2) the offspring from dams fed with CAF diet showed alterations in the transcriptional 452 

regulation of TH, DRD2 and DAT genes in VTA and NAcat PND10. 453 

 454 

Changes in dopamine-relatedgene expression in VTA and NAc during early 455 

development are regulated by methylation mechanisms. 456 

 457 

The development of the dopaminergic system of the striatum in the rat begins during 458 

embryonic life and continues up to the 3rd postnatal week(Antonopoulos et al., 2002).  The 459 

first mesolimbic dopamine neurons can be identified in the rat brain in E12, although 460 

dopamine axon innervations are not complete until the 3rd week of postnatal life(Ong et al., 461 

2012). TH mRNA was found in brain tissues on early embryonic developmentE10-E12 and 462 

its specific activity increased from gestation to adulthood(Berger et al., 1985; Burgunder 463 

and Young, 1990; Marin et al., 2005). DRD1 and DRD2 receptors were detected in neural 464 

tissues on E14 and on E18 their localization was already similar to that observed in the 465 

adult brain. At birth, expression of mRNA for both dopamine receptor subtypes in the 466 

striatum approximated that seen in mature rats(Ong et al., 2012). In addition, DAT mRNA 467 

was first detected in neurons of the ventrocaudal mesencephalon on E14. By E18, intensely 468 

expressing neurons in the VTA and substantia nigra resembled the pattern found in adult 469 

midbrain(Fujita et al., 1993; Galineau et al., 2004).GHSR mRNA was found in the brain 470 

and spinal cord as early as E12 and continued to be expressed in these tissues during 471 

postnatal life(Steculorum and Bouret, 2011).Along the same line, we detected the mRNA 472 

presence of TH, DRD1, DRD2, DAT and GHSR in VTA and NAc areas at E21. Moreover, 473 

we showed that the transcriptional levels of these genes increased from E21 to PND10, 474 

suggesting that the development of the dopaminergic system in the rat continues from 475 

embryonic stage to the first weeks of life. 476 

We found that early changes in gene expression of TH, DRD1 and GHSR in VTA and NAc 477 

in female rats are accompanied by alterations in promoter DNA methylation. In PND10-478 

CON, we observed hypomethylation at the TH and DRD1 promoters (in VTA and NAc) 479 

and GHSR gene (in VTA), which may explain the increased mRNA expression of these 480 

genes, compared to E21-CON. We found that the DRD1 promoter was mostly methylated 481 

in two sites, one of it is located in a CpG Island (in VTA), while the other is a potential 482 
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binding site for the nuclear factor of activated T-cells (NF-AT) and for Elk-1 (in NAc). On 483 

the other hand, a potential binding site for ZF5 and forselective promoter factor 1 (Sp1) was 484 

predicted in the mostly methylated site within the GHSR promoter. Interestingly, these 485 

binding sites have been suggested to have a role in the regulation of dopaminergic related-486 

genes transcription; particularly, DRD1 and DAT (Groth et al., 2008; Lee et al., 2004; J. 487 

Wang and Bannon, 2005). Moreover, changes in the methylation patterns of these sites 488 

could be related to the brain area involved (as occurs in DRD1 promoter). Although the 489 

increase expression of DRD1, GHSR and TH mRNA in the rat brain was previously related 490 

to changes in methylation patterns (Gozen et al., 2013; Inoue et al., 2011; Vucetic et al., 491 

2012); we showed for the first time a relation between changes in the expression of these 492 

genes and age-associated methylations mechanisms. 493 

 494 

Maternal CAF diet decreased body weight and affects the transcriptional regulation 495 

of dopaminergic related-genesin the offspring during perinatal period. 496 

 497 

Maternal CAF diet significantly decreased the body weight of the offspring from birth to 498 

PND10. 499 

 500 

Dams fed with a palatable diet administered from weaning to adulthood significantly 501 

increased energy intakeand body weight gain compared to animals fed with the standard 502 

chowduring pre-pregnancy and pregnancy periods, as was previously reported by several 503 

authors(Akyol et al., 2009; Goularte et al., 2012; Lalanza et al., 2014; Lazzarino et al., 504 

2017). However, maternal CAF exposure significantly reduced the body weight of the 505 

pups, generating a decrease from birth (17%) to PND10 (30%). Bayol et al. (2007)found 506 

similar results in the offspring of dams fed with CAF diet at PND1 and PND21; while Ong 507 

and Muhlhausler (2011) observed a significant decrease in body weight at PND3. Contrary 508 

to our results, the offspring from dams fed with a high fat diet (HFD) showed no body 509 

weight differences at birth, while at PND 16 and PND 19 the body weight of the HFD-510 

offspring was 30% higher compared to control animals (Chen et al., 2008; Purcell et al., 511 

2011). These results suggest that the effects of CAF diet on the body weight of the 512 

offspring is opposite tothat observed in the offspring from dams fed with other obesogenic 513 

https://www.sciencedirect.com/topics/medicine-and-dentistry/energy-intake
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diets, such as HFD. However, both low and high birth weights have been associated with 514 

the risk of diseases on adult ages, such as glucose intolerance, type II diabetes 515 

mellitus, syndrome X, dyslipidemia and obesity(Gluckman et al., 2008; Reyes and 516 

Manalich, 2005).  517 

The decrease in the body weight of pups from dams fed with a CAF dietcould be due to the 518 

excess of maternal body weight that acts as a programming agent per se or due to other 519 

aspects of the CAF diet that drive the fetal responsesas was previously suggested(Akyol et 520 

al., 2009).In fact, the increased energy intakes of the CAF-fed dams were accompanied by a 521 

significant change in the composition of their intakes:  they consumed a much greater 522 

proportion of their daily energy consumption from fat and less from protein, as was 523 

previously reported (Akyol et al., 2009; Bayol et al., 2007; Esteve et al., 1994; Llado et al., 524 

1995; Shafat et al., 2009). In this sense, Bayol et al. (2007)reported that the reduction in 525 

protein intake during gestation and lactation in CAF-fed dams would be a key factor in 526 

explaining the reduced birth and weaning weights observed and that maternal protein intake 527 

rather than overall energy intake would play a major role in regulating the offspring’s body 528 

mass at birth and at weaning. Importantly, the effect observed on the body weight of CAF-529 

PND10 pups is similarly to those reported in the offspring of dams fed with alow protein 530 

diet model(Bieswal et al., 2006; Langley-Evans and Nwagwu, 1998). On the other hand, it 531 

would be possible that the limited protein intake of the CAF diet also affects the production 532 

and composition of breast milk. Although this factor was not analyzed here, Rolls et al. 533 

(1986)showed that the milk of CAF-fed rats contained more energy, with more fat and 534 

long-chain fatty acid content but less protein and medium-chain fatty acid content than that 535 

of control rats. Contrary, other authors reported that there were no differences in the protein 536 

content of either the early or mid-lactation milk between CON and CAF dams, despite the 537 

lower protein intake of the CAF dams during both pregnancy and lactation(Grigor et al., 538 

1987; Pine et al., 1994; Vithayathil et al., 2016). It is important to note that we found no 539 

differences in breeding success between the control and CAF dams, as was previously 540 

suggested by Akyol et al. (2009).  541 

 542 

Maternal CAF diet affects the transcriptional regulation of dopaminergic related-genes 543 

in VTA and NAc regions at PND10. 544 



20 

 

 545 

We found a decrease in the expression of TH and GHSR in VTA in the offspring of CAF 546 

fed-dams at PND10.The diminished expression of TH in VTA has been previously related 547 

to a reduced DA production(Naef et al., 2008). In addition, it has been reported that ghrelin 548 

impacts in VTA and induces DA release (Fulton, 2010), proposing that GHSR-TH 549 

coexistence coordinates regulation of DA levels. Ghrelin is thought to incentivize food 550 

intake by increasing acetyl choline levels in the VTA, increasing DA levels in the NAc, 551 

activation of dopaminergic projections from the VTA to the NAc, and activation of DRD1 552 

and DRD2 in the NAc(Murray et al., 2014). Contrary, in mice, absence of the GHSR gene 553 

was associated with lower insulin-like growth factor 1 concentrations and lower body 554 

mass, independently of food intake(Chanoine et al., 2009).Although these studies have 555 

been performed in adult rats, some works suggestthat ghrelin and GHSR have a role in 556 

linear growth and development in early life (Chanoine et al., 2009; Steculorum and 557 

Bouret, 2011). Interestingly, the decrease in mRNA expression of TH-GHSR in VTA was 558 

correlated with a decreased in mRNA levels of DAT and DRD2 in VTA and reduce levels 559 

of DRD1, DRD2 and DAT transcripts in NAc.The decrease in the synthesis of DA 560 

accompanied by lower levels of it transporter and receptors and therefore, in the actions of 561 

the DA, suggests a reduced dopamine signaling in the reward system of these animals. 562 

Importantly, during this period, permanent alterations in the function of this pathway could 563 

be established and could have a long-lasting effect later in life and in adulthood. 564 

The effect of maternal diet on the dopaminergic reward system was not studied in embryos 565 

and in early postnatal life; but it was in young and adult rats. Ong and Muhlhausler (2011) 566 

reported that the offspring from dams fed with CAF diet decreased DAT expression in NAc 567 

in PND42, whereas in adults the expression of DAT increased, compared to control rats. 568 

No changes were found in TH, DRD1 and DRD2 expression between groups. Gugusheff et 569 

al. (2013)also reported an increase preference for fat, an overall energy intake and bigger 570 

fat mass in adult offspring from CAF-fed dams.In the other hand, Vucetic et al. 571 

(2010)showed that the offspring from HFD-fed dams have a reduce DA signaling by 572 

decreasing the expression of DRD1 and DRD2 receptors and increasing the expression of 573 

DAT in adulthood.Contrary, adult offspring from HFD-fed dams displayed increased TH 574 

expression in the VTA and NAc and significant increases in DA content in the NAc, 575 
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suggesting an elevated DA tone in this target field(Naef et al., 2011).Our results together 576 

with the previously mentioned works suggest that maternal diets are critical in the 577 

development of the dopaminergic pathways and the effect observed during perinatal period 578 

could have a long-lasting impact in the offspring and predispose them to certain behaviors, 579 

such as those related to food preferences.In this sense, it will be interesting to evaluate in 580 

further studies the period (before pregnancy, during pregnancy or during breastfeeding) in 581 

which changes associated with the maternal diet are more relevant. 582 

Some studies showed that the maternal nutritional factors could change the offsprings´ 583 

epigenetic marks in association with alterations in gene expression (Glendining et al., 2018; 584 

Sinclair et al., 2007; Vanhees et al., 2014). Moreover, it was reported that methylation 585 

mechanisms are implicated in the transcriptional control of dopamine-related genes. For 586 

example,Vucetic et al. (2010) observed global and gene-specific (DAT and Mu opioid 587 

receptor) promoter DNA hypomethylation in the brains of offspring from dams that 588 

consumed the HFD.In addition, epigenetic dysregulation of TH and DAT genes in a mouse 589 

model of HFD-induced obesity was reported (Vucetic et al., 2012). Sanchez-Hernandez et 590 

al. (2016) also reported that the male offspring from dams fed with diet with high levels of 591 

vitamin A had increased levels of DNA methylation in the DRD2 promoter region 592 

compared to control group. Here, we reported for the first time that maternal CAF diet 593 

affects the transcriptional regulation of genes TH, DRD2 and DAT involved in 594 

dopaminergic reward system by DNA methylation mechanisms in an early stage of 595 

development (PND10).The fact thatDRD2 and DAT promoters were mostly methylated at 596 

two sites located in a CpG Island supports the idea that these methylation-sensitive sites 597 

could be potential regulatory sites.To reinforce this hypothesis, it would be interesting to 598 

perform further experiments using DNMT inhibitors that block the epigenetic effects of 599 

maternal CAF diet in offspring. 600 

The reduce dopamine signaling found in the offspring from CAF-fed dams is consistent 601 

with changes in the reward pathway observed in adult obese animals and in animals 602 

exposed to drugs, such as cocaine or alcohol. Particularly, several studies showed that 603 

genetic and functional alterations of the DRD2 have already been linked to the 604 

pathophysiology.Areduction in striatal density of DRD2 in overweight individuals (Stice et 605 

al., 2008; G. J. Wang et al., 2001) and rodents (Huang et al., 2006; Johnson and Kenny, 606 
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2010; Thanos et al., 2008)has been reported. Moreover, loss of DRD2 autorreceptors was 607 

linked to drug addiction, such as cocaine intake (Bello et al., 2011; Holroyd et al., 2015). In 608 

this sense, it has been shown that DRD2 plays an important role in the reward deficiency 609 

syndrome, which is related to compulsive and addictive behaviors(Blum et al., 2011). In 610 

VTA, a decrease in DRD2 has been linked to a greater motivation for food and the 611 

development of obesity(Bello et al., 2011; Koyama et al., 2014). Here, we showed for the 612 

first time a downregulation in DRD2 that is correlated with alteration in the methylation 613 

levels of it promoter in the offspring of dams fed with a CAF diet at PND10. Considering 614 

that these changes could have a long-lasting effect later in life, these results suggest that the 615 

epigenetic dysregulation of DRD2 could be an early marker of health diseases related with 616 

excessive consumption of food or drugs in adulthood.However, further studies are needed 617 

to clarify the cause-effect relationship between early DRD2 dysregulation in response to 618 

maternal diet and addictive behaviors in the adult offspring. 619 
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