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Purpose of review

Galectins, a family of evolutionarily conserved glycan-binding proteins, are involved in

the regulation of multiple cellular processes (e.g. immunity, apoptosis, cellular signaling,

development, angiogenesis and cellular growth) and diseases (e.g. chronic

inflammation, autoimmunity, cancer, infection). We discuss here how galectins

contribute to the development of specialized microenvironmental niches during

hematopoiesis.

Recent findings

An expanding set of data strengthens a role of galectins in hematopoietic differentiation,

particularly by setting specific interactions between hematopoietic and stromal cells:

galectin-5 is found in reticulocytes and erythroblastic islands suggesting a major role

during erythropoiesis; galectin-1 and 3 are involved in thymocyte apoptosis, signaling

and intrathymic migration; galectin-1 plays critical roles in pre-BII cells development.

Moreover, expression of galectins-1 and 10 are differentially expressed during

T-regulatory cell development. Various galectins (3, 4, 5, 9) have been reported to be

regulated during myelopoiesis and traffic into intracellular compartments, dictating the

cellular distribution of specific glycoproteins and glycosphingolipids.

Summary

The abundance of galectins in both extracellular and intracellular compartments, their

multifunctional properties and ability to form supramolecular signaling complexes with

specific glycoconjugates, make these glycan-binding proteins excellent candidates to

mediate interactions between hematopoietic cells and the stromal microenvironment.

Their secretion by one of the cellular partners can modulate adhesive properties by

cross-linking specific glycoconjugates present on stromal or hematopoietic cells, by

favoring the formation of synapses or by creating glycoprotein lattices on the surface of

different cell types. Their divergent specificities and affinities for various glycoproteins

contribute to the multiplicity of their cellular interactions.
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Introduction

In the bone marrow, hematopoiesis occurs within a

hematopoietic cell compartment located in the extra-

vascular spaces between the sinuses. Three-dimensional

images have recently been obtained by confocal micro-

scopy showing the complex architecture of the bone

marrow [1]. Interactions between hematopoietic cells

and (nonhematopoietic) stromal cells are essential for

the development and differentiation of certain lineages

by supplying various factors. Different stromal cells can

create such microenvironmental niches upon which

specific hematopoietic cells could reside or pass in transit,

and mature. For example, hematopoietic stem cells

(HSCs) are localized closed to the endosteum of the

bone marrow and around blood vessels, interacting with

osteoblasts and endothelial cells that could define osteo-

blastic and vascular niches, respectively [2]. Erythroblas-
1065-6251 � 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins
tic islands consist of a central macrophage extending

cytoplasmic protrusions to a ring of surrounding erythro-

blasts. The macrophage functions as a nursing cell for the

proliferation and differentiation of erythroid cells, and

phagocytoses the extruded nuclei at the end of erythroid

differentiation. In the case of B-cell development, the

spatial organization of the microenvironmental niches is

less clear, since the B cells seem to associate with distinct

cytokine-secreting cells in a spatio-temporal regulated

fashion before they enter the vascular sinuses. Interest-

ingly, it has been recently shown that the bone marrow

microenvironment is tightly regulated in vivo, as erythro-
poietin treatment causes bone remodeling with an altered

B lymphopoiesis to the benefit of erythropoiesis [3]. T

cells originate in the bone marrow but uniquely complete

their development in the specialized environment of the

thymus. Only a fraction of thymocytes are selected to

survive, migrating out of the thymus as naı̈ve mature T
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Key points

� Various galectins are expressed and secreted by

hematopoietic or stromal cells, and then bind to
lymphocytes. Effective interactions between developing

thymocytes with thymic epithelial cells, dendritic cells

and macrophages are critical for the establishment of a

fully competent T-cell compartment.

b-galactoside-containing glycoconjugates present

on the cell surface.

� Specific glyco-receptors on the surface of the differ-

ent hematopoietic cell lineages interact with the

distinct galectins.

� Within hematopoietic niches, galectin–glycan inter-

actions control intercellular communication, modu-

late cellular trafficking and induce intracellular

signals.
The galectin family
Galectins are a family of soluble lectins that bind

b-galactoside-containing glycans in a calcium-indepen-

dent way and share characteristic amino acid sequences

defining conserved carbohydrate recognition domains

(CRDs), common structural folds and pleiotropic

regulated expression in several tissues [4]. Although all

CRDs bind to a common disaccharide (Galb1–4-

NAcGlc; LacNAc), each galectin has an individual carbo-

hydrate-binding preference due to variabilities in the

CRD sequence [5]. To date, 15 mammalian galectins

have been identified in diverse tissues and species, which

can be subdivided into those that have one CRD (pro-

totype: galectins-1, 2, 5, 7, 10, 11, 13, 14 and 15), those

that have two different CRDs (tandem-repeat type:

galectins-4, 6, 8, 9 and 12), and galectin-3 containing

one CRD connected to an N-terminal aggregating

domain that enables the molecule to form pentamers

(chimera-type) [6]. Some prototype galectins can form

dimers through noncovalent interactions and this dimer-

ization is critical for cross-linking glycoconjugates, trans-

ducing intracellular signals and forming multivalent

lectin–glycan clusters called ‘lattices’ on the surface of

target cells. Whereas some galectins such as galectin-1, 3

and 9 are broadly expressed [7,8], other members of the

family such as galectin-10 and 12 are preferentially

expressed in certain tissues [9]. Galectins are expressed

at different extents in nonhematopoietic tissues contri-

buting to embryogenesis, connective and neural tissues

development, as well as muscle cell differentiation

and vasculogenesis [10]. Notably, they are abundantly

expressed in hematopoietic tissues, in which they play

critical roles in mediating cell communication and signal-

ing by bridging hematopoietic and nonhematopoietic

compartments.

Galectins have typical features of cytosolic proteins,

yet some of them are secreted by cells even though they

do not possess a signal sequence required for protein

secretion through the classical secretory pathway.

Although the molecular bases of their extracellular

release are still poorly understood [11], these lectins

can be found in the extracellular space and bound onto

the plasma membrane. Among naturally occurring gly-

coconjugates, glycoproteins that contain poly-N-acetyl-
lactosamines are especially good ligands for galectins,

with specificities that can vary with the degree of N-
glycan branching and the presence of sialic acid or fucose

on the chain [5,12]. Their extracellular functions are

somehow related to their abilities to cross-link glyco-
proteins or glycolipids on the cell surface [13]. Galectins

can bind glycoconjugates present onto the same mem-

brane leading to the formation of galectin–glycan lattices,

affecting endocytosis and delivery of intracellular signals

[14]. A variety of glyco-receptors have been proposed to

serve as possible receptors for galectins. These include

CD45, CD43, CD7, T-cell receptor and GM1 on devel-

oping and peripheral T cells [15–17], a4b1 (VLA-4),

a5b1 (VLA-5), and a4b7 integrins as well as the B-cell

receptor (BCR) on developing B cells and bone marrow

stromal cells [18], CD43 on dendritic cells [19,20] and

neuropilin-1 on endothelial cells [21]. However, the role

of galectins is not restricted to their extracellular effects;

galectins also function intracellularly by interfering with

specific signaling pathways [9]. Within hematopoietic

niches, galectin–glycan interactions control communi-

cation between hematopoietic and nonhematopoietic

cells, modulate cellular trafficking and deliver intra-

cellular signals required for migration and survival. This

review aims to integrate scattered data on galectins

within different hematopoietic compartments and to

discuss future directions and implications for this emer-

ging field.
Role of galectins in erythropoiesis
Erythroblastic islands, first characterized by Marcel

Bessis [22], are distinct anatomic units formed by a

central macrophage associated with differentiating eryth-

roblasts [23,24]. The central macrophage provides the

growth-promoting and differentiation-inducing mole-

cules which are necessary for erythroblast differentiation.

This requires intimate cell contact between erythroblasts

and macrophages [25]. Various adhesion molecules have

been demonstrated to be involved in the association of

erythroblasts with central macrophages. Among them,

erythroblast macrophage protein (Emp) is a molecule

identified in both erythroblasts and macrophage mem-

branes [26], whereas the integrin a4b1 present on the

erythroblasts interacts with vascular cell adhesion mole-

cule 1 on the central macrophage [27]. More recently,

erythroid intercellular adhesion molecule-4 (ICAM-4)
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Figure 1 Galectin-5 in rat erythroblastic islands

DIC

DAPI

Gal-5

Erythroblastic islands from rat bone marrow were prepared as in [28],
labeled using galectin-5 rabbit antiserum and donkey antirabbit IgG-
Alexa 488 (Invitrogen), and mounted using 40,6-diamidino-2-phenylin-
dole (DAPI)-containing ProLong antifade reagent (Molecular Probes).
Observation was carried out using a Zeiss Axioimager and a Zeiss 63x
Plan-Apo 1.4 oil objective. Note the galectin-5 surrounding the eryth-
roblast nuclei (black arrows) and labeling the anucleated reticulocytes
(white arrows).
has been described to bind to macrophage aV integrin

[27]. Apart from these well characterized partners, other

receptors on macrophages were described, including

lectin-like sheep receptor [28], now termed sialoadhesin,

which binds erythroblast sialylated glycoproteins.

Another lectin-mediated interaction was reported in

erythroblast islands, involving a b-galactoside-specific

lectin purified from rabbit bone marrow and called ery-

throid developmental agglutinin (EDA) [29]. Indirect

immunofluorescence studies showed that the extracellu-

lar lectin was associated with the erythroblast cell surface

[30]. Similarly, a soluble b-galactoside-binding lectin

initially purified from extracts of rat lung and referred

to as RL18 [31] was then localized to red cells and

designated as galectin-5 [32]. Galectin-5 is specifically

expressed in rat and shows extensive identity with the

C-terminal part of galectin-9 [33], likely due to gene

duplication and ensuing sequence divergence [34]. Very

interestingly, galectin-5 can be localized surrounding

erythroblasts associated with the central macrophage of

rat erythroblastic islands (Fig. 1), suggesting, like EDA,

the involvement of galectin-5 in cell–cell communi-

cation. It is still unknown whether galectin-5 is engaged

in trans-interactions or whether it could create lattices

with glycosylated integrins or other cell adhesion mole-

cules on the erythroblast surface. Such a localization of

galactoside-binding lectins in erythroblastic islands of

species other than rabbit and rat has not been reported,

even though the erythroleukemic cell line K562 was

shown to secrete galectin-1 when induced to differentiate

[35]. This is likely related to differences in tissue sialyla-

tion patterns among species (e.g. relative lack of trisialyl

and tetrasialyl-N-glycans in rat, differences in sialic acid

types found on erythrocytes of various mammalian

species) [36]. However, the fact that EDA and galec-

tin-5 are expressed by the erythroid cells does not

preclude the possibility that galectins secreted by the

stromal macrophage might be involved in a similar

process. Of note, the Forssman glycosphingolipid,

specifically present on the surface of the mouse central

macrophage and not on other stromal cells, possesses

GalNAca1–3GalNAcb1–3Gala1–4Galb1–4Glcb1-cer-

amide structure potentially recognized by galectins.

Moreover, expression of Forssman antigen on the cell

surface has been shown to be regulated during the

macrophage maturation [37], suggesting a functional role

at the nurse cell stage. The other role of macrophage is to

engulf and degrade the extruded nucleus at the end of

terminal differentiation. Various components of the

membrane surrounding the nucleus were shown to con-

tribute to its phagocytosis. Phosphatidylserine exposure

has been demonstrated in vitro to participate in the

process [38]. At this point, it is interesting to note that

TIM-3, a receptor highly specialized for recognition of

phosphatidylserine, can interact with galectin-9 in a

nonexclusive manner [39,40]. In this regard, Cummings
et al. demonstrated that some members of the galectin

family, including galectin-1, 3, 4 and 8, are specialized in

promoting phosphatidylserine exposure in different cell

types and to prepare cells for phagocytic removal through
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a mechanism called ‘preaparesis’ [41,42]. These data

strongly suggest that galectins may be involved in end

terminal processes of erythroid differentiation involving

phosphatidylserine exposure and macrophage engulf-

ment. Moreover, adhesive proteins such as Emp and

b1 integrin partition predominantly to the plasma mem-

brane surrounding the nucleus, whereas glycophorin A is

mainly sorted to nascent reticulocytes [43]. It was

suggested that the connectivity with the spectrin-based

skeleton is involved in this sorting process, which was

confirmed by demonstrating the abnormal distribution of

skeleton-associated proteins to the nucleus in cells pre-

senting protein 4.1 or ankyrin-1 deficiencies [44�]. A

nonconflicting hypothesis is that the proteins not con-

nected with the cytoskeleton could be endocytosed and

directed towards the nucleus extrusion site. As recently

reported, coalescence and fusion of the vesicles would

allow the membrane supply necessary for nucleus extru-

sion [45��] and could also favor membrane protein sorting

around the nucleus. One possibility is that galectins could

be involved in this sorting process, which would also

apply to the sorting of desialylated glycoproteins towards

the extruded nucleus [46,47]. Finally, macrophage intra-

cellular galectin-3 might favor the phagocytosis of the

extruded nucleus as described for apoptotic cells [48].

Erythroid cells proliferation and differentiation into non-

nucleated reticulocytes occurs on erythroblastic islands.

Discrimination of the successive differentiating stages

has been recently yielded by analysis of CD44 expression

on erythroblasts [49]. Reticulocytes are then produced

upon nucleus extrusion from orthochromatic erythro-

blasts in the bone marrow. Their maturation lasts

2–3 days, first in the bone marrow and then in the blood

circulation. During this maturation process, reticulocytes

lose their intracellular organelles, such as mitochondria,

eliminated through selective autophagy [50]. Reticulo-

cytes also undergo extensive membrane remodeling [51].

Part of this remodeling processes is carried out in

peripheral reticulocytes by selective elimination of mem-

brane proteins [e.g. transferrin receptor (TfR)] sorted into

multivesicular endosomes (MVEs) and released through

the exosomal pathway [52,53]. Note, however, that

similar TfR-enriched MVEs were described in differen-

tiating erythroblasts from fetal rat liver [54], allowing the

hypothesis of exosome secretion at earlier differentiation

stages than the reticulocyte. We recently reported that

galectin-5 is present on the surface of exosomes released

by peripheral rat reticulocytes [55�], and suggested that it

could be involved in removal of specific glycoproteins

(e.g. Lamp2). In agreement with a lower affinity of

galectin-5 [56] and other galectins [12] for sialylated

proteins, using an inhibitor of sialidase during in-vitro

maturation of reticulocytes, we found that desialylated

Lamp2 was preferentially eliminated through exosomes

(unpublished data).
Galectin-5 was found in the endosomal lumen of rat

reticulocytes and thus could access the ectodomain of

glycoproteins, even though the membrane translocation

site is still unknown [55�]. Of note, galectin-based sorting

of distinct glycoproteins with complex-type N-glycans
such as dipeptidyl peptidase IV, carcinoembryonic anti-

gen, or mucin-like membrane mucin 1 (MUC1) through

the endocytic/recycling pathway has recently been

described for galectin-4 in the apical biosynthetic pathway

in enterocyte-like cells [57]. Similarly, trafficking of galec-

tin-3 through endosomal organelles of polarized and non-

polarized cells has recently been reported [58], together

with a regulation of MUC1 and epidermal growth factor

receptor cellular distribution in pancreatic cancer cells by

galectin-3 [59�], and a control of apical-basal polarity in

Madin–Darby canine kidney cells by galectin-9 inter-

action with Forssman glycosphingolipid [60��].

One could imagine that galectins that are bound exo-

somes are involved in signal transmission from erythroid

cells to neighboring cells. This could involve signaling

due to galectin binding to a cell surface receptor, as

shown recently for galectin-9-associated exosomes

secreted by nasopharyngeal carcinoma cells infected by

Epstein–Barr virus which associate with TIM-3 present

on T lymphocytes [61]. On the contrary, galectin-bound

exosomes could be internalized by recipient cells [55�]

and could provide effector molecules such as microRNAs

contained inside the vesicles, a process that may be well

suited for controlling space-confined processes [62,63].
Role of galectins in B and T lymphopoiesis
B lymphocytes differentiate in the bone marrow through

successive developmental stages characterized by the

expression of cell surface markers and sequential re-

arrangement of genes coding for immunoglobulin chains

that constitute the BCR [64]. Cells expressing the pre-

BCR differentiate into the pre-BII stage and start to

proliferate. At this stage, pre-BCR is able to generate

signals for B-cell development through engagement by

unconventional ligand – a process termed tonic signaling

[65]. Galectin-1 secreted by stromal cells was identified as

such a ligand, interacting with surrogate light chain of pre-

BCR by direct protein–protein interaction [66]. At the

same time, CRDs of galectin-1 dimers can bind glyco-

proteins presenting galactoside-containing determinants

on the surface of both pre-B cells and stromal cells, indu-

cing the formation of a synapse at the contact zone

between the two cell types. Asmentioned above, integrins

(a4b1, a5b1 and a4b7) expressed by pre-B cells were

identified as major counter-receptors of galectin-1.

Clustering of pre-B-cell integrins was shown to induce

galectin-1-dependent pre-BCR relocalization and signal

transduction in vitro [18], which was confirmed in vivo
using galectin-1-deficient mice [67]. The authors recently
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extended their observations, characterizing the stromal

cells secreting galectin-1 as a cell population distinct from

IL-7þ stromal cells [68��], contributing to the understand-

ing of the migratory route of B-cell development.

Once in the periphery, B lymphocytes are also exposed to

galectins present in the spleen, lymph nodes and per-

ipheral tissues. In fact, galectin-1 is up-regulated by

activation signals [69] and contributes to the differen-

tiation of germinal center B cells into antibody-secreting

plasma cells [70]. In contrast, intracellular galectin-3

facilitates a memory B-cell phenotype [71], suggesting

opposite regulation of B-cell fate by different members of

the galectin family.

Lymphoid progenitors committed to become T cells

migrate to the thymus, in which they undergo differen-

tiation, selection and proliferation, before exiting and

populating the peripheral lymphoid organs as mature

naı̈ve T lymphocytes [72]. During their migration in

the thymic parenchyma, thymocytes undergo a complex

process of differentiation involving developmental stages

based on the expression of CD4 and CD8 co-receptors.

Interactions between thymocytes and the thymic

environment, especially thymic epithelial cells (TECs),

are essential for their selection and development into

mature T lymphocytes. Among numerous components

contributing to the functionality of the thymic environ-

ment (e.g. chemokines, extracellular matrix), galectins

were proposed to actively participate in thymocyte

deletion. Pioneer work demonstrated that galectin-1 is

abundantly synthesized by TECs and contributes to

TEC-induced thymocyte apoptosis [73], coincident with

cellular redistribution of CD45 together with CD3, and of

CD43 together with CD7 [74]. More recently, galectin-3

was found to induce T-cell death through binding to

distinct cell surface glycoproteins. Although galectin-1

and 3 are both expressed and secreted by TECs,

suggesting a potential redundancy in their pro-apoptotic

activity in the thymus, the local concentrations of the

two galectins, their specificity and affinity for saccharide

ligands, as well as their capacity to form high-ordered

lattices [75] may contribute to differential receptor recog-

nition, thus allowing greater selectivity in induction of

apoptosis of specific thymocyte subsets [15]. On the other

hand, it has been shown that galectin-3 is predominantly

secreted in the medullary environment, in which it is

postulated to disrupt adhesive interactions between thy-

mocytes and TECs [76] and to regulate migration and

selection of thymocytes [77]. Like galectin-1 and galectin-

3, galectin-8 and galectin-9 have been also shown to trigger

death of developing thymocytes [78,79]. However, each

individual member of the galectin family can deliver

different apoptotic signals by targeting different subsets

of developing thymocytes. Whereas galectin-1 kills

double-negative (CD4�CD8�) and double-positive
(CD4þCD8þ) thymocytes with equal efficiency, galec-

tin-3 preferentially kills double-negative thymocytes

and galectin-8 preferentially binds to double positive cells.

Interestingly, CD45 and CD71 appear to be involved in

galectin-3-inducedT-cell death, althoughCD43 andCD7

have been found to be critical for galectin-1-induced death

[15]. Moreover, galectin-1 can shape the T-cell repertoire

by inducing rapid and transient activation of extracellular-

signal regulated kinase (ERK) activation during negative

selection, but antagonizes ERK activity on thymocytes

undergoing positive selection [80].

Once in the periphery, T cells undergo dramatic remodel-

ing of cell surface glycans that contribute to T-cell fate

through either exposing or masking specific ligands for

endogenous galectins [81]. Through cross-linking specific

glycoconjugates, galectins modulate T-cell trafficking,

activation, differentiation and survival [14,15,20,82]. In

addition, galectin-1 and 10 are up-regulated during

T-regulatory cell differentiation and substantially contrib-

ute to the immunosuppressive activity of these cells

[83,84]. Similarly, galectin-1 also contributes to the immu-

nosuppressive activity of mesenchymal stromal stem cells

(MSCs) [85,86].
Role of galectins in myelopoiesis and
thrombopoiesis
Although galectins play pivotal roles in innate immunity

which is a major responsibility of myeloid cells, the

function of these lectins during myeloid cell differen-

tiation is less documented (for reviews [27,87]). The

human promyelocytic leukemic cell line HL60 was

shown to synthesize galectin-1, galectin-3, galectin-8,

galectin-9 and galectin-10 whose mRNA expression is

differentially up-regulated or down-regulated during

differentiation toward eosinophil, monocyte, and neutro-

phil lineages [88]. Notably, Vas et al. [89] showed a

biphasic regulation of myeloid cell fate by galectin-1.

Whereas low concentrations of this lectin (ng/ml range)

increase the formation of granulocyte-macrophage colo-

nies in a lactose-inhibitable fashion, high amounts of

galectin-1 (mg/ml range) dramatically reduce the growth

of the committed myeloid progenitor cells in a lactose-

independent manner [89].

Within peripheral tissues, galectins contribute to regulate

the fate of almost all myeloid cells. These multifunc-

tional b-galactoside-binding proteins control dendritic

cell maturation, migration and function [19,20,90,91]

and influence classical or alternative activation of macro-

phages [92–94], degranulation of mast cells [95,96] and

chemotaxis of eosinophils [97]. In addition, these cells

play pleiotropic roles in neutrophil physiology including

modulation of activation and signaling, adhesion to extra-

cellular matrix and trafficking [27,98,99].
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Figure 2 Control of hematopoietic niches by galectin–glycan lattices

The figure illustrates the way different members of the galectin family contribute to (a) T lymphopoiesis by differentially modulating survival andmigration
of developing thymocytes, (b) B lymphopoiesis by allowing communication between stromal cells and pre-B cells through bridging glycosylated
integrins and the pre-BCR, (c) erythropoiesis by secreting galectin-5 (only found in rat cells of erythroid lineage) and (d) myelopoiesis by differentially
secreting different members of the family and positively or negatively influencing growth of myeloid progenitors.
Platelets are derived from larger progenitor cells

called megakaryocytes, which are rare, polyploid cells

residing within the bone marrow. Platelet production

occurs from the tips of long cytoplasmic extensions of

megakaryocytes, called proplatelets. It was shown that

the quiescent state of megakaryocytes is located in an

osteoblastic niche, whereas the release of platelets

occurs from megakaryocytes in a vascular niche [100].

The role of the bone marrow microenvironment in the

regulation of thrombopoiesis involves differential

expression of cellular components and extracellular

matrix proteins [101,102] and the secretion of soluble

factors [103]. Until now galectins have not been reported

to be involved in the regulation of megakaryopoiesis in

the bone marrow. However, it was demonstrated that

human platelets express galectin-1 and galectin-8 that

play key roles in activation, signaling and function of

these cells [104]. Galectin-8 could be secreted by endo-

thelial cells but is also released from platelets upon

thrombin activation [73].
Conclusion
Figure 2 compiles some of the data reported on the

specific interactions between various galectins and differ-

ent stromal and hematopoietic cells. Since galectins are

secreted by both kinds of cells, interact with a large panel

of surface glycoproteins (e.g. receptors, integrins) and are

involved in various types of processes (e.g. lattice for-

mation, signaling, trafficking), further investigation on

the role of galectins in generating appropriate niches

during hematopoiesis should be fruitful.
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