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Berry antioxidants: small fruits providing large
benefits
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Abstract

Small berry fruits are consumed because of their attractive colour and special taste, and are considered one of the richest sources
of natural antioxidants. Their consumption has been linked to the prevention of some chronic and degenerative diseases. The
term ‘berry fruits’ encompasses the so-called ‘soft fruits’, primarily strawberry, currants, gooseberry, blackberry, raspberry,
blueberry and cranberry. The objective of this review is to highlight the nutraceutical value of berries and to summarize the
factors affecting berry fruit antioxidants. Particular attention is given to postharvest and processing operation factors that
may affect fruit phytochemical content. The structure–antioxidant relationships for phenolic compounds – the main group of
antioxidants in this fruit group – are presented and major areas for future research are identified.
c© 2013 Society of Chemical Industry
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INTRODUCTION
Small berries represent a very diverse group, including a variety of
red, blue or purple small-sized and highly perishable fruits. Also
named as soft fruits, this group includes strawberry, currant (black,
red or white), gooseberry, blackberry, raspberry (black or red),
blueberry, cranberry and others of minor economic importance
(i.e. boysenberry, bilberry, jostaberry, cloudberry, loganberry,
lingoberry) (Table 1).

Berries are highly appreciated for their sharp colour, delicate
texture and unique flavour. Despite having a number of common
attributes, the group is quite diverse and comprises simple (e.g.
blueberry, cranberry) and composite fruits derived from single
or multiple fused fertilized ovaries (e.g. strawberry, mulberry,
raspberry, blackberry).1 Over-ripening, excessive softening and
pathogen attack, mainly by the necrotroph Botrytis cinerea,
are the leading causes of berry fruit postharvest losses.2,3

Preventing deterioration and extending storage capacity have
been the main challenges in the distribution of premium-quality
berries.

Early on, epidemiological studies recognized the protective
effect that the consumption of berry fruit may have against chronic

diseases.4–6 More recently, strong evidence supports the benefits
of consuming strawberry, blueberry, cranberry, bilberry, raspberry,
currants, blackberry and their hybrids in amelioration of an array
of human ailments (e.g. disorders in neuronal communication,
inflammatory responses). Berry fruits have been also shown to
enhance cognitive functions (e.g. improved memory in older

adults).7–11

For any given fruit, the diversity and concentration of antioxi-
dants (AOXs) are highly dependent on the species and cultivar
considered. Preharvest practices, environmental conditions, matu-
rity at harvest, postharvest storage and processing operations are
also important determinants of the phytochemical profiles.12

In this review, we briefly describe the main antioxidant
groups present in selected berry fruits and summarize the main
structure–activity relationships for phenolic compounds. The

effect of the most relevant genetic, pre- and postharvest factors
on the steady-state content of berry fruit antioxidants is also
discussed. In addition, areas in which further research is needed
are identified.

ANTIOXIDANT COMPOUNDS IN BERRY FRUITS
Ascorbic acid, carotenoids, vitamin E and phenolic compounds
are the most widespread antioxidants in the plant kingdom.13

Although all of them are represented in berry fruits, ascorbic acid
and especially phenolics are the most abundant (Fig. 1). Phenolic
compounds are the most prevalent AOX group and are analytically
described in the next section. Ascorbic acid is particularly abundant
in some berries such as blackcurrant and strawberry, whereas most

other berries show moderate concentrations.14–16

Common carotenoids (xanthophylls and carotenes) found in
other fruit species such as lutein and β-carotene, lycopene, α-
carotene, β-cryptoxanthin, neoxanthin, cis-and trans-violaxanthin,
5,6-epoxylutein and zeaxanthin have also been identified in berry
fruits.15,17 However, their concentration in berry fruits is at a
relatively low concentration.17,18 Tocopherols and tocotrienols are
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Table 1. Nomenclature of small berry fruits

Common name Scientific name

Fragaria genus (family: Roseaceae)

Cultivated strawberry Fragaria × ananassa

Chilean (coastal) strawberry Fragaria chiloensis

Wild strawberry Fragaria virginiana

Alpine strawberry Fragaria vesca

Musk strawberry Fragaria moschata

Ribes genus (family: Glossulariaceae)

Black currant Ribes nigrum

Red currant Ribes rubrum

White currant Ribes glandulosum

Gooseberry Ribes uva-crispa

Rubus genus (family: Rosaceae)

Blackberry Rubus fruticosus

Black raspberry Rubus occidentalis

Red raspberry Rubus idaeus

Boysenberries Rubus ursinus × idaeus

Cloudberries Rubus chamaemorus

Loganberry Rubus loganobaccus

Vaccinium genus

Highbush blueberry Vaccinium corymbosum

Lowbush blueberry Vaccinium angustifolium

Rabbit eye blueberries Vaccinium virgatum

Velvet leaf blueberry Vaccinium myrtilloides

Bilberry Vaccinium myrtilus

Cranberry Vaccinium macrocarpon

Other berries

Mulberry Morus alba, Morus nigra

Bayberry Myrica rubra

more prevalent in fat-rich fruit species such as avocado and are
present at low levels in berries.19

PHENOLIC COMPOUNDS IN BERRY FRUITS
Phenolics represent a large group of secondary metabolites,
consisting of one or more aromatic rings with variable degrees
of hydroxylation, methoxylation and glycosylation, contributing
to fruit colour, astringency and bitterness.20 The main categories
of phenolic compounds found in berry fruit are phenolic acids,
flavonoids, tannins and stilbenes.15,21

Phenolic acids (PA) are one of the most well-studied chemical
groups. They can be subdivided into cinnamic and benzoic
acid derivatives. Cinnamic acids are usually esterified, whereas
hydroxybenzoic acid derivatives are mainly glycosylated.22 Free
PA in fruits rarely exceed 5% of the total.23 Ferulic, caffeic
and p-coumaric acids and caffeoylquinic esters are the major
hydroxycinnamates identified in berries; benzoic acid derivatives
that have been primarily identified in berry fruits include gallic,
salicylic, p-hydroxybenzoic and ellagic acids.15,21

Flavonoids (FL) represent the most diverse group of phenolics,
with two aromatic (A and B) rings associated via C-C bonds by
a 3 C oxygenated heterocycle. On the basis of the oxidation
state of the central ring, FLs are further divided into anthocyanins,
flavonols, flavanols, flavones, flavanones and isoflavonoids. Berries
are particularly rich in anthocyanins, which are responsible for their
typically vibrant colours.24 The basic C6—C3—C6 anthocyanidin
structure modified by chemical combination with sugars and/or

acyl groups, metals and other phenolic compounds yield a variety
of colours, from scarlet to blue (Fig. 2). Anthocyanins are glycosides
of anthocyanidins and are particularly abundant in berry fruits.
Six different anthocyanidins are found in nature (pelargonidin,
cyanidin, delphinidin, peonidin, petunidin and malvidin), differing
in the position and number of hydroxyl groups as well on their
degree of methylation.25 Anthocyanin glycosylation increases their
stability and solubility, but may result in a slight reduction in radical
scavenging capacity. In berries, mono-, di- or triglycosides and the
position C-3 are the most common forms, while glycosylation
via C-5 and C-7 is less frequent. Glucose, galactose, rhamnose,
arabinose, rutinose, sambubiose and sophorose are the main
sugars associated with berry anthocyanidins. The sugar moieties
may be further decorated with p-coumaric, caffeic, ferulic, malonic
and acetic acid.15,26,27 The anthocyanin profiles have been used
for taxonomic purposes of berry fruits as well as to determine the
authenticity of berry-derived food products.24,28,29 Anthocyanin
profiles have also been used for the authenticity of fruit jams, e.g.
adulteration of blackberry jams with strawberries was identified
by analysis of the pelargonidin:cyanidin 3-O-glucoside ratio.30

Anthocyanin fingerprinting has been developed for use in
authenticity studies of bilberry (Vaccinium myrtillus L.) populations
and/or cultivars.31 Anthocyanins were the major contributors to
total antioxidant capacity of blueberries and blackcurrants (84%
and 73%, respectively), while their contribution did not exceed
21% in raspberry and redcurrant.32

Flavonols and 3-hydroxyflavones are also widespread in berries.
They usually occur as O- and C-glycosides of quercetin, myricetin

and kaempferol.33–35 Isorhamnetin (a methoxy derivative of
quercetin) and syringetin (a dimethoxy derivative of myricetin)
have also been identified as flavonol aglycons in berries.36

As for anthocyanins, a great diversity in sugar moieties has
been observed, leading to a variety of derived compounds. A
recent study described 50 different flavonols in 28 wild and
cultivated berry species.36 However, in general, quercetin and
kaempferol are the major flavonols and occur as 3-glucosides
and 3-glucuronides.37,38 The contribution of flavonols to berry
antioxidant capacity is lower than that of anthocyanins and does
not exceed 14% of the total.32 Berries also contain the flavanol
monomers (+)-catechin and (−)-epicatechin. They may be found
as monomers, oligomers and polymeric proanthocyanidins.39

Tannins are classified into hydrolysable and condensed (or non-
hydrosable) forms. Hydrolysable tannins are multiple esters of
gallic or ellagic acid with glucose and products of their oxidative
reactions and are known as galloyl tannins and ellagitannins,
respectively.40,41 Hydrolysable tannins are found in strawberry,
raspberry and blackberry but are less common in other berry
fruits.42,43 Together with anthocyanins, ellagitannins are the major
antioxidant phytochemicals in raspberries.44 The ellagitannins
lambertianin C and sanguiin H-6 represent almost 60% of raspberry
antioxidants. Condensed tannins are oligomers or polymers of two
or more flavan-3-ols – usually catechin and epicatechin – and
contain several subtypes that differ in stereochemistry and
hydroxylation pattern of the constituent flavonoids.40 A great
variation in condensed tannin content is observed in berries.
Chokeberries presented the highest concentration of condensed
tannins among about 100 plant foods tested.45 Tannins are also

present in other berry species.44–47

Stilbenes are a subgroup of phenolic compounds with a
particular carbon skeleton, viz. C6—C2—C6.48 Resveratrol is the
best-known stilbene. Small quantities of resveratrol, pterostilbene
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Figure 1. Main group of antioxidants found in berries.
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Figure 2. Characteristic structures of anthocyanins, flavonols and hydroxycinnamic acids.

and piceatannol have been found in blueberry, bilberry, cranberry
and strawberry.15,21,49,50

RELATIONSHIP BETWEEN PHENOLICS
STRUCTURE AND ANTIOXIDANT CAPACITY
Many studies have associated the structure of phenolic
compounds with their antioxidant properties.51,52 In general,

increasing the degree of hydroxylation in aromatic rings has
positive effects on the antioxidant activity of hydroxycinnamic
acids,53 e.g. caffeic acid (two hydroxyl groups) has higher
antioxidant activity than p-coumaric acid (one hydroxyl group). As
previously reported, hydroxylation in adjacent carbons (o-diphenyl
structure) enhances antioxidant activity.54 Jing and co-workers55

also outlined that the presence of: (i) bulky and/or electron-
donating substituents on the aromatic ring, (ii) electron-donating
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groups at the meta position and/or hydrophobic groups at the
meta–ortho position, and (iii) hydrogen bond donor/electron-
donating groups at the ortho position strengthen the antioxidant
activity of phenolic acids.

Hydroxylation and/or methoxylation on the C ring affects the
antioxidant activity of anthocyanins. Anthocyanidins with B ring
o-diphenyl patterns, such as cyanidin and delphinidin, have higher
antioxidant activity than malvidin, pelargonidin, petunidin and
peonidin.56 Increasing the number of hydroxyl groups in the B
ring also enhances the antioxidant activity,57 while methoxylation
at C-3′ decreases it. Additional insertions of hydroxyl and methoxy
groups at position C-5′ have no major effect on antioxidant
activity.54

The effect of glycosylation of anthocyanidin antioxidant capacity
is variable. Monoglycosides of cyanidin, delphinidin and malvidin
show similar antioxidant activity with free aglycons. However,
glycosylation at C-3 decreases the antioxidant activity of peonidin
and pelargonidin. Anthocyanins containing arabinose have lower
antioxidant activity than glycosylated derivatives. The substitution
with rutinose also has a similar effect to that of arabinose.
In addition, the 3,5-O-diglucosides of cyanidin and malvidin
showed significantly lower activities than the corresponding
monoglycosides.54,56 In summary, anthocyanins possess similar
or slightly lower antioxidant activity than the corresponding
anthocyanidins.

In general, flavonols are considered more powerful antioxidants
than anthocyanins. This fact could be attributed to a 2,3-
double bond in conjunction with a 4-oxo function in the
C ring, which allows electron localization in the B ring.54,58

The outcome of hydroxylation, methoxylation and glycosylation
on flavonol antioxidant activity is similar to that described
for anthocyanidins. Fruit phenolics may interact with other
phytochemicals and macrocomponents during mastication and
digestion, resulting in antagonistic, additive and/or synergistic
effects.4 These interactions have been studied mainly in vitro and
may be important in berries in which a large number of AOXs
coexist. However, the relevance of these interactions in terms of
their contribution to health protection is still obscure.

FACTORS AFFECTING ANTIOXIDANTS
IN BERRIES
Genetic factors (species, cultivar)
It is well documented that great differences in the phytochemical
profile occur among genotypes/cultivars of the same species,
including soft fruits.2 Among berry fruits, blackberries, blueberries
and blackcurrants are the richest sources of antioxidants (source:
USDA, 2013).59 Strawberry and cranberry have lower oxygen
radical absorbance capacity (ORAC) values but are still higher
than that found in most other fruit species, including citrus,
pome and most stone fruits. A high content of phenolics is also
found in bilberry (wild blueberry; Vaccinium myrtillus) cultivars (up
to 600 mg gallic acid equivalent (GAE) 100 g−1 fresh weight),
compared to cultivated blueberries (Vaccinium corymbosum), with
a content of GAE close to 310 mg 100 g−1 FW.60 Therefore, wild
species could be considered as a potential source of germplasm
for breeding programmes oriented to nutritional improvement.
Phenolic profiles determined by liquid chromatographic–mass
spectrometric analysis revealed clear metabolic differences among
strawberry genotypes.61 A comparative study among Fragaria
chiloensis (white strawberry), F. vesca and F. × ananassa cv.
‘Chandler’ indicated that the highest phenolic content was found

in F. vesca, while the lowest content was recorded in white
strawberry.62 The same group showed that the total anthocyanin
and total flavonoid content was lower for white strawberries.
The wild progenitor species F. virginiana had significantly higher
antioxidant capacity, phenolics and total anthocyanins than
the fruit of three accessions tested from either the other wild
progenitor species F. chiloensis or F. × ananassa.63 Capocasa and
co-workers also found significant differences in antioxidant activity
of 20 strawberry genotypes and results differed slightly according
to the used assay. In addition, this study reported that the effect of
genotype on strawberry antioxidant activity is stronger than that
of the cultivation conditions.64

Maturity stage and intra-fruit variation
The distribution of antioxidants shows variations within tissues of
the same fruit, normally AOXs are more abundant at the surface. In
strawberries, i.e., the achenes represent only 1% of the total mass
but contribute to about 11% of total phenolics and 14% of total
antioxidant activity.37

Fruit maturation is reported to influence the total phenolic and
anthocyanin contents of blackberry, raspberry, and strawberry
cultivars.65 Total anthocyanins increase during ripening in all
berries. The antioxidant capacity peaks in some species at early
stages of development. However, from a practical perspective
berries should be harvested fully ripe since flavour and taste are
severely influenced by the maturity stage.

Field conditions
Several studies have suggested that environmental conditions,
field management system and growing season have a great impact

on the levels of antioxidants.66–68 Deficit irrigation significantly
increased the antioxidant capacity in ripe strawberry fruit.69,70

The effect of organic farming on AOXs is still inconclusive.
Organically grown ‘Selva’ strawberries had significantly higher lev-
els of anthocyanins and ascorbic acid than conventionally grown
fruits.71 Higher AOX in organically-grown strawberries has also
been reported,72 but in other studies no differences in antioxidants
were found between these management systems.73,74

Postharvest management
Temperature management after harvest is a major factor affecting
fruit postharvest performance as well as composition, including
phytochemical profile. In general, high storage temperature results
in losses of some antioxidants, rather ascorbic acid being the most
labile. Significant fluctuations in antioxidant capacity of fruits
during storage and even an increase after several days at room
temperature have been reported.75 This was mainly associated
with the continued biosynthesis of anthocyanins. However, other
quality attributes markedly deteriorated when berry fruits are
stored over 0 ◦C. Even under these conditions the shelf life is still
fairly short: 1–2 weeks for strawberries and blueberries, and 2–5
days for raspberries and blackberries.

In controlled and/or modified atmospheres (CA/MA), increasing
CO2 partial pressure decreased the concentrations of pelargonidin
glycoside and ascorbic acid.76 High CO2 concentrations (10–30%)
have been suggested to stimulate the oxidation of ascorbic
acid or to inhibit mono- or dehydroascorbic acid reduction to
ascorbic acid.77 Anthocyanins, flavonoids and total antioxidant
activity were higher in air-stored fruit than in berries held in MA
conditions. High CO2 storage generally decreases total phenolics,
total anthocyanins and antioxidant capacity.76,78
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Sulfur dioxide fumigation of eight fresh blueberry cultivars
(Vaccinium corymbosum) followed by CA (3% O2 + 6% or 12% CO2)
reduced decay and maintained high antioxidant capacity after
prolonged storage.2 Other postharvest treatments such as UV-C
irradiation may increase anthocyanin content and prevent AOX
losses.79,80 Added edible coatings have been shown to prevent

deterioration and AOX turnover in various fruits;81–83 however, a
number of practical limitations need to be resolved to increase its
adoption at a commercial scale in the soft fruit industry. That is,
berries do not lend themselves to additional postharvest handling
since they tend to be picked straight into the punnet ready
for retail.

Processing
Several studies have investigated the effect of pH, metal ions,
exposure to light, temperature, oxygen and enzymatic activities
on the main groups of fruit AOXs.84 Processing operations
may largely affect the extraction and stability of antioxidants
in berry fruits. Ascorbic acid shows high sensitivity to thermal
processing.85 In general, freezing causes moderate variations
in phenolic compounds; a study on four raspberry cultivars
showed variable results, ranging from no change to an increase
of 12% and decreases of 21% and 28%, during 12 months
frozen storage.85 No loss of anthocyanins was observed after
pasteurization, decantation, filtration and concentration of
blackcurrant juice.86 On the other hand, thermal pasteurization
and high-pressure processing caused significant change in straw-
berry fruit antioxidant capacity.87 During drying, anthocyanins
were more readily degraded than other phenolic compounds.
Losses of anthocyanins in processed berries may be reduced by
blanching, indicating that they are probably mediated by phenolic
compound degrading enzymes.73 Blackcurrant polyphenols were
significantly retained when incorporated both before or after
fermentation.88 Microencapsulation by spray drying, spray chill-
ing/cooling, coacervation, extrusion, fluidized coating, liposome
entrapment and molecular inclusion, have been tested in different
food matrices.89

Food preparation can also affect the levels of antioxidants.
Depending on the cooking method used, losses of ascorbic acid
during home cooking range from 15% to 55%.85 Boiling for 10 min
did not result in marked losses of AOX.90 Strawberry processing to
produce jams has been shown to decrease the total ellagic acid
and flavonol content by ∼20%.91,92 Microwave heating resulted
in lower losses of AOX as compared to conventional heating.93

Increased free ellagic acid was found in thermally treated raspberry
pulp. This was likely due to the release of insoluble ellagitannins.
After canning, total anthocyanins decreased by up to 44%, but
phenolic contents and antioxidant activity increased by up to
50% and 53%, respectively.73 Antioxidants present in foods are
mostly found in the form of esters, glycosides or polymers, which
cannot be absorbed through the intestinal wall such that the
hydrolysis of aglycones may increase their bioavailability.94,95

Finally, enzyme-assisted processing increases antimicrobial and
antioxidant activity of bilberry.96

AREAS OF ONGOING AND CHALLENGES
FOR FUTURE RESEARCH
Antioxidants in the laboratory
Most research studies in the field of phenolic metabolism use a
chemical approach focusing exclusively on compounds extracted

with organic acids of quite different extraction efficiencies.97 In
addition, under these conditions a large part of polyphenols are
not extracted and thus ignored.98 Recent studies have shown
that these non-extractable polyphenols are a major part of
total dietary polyphenols and that they may exhibit significant
biological activity. The relevance of these commonly non-extracted
antioxidants is almost unexplored.

Elucidating the identity, nature and abundance of the great
number of existing metabolites present in diverse berry samples
has been a challenge for analytical chemists. This has resulted
in the development of a number of methodologies aimed at
determining what is defined as ‘total antioxidant capacity’.99,100

The different available procedures are recognized to have pros
and cons regarding their specific target, informative value,
accuracy, repeatability, simplicity, time consumption and cost.
The development of standard analytical protocols for sample
preparation and measurement of antioxidant capacity will reduce
at least in part the variability observed in the literature. However,
no single procedure will likely achieve the main goal of estimating
the total potential health-promoting properties of any given
sample in humans. In vitro tests will continue to be used,
but the requirement for validation in cellular, animal model
systems and humans will increase. High-performance liquid
chromatography (HPLC) coupled with the DPPH (di(phenyl)-
(2,4,6-trinitrophenyl)iminoazanium) assay has been used to
determine the contribution of individual metabolites to the overall
antioxidant capacity of fruits.32,101,102 High-resolution screening
techniques, combining an established separation technique like
HPLC with post-column biochemical detection, can be used to
identify active compounds.103

Accelerated development of metabolomics and high-
throughput methods to perform studies with cellular lines in the
last few years suggest that it may be realistic to envision strategies
integrating multiple metabolite quantification and testing of
physiological effects of food antioxidants in complex matrices.

Individual antioxidants studied in clinical trials do not appear
to have consistent preventive effects that have been reported in
whole fruits,104 suggesting that the health benefits of fruits result
from the interactions of bioactive compounds and other nutrients
in whole foods.105 The nature and relevance of these interactions
are still obscure and active research is needed in this area.

Antioxidant metabolism in planta
The main goal in this area is the generation through breeding
programmes of novel berry cultivars with improved nutritional
properties. In certain cases, increasing AOX accumulation would
be beneficial from both plant and human perspectives. A recent
study demonstrated the successful combination of interspecies
back-crosses and intra-species crosses in order to improve
the nutraceutical content of strawberry fruit.106 Increasing the
level of AOX may result in improved responses to some
biotic and abiotic stresses. Many compounds with antioxidant
activity are actually pre-formed antifungal compounds.107 From a
breeder’s perspective, the availability of ‘highly nutritious berries’
with enhanced health-promoting properties would be a strong
asset, encouraging both berry producers and consumers. The
antioxidant potency in combination with phenolic content of fruits
has been proposed as a standardized method for the evaluation
of fruit germplasms.108,109 Antioxidant-rich berries could be
generated by taking advantage of the large, yet unexploited,
natural variation in these species, as well as by genetic engineering.

J Sci Food Agric 2014; 94: 825–833 c© 2013 Society of Chemical Industry wileyonlinelibrary.com/jsfa



8
3

0

www.soci.org GA Manganaris et al.

However, the public’s attitude toward genetically modified (GM)
crops is, at least in Europe, still rather sceptical, and EU regulations
are very restrictive.108

The general pathways leading to the biosynthesis of the
main AOXs in plants are established, and in the last years
some transcription factors that directly regulate multiple steps
of these routes have been identified.110 Some regulators such
as myeloblastosis (MYB) transcription factors (TFs) are emerging
as central players in the coordinated activation of sets of genes
specific for the anthocyanin and tannin accumulation. It has been
shown that MrMYB1b TF is a major regulator of anthocyanin
accumulation in Chinese red bayberry.111 A SQUAMOSA-class
MADS box transcription factor, VmTDR4, has been associated
with anthocyanin biosynthesis in bilberry.112 However, the whole
regulatory networks controlling the accumulation of the main AOX
groups in non-model berry species are far from being understood.

The existence of metabolic channels in the biosynthetic pathway
of some phenolic compounds increases the potential regulatory
steps. These molecular associations could prevent the free
diffusion of intermediate metabolites and thus control the flux
directions. Progress on the molecular genetics and cellular biology
of AOX homeostasis of berry fruits will be useful to identify
appropriate candidates for genetic engineering as well as to assist
breeding programmes aimed at improving berry fruit nutritional
properties.

Antioxidants during storage and processing
In the last few years, a number of studies have evaluated the
influence of storage and processing on berry fruit AOXs. Continuing
accumulation of AOXs in the postharvest environment led to
the conclusion that postharvest treatments activating bioactive
compounds biosynthesis could be envisaged as a nutritional-
enhancing strategy.113 While some treatments have induced
AOX accumulation, achievements in the technological arena are
still limited. Postharvest treatment conditions maximizing the
activation of AOX biosynthetic pathways need to be determined.

The food-processing industry has made significant efforts
to maximize the yield of extraction of AOX (e.g. ultrasound)
as well as to increase their stability during processing (e.g.
microencapsulation). Additional studies are still needed in this
area, since large amounts of health-promoting antioxidants are
annually lost during retail, storage and food formulation and
preparation.

Although increasing antioxidant levels in fruit through breeding
is an appealing alternative to support higher intake, large amounts
of AOXs are annually discarded in food by-products. The cost
benefit of recovering these will depend on the commodity
considered, but the revalorization of AOX suggest that such
interventions may become more convenient in the future.

Antioxidants in humans
A great deal of work is still required to establish the bioavailability,
metabolism and bioactivity of the main berry AOXs. As previously
indicated, the nutritional properties of different fruits have been
frequently derived from results from in vitro studies, which may
not be relevant in vivo, due to poor absorption and metabolism.
In fact, there are cases where in vitro tests for antioxidant capacity
showed poor correlation with in vivo radical scavenging capacity
or physiological effects.114 In the last few years, the protective
role of dietary antioxidants against oxidative damage has been
investigated in cell culture systems.115 While this represents a great

advance, it is still uncertain whether the effects in cell cultures,
often observed with higher doses of single compounds than would
be expected during normal intake, can be extrapolated to humans.

Studies using animal models have suggested that the intact
forms of complex dietary polyphenols have limited bioavailability,
with low circulating levels in plasma.116 For instance, flavonoids
require deglycosylation by mammalian hydrolases in the small
intestine before absorption. The concentration of plasma
metabolites after a normal dietary intake is commonly below
nmol L−1 levels.28 A major part of the polyphenols persist
in the colon, where they can be altered by microbiota.
Bacterial enzymes can perform multiple transformations, including
dehydroxylations, demethylation and fragmentations. These
compounds may be further metabolized upon absorption.117

Consequently, bioavailability values reported in the literature
should be re-evaluated taking into account both parental and
derived metabolites, such as colonic ring-fission products.28

Finally, colonic bioconversion has been shown to be markedly
dependent on the microflora diversity and diet.117 Understanding
the fate of antioxidants in a real context will shed light on
the indirect mechanisms by which dietary antioxidants may
exert beneficial effects in humans. Overall, coordinated activities
through an interdisciplinary approach that will encompass
scientists from different disciplines (agricultural and food sciences,
analytical chemistry, human nutrition) may shed additional light
on better understanding the mechanisms behind the reported
effects of berry-derived antioxidants on human health.
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22 Mattila P, Hellstrom J and Törrönen R, Phenolic acids in berries, fruits,
and beverages. J Agric Food Chem 54:7193–7199 (2006).

23 Zadernowski R, Naczk M and Nesterowicz J, Phenolic acid profiles in
some small berries. J Agric Food Chem 53:2118–2124 (2005).

24 Del Rio D, Borges G and Crozier A, Berry flavonoids and phenolics:
bioavailability and evidence of protective effects. Br J Nutr
104:S67–S90 (2010).

25 Jaakola L, New insights into the regulation of anthocyanin
biosynthesis in fruits. Trends Plant Sci 18:477–483 (2013).

26 Clifford MN, Anthocyanins: nature, occurrence and dietary burden. J
Sci Food Agric 80:1063–1072 (2000).
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33 Häkkinen SH and Auriola S, High-performance liquid chromatogra-
phy with electrospray ionization mass spectrometry and diode
array ultraviolet detection in the identification of flavonol agly-
cones and glycosides in berries. J Chromatogr A 829:91–100
(1998).
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69 Giné Bordonaba J and Terry LA, Manipulating the taste-
related composition of strawberry fruits (Fragaria × ananassa)
from different cultivars using deficit irrigation. Food Chem
122:1020–1026 (2010).

70 Terry LA, Chope GA and Giné Bordonaba J, Effect of water
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