
Superadiabatic spin-preserving control of a single-spin qubit in a double

quantum dot with spin-orbit interaction

Sergio S. Gomez and Rodolfo H. Romero∗

Instituto de Modelado e Innovacion Tecnologica,

Universidad Nacional del Nordeste, CONICET,

Facultad de Ciencias Exactas y Naturales y Agrimensura,

Avenida Libertad 5400, W3404AAS Corrientes, Argentina

(Dated: October 31, 2019)

A protocol for controlling the localization of an electron with a fixed projection of spin

between two quantum dots in a material with spin-orbit (SO) interaction is studied. Due

to SO coupling, the manipulation of the electron shuttling between both quantum dots also

leads to a mixing between spin projections near to the avoided crossing of levels. We use a

transitionless quantum driving approach, with neglect of SO interaction, to analytically de-

sign simple electric and magnetic pulses able to rapidly drive the electron along an adiabatic

Landau-Zener manifold. We show that the same fields in the presence of SO can also give

a fast high-fidelity transition between the qubit states. The performance of the proposed

protocol is assessed in the presence of SO interactions of typical semiconductor materials.

Its is shown that it provides a fast and efficient spin-conserving method for controlling the

electron position in a double quantum dot.

I. INTRODUCTION

Electrostatically defined quantum dot arrays in semiconductor materials are among of the most

promising systems for the development of a technology leading to scalable quantum computers

[1–7]. They are envisioned to take advantage of electron spin and orbital degrees of freedom for

encoding information that have to be stored and transmitted throughout the device by applying

controls consisting in time-dependent externally manipulated fields. Storage requires that a given

state must be reliably preserved along time, while the processing operations demand a fast state

transfer with high fidelity. All operations are assumed to be electrostatically controlled by external

electrodes [8]. Physical effects on state storage and transfer can be studied in the simple system

consisting in a single electron bond to two coupled quantum dots [9].

∗Electronic address: rhromero@exa.unne.edu.ar



2

The electron spin projection is a natural choice for encoding a qubit. They are usually distin-

guished by applying an external magnetic field splitting up and down energy levels. The presence

of SO interaction in the used materials, although small, gives rise to experimentally observable

mixing of spin states and allows for unwanted spin-flip processes [10]. The faster the change of

the external potentials, the greater the state mixing. One way to reduce the mixing of states is

by producing adiabatic (ideally infinitely slow) changes such that no transitions occur between up

and down states. Nevertheless, such a process obviously spoils the processing speed of the de-

vice. Furthermore, other interactions and effects lead to decoherence in the state, thus diminishing

the efficiency of the transfer. Several approaches have been advocated in order to speed up the

adiabatic dynamics. They are generically named as shortcuts to adiabaticity, superadiabatic or

transitionless quantum driving [11–13].

Adiabatic quantum computing is a procedure for solving optimization problems using the

Schrödinger evolution of a quantum system. It consists in setting the system in the ground state

of a Hamiltonian H0(t) at a given time t = 0 and allows it to evolve adiabatically until reaching

the ground state of a Hamiltonian H(t), at a later time t = T , which encodes the solution of the

problem. The assumption of an infinitely slow change guarantees reaching the required ground

state of H(T ), where a measurement provides the sought solution [11, 14]. The approach termed

transitionless quantum driving, aims to speed up the evolution along the adiabatic manifold within

a finite time by introducing an additional perturbation HI(t) so that the state of the new Hamilto-

nian evolves along the adiabatic state of the original one. It has been applied to several problems

such a chain of spins with a Heisenberg interaction [15], a spin under a time dependent magnetic

field [12], and some particular cases of the three-level and four-level system with Landau-Zener

potentials [16, 17].

In this work we apply the transitionless quantum driving approach to design a driving Hamilto-

nian speeding up the Landau-Zener (LZ) transfer of an electron between two quantum dots while

still suppressing spin-flip processes due to spin-orbit interaction. We show that, for our model, the

driving Hamiltonian derived in the absence of SO interaction, can be represented as a combination

of electric and magnetic time-dependent pulses, whose duration and intensity is related to speed

of the LZ process. Interestingly, the same pulses can also produce fast and high-fidelity transitions

still in materials with strong SO interaction, which could provide an efficient manipulation in a

realistic system.

The structure of this work is as follows. In Section II, we present the model Hamiltonian

of the double quantum dot subjected to the time-dependent LZ process and a brief summary
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FIG. 1: Scheme of the system and its interactions. The circles represent the double quantum dot,

labeled as left (L) and right (R). The lines depicts the transition amplitude between spin states of

the same or opposite projections, i.e., spin-conserving (V ) and spin-flip (tSO) couplings.

of the transitionless quantum driving approach. Section III present the resulting quasi-adiabatic

Hamiltonian and numerical results of the time-dependent probabilities of transition. Finally, in

the last section some concluding remarks are given.

II. THEORY

A. Landau-Zener processes in a double quantum dot with spin-orbit interaction

We consider a single electron confined within a pair of coupled quantum dots (L and R) in a

two-dimensional heterostructure taken as the xy plane as depicted in Fig. 1 .

Both quantum dots are assumed identical to each other, so that their noninteracting ground

state energies are taken as the energy offset of the system. Therefore, their energy levels are

determined by the coupling between them, described by the Hamiltonian Hhopping. A magnetic

field Bz perpendicular to the dots plane is also present, thus producing a Zeeman splitting of

the levels HZeeman. For most semiconductor materials, a non vanishing spin-orbit interaction

HSO exists that mixes those magnetically-split levels. Furthermore, a time-dependent electric

field interaction, HLZ(t), is also applied for the purpose of controlling the electron state along a

Landau-Zener process. Then, the whole system will be described by the Hamiltonian

H0 = Hhopping +HZeeman +HSO +HLZ(t), (1)
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which, using second quantization, will be phenomenologically described as

Hhopping = −V
∑
σ=↑,↓

(c†LσcRσ + c†RσcLσ) (2)

HZeeman = ∆
∑
k,σ

σc†kσckσ + h.c. (3)

HSO = −tSOi
∑
σ,σ′

(σy)σ,σ′c
†
R,σcLσ′ + h.c. (4)

HLZ(t) =
∑
k,σ

εk(t)c
†
kσckσ + h.c., (5)

when expressed in the basis |k, σ〉 = c†k,σ|vac〉, where k =L, R is the state of the electron localized in

the left or right quantum dots, and σ =↑, ↓ is the z-projection of the electron spin. The parameter

∆ = h̄gµNBz is the Zeeman splitting due to the applied magnetic field Bz, g being the Landé

factor of the material and µB the Bohr magneton. The other parameters are a non-conserving spin

hopping tSO, originated from the spin-orbit interaction associated with the Rashba mechanism [18],

the spin-conserving hopping matrix element between the dots V and the potential from the electric

field applied along the interdot axis εi(t). In the Landau Zener model, εi(t) varies linearly with

time. For our case, εL(t) = λt = −εR(t), λ being the speed of the change of the energy due to the

electric field. The chosen values of the parameters V , ∆, tSO and λ used in our calculations are

derived from measurements in usual semiconductors and simple models [19–21]. So, for a tight-

binding model, tSO = α0eEz/2d, where d is the interdot distance, and Ez the electric field in the

perpendicular direction to the heterostructure plane. Choosing the Rashba constant α0 = 5 nm2

as that for InSb, a semiconductor with one of the largest SO couplings, gives tipical tSO ' 0− 500

µeV and V ' 10− 1000 µeV depending on the interdot distance. We have chosen V = 30 µeV, a

typical λ = 5 meV ns−1 and tSO ' 0− 60 µeV in order to address the transition from weak to the

strong spin-flip mechanism.

Fig. 2a shows the adiabatic levels for the Hamiltonian H0(t) as a function of time. At earlier

times (T → −∞), the ground state is |L, ↑〉 due to the large negative potential εL initially set at

the dot L. At later times (T → ∞), the character of the ground state is mostly |R, ↑〉, acording

to the inversion of the diabatic levels due to the LZ dependence. A sufficiently large Zeeman gap

∆ > V clearly separates the states |k, ↑〉 from |k, ↓〉 (k =L, R) for both dots. In the absence of SO

effects, the spin projections are decoupled and become two independent two-level (L or R) systems.

However, because of the finite SO coupling, there are avoided crossings between states of opposite

spin projections at t = ±∆/2λ, with a gap ∼ 2tSO. Also at t = 0 there are two avoided crossings
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FIG. 2: (a) Adiabatic levels of the electron in the DQD as given by the Hamiltonian H0(t), as a

function of time. The effect of the Zeeman coupling (∆), interdot coupling (V ) and spin-orbit

(tSO) interaction on the splittings in the four-level spectrum are also shown. The dashed straight

lines show the diabatic levels. (b) Dynamics of the probability of occupation of the states |L↑〉,
|R↑〉 and |R↓〉) as a function of time throughout a Landau-Zener process for tSO = 0, 26 and 52

µeV. As tSO increases, the probability of spin-flip transitions |L ↑〉 → |R ↓〉 becomes larger.

between levels of the same spin projection having a gap ∼ 2V . In particular, we are interested in

the adiabatic process connecting the diabatic states |L, ↑〉 and |R, ↑〉, chosen as the qubits |0〉 and

|1〉 of the computational space.

It should be noted from Fig. 2a that the state ψ(t) evolves from |ψ(−∞)〉 = |L, ↑〉; hence, when

the process is performed at a finite speed, after the first avoided crossing (at t = 0) it can remain

on the adiabatic level (thus performing to desired transition to |ψ(t = ∞) = |R, ↑〉), or jump to

the first excited state (thus giving |ψ(t = ∞) = |L, ↑〉 in the long term). In the last case, there is

still a probability to transition (at t = ∆/(2λ)) to the excited state leading to |ψ(t =∞) = |R, ↓〉.
Therefore, the three probabilities PL,↑(t), PR,↑(t) and PR,↓(t) has to be considered, where PR,↓(t)

must remain as small as possible because it represents a leakage from the computational space.

For two levels, the Landau Zener Formula accounts for the probability of the electron initially

in the left site L at t = −∞, after the evolution at t = ∞ transition to the site R [22–25]. This

probability is PR↑ = 1 − exp(−π/ξLZ), where ξLZ = 2h̄λ/V 2 is a parameter that can be taken

as the dimensionless speed of a Landau-Zener process between two states having an energy gap
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∼ V ; for an infinitely slow adiabatic process (ξLZ → 0) the probability PR↑ = 1, while it becomes

smaller for fast LZ processes, such that PR↑ → 0 as ξLZ → ∞. As an example, typical values of

experiments with InSb quantum dots, V = 30 µeV and λ = 5 meV ns−1, give PR↑ ' 0.3. When we

switch on the spin-orbit interaction, the probability PR↑ remains approximately the same, but we

observe an increase on PR↓. For a system having several avoided crossings, the probability for the

Landau-Zener transition can be approximated as a sum of sequential two-level processes [26–31].

For the system considered here, PR↓ ' [1 − exp(−π/ξSO)] exp(−π/ξLZ), where ξSO = 2h̄λ/t2SO is

the dimensionless speed for the LZ transition throughout a gap ∼ tSO between the spin projections

↑ and ↓. The factors in PR↓ are the probabilities of the electron remaining in the same site after

the first anticrossing and the probability of an spin-flip in the second anticrossing, respectively.

In the Fig. 2b the results of the evolution with the Hamiltonian H0(t) are shown. As mentioned

above, as the tSO is increased from 0 to V , the probability of spin flip increases, reaching a value of

approximately 15%. On the other hand, the probability PR↑ also diminishes when tSO increases,

due to the fact that the two-level LZ formula is not valid in this case. This is an indication of the

effect of the spin orbit on the spin manipulation with the Landau-Zener protocol. The magnitude

of the parameter λ respect to both V and tSO is relevant. Fast manipulation implies a significant

lost of yield in the spin-conserving process |L ↑〉 → |R ↑〉.

B. Transitionless quantum driving

Landau-Zener manipulation, for given V and tSO, can control the transfer of the state with high

yields only for slow LZ processes (ξLZ � 1). We aim to use the transitionless quantum driving

(TQD) method [12, 32, 33] for improving the process speed while still maintaining high fidelities

to the target state. In the TQD protocol a term, the superadiabatic correction Ĥ(1), is added to

the original Hamiltonian Ĥ0 to keep the evolution of the system along one of its adiabatic levels,

defined as its instantaneous eigenstates

Ĥ0(t)|n(t)〉 = En(t)|n(t)〉. (6)

The adiabatic states could be assumed as solution of the time evolution of the Hamiltonian Ĥ0

|ψn(t)〉 = exp

(
− i
h̄

∫ t

0
En(t′)dt′ −

∫ t

0
〈n(t′)|∂t′n(t′)〉

)
|n(t)〉 (7)

However, the evolution will not, in general, follow an instant eigenvalue. By adding the control

term Ĥ(1)(t), the total Hamiltonian will follows the dynamics given by

ih̄∂t|ψn(t)〉 =
(
Ĥ0(t) + Ĥ(1)(t)

)
|ψn(t)〉 (8)
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The correction Ĥ(1) is obtained from the dynamics of the system

ih̄∂tÛ(t) = Ĥ(t)Û(t), (9)

from which the Hamiltonian can be expressed as

Ĥ(t) =
(
ih̄∂tÛ(t)

)
U †(t) (10)

in terms of the evolution operator Û(t)

U(t) = exp

(
− i
h̄

∫ t

0
En(t′)dt′ −

∫ t

0
〈n(t′)|∂t′n(t′)〉

)
|n(t)〉〈n(0)|. (11)

Then, the superadiabatic correction results

Ĥ1(t) = ih̄

(∑
n

|∂tn(t)〉〈n(t)| − 〈n(t)|∂tn(t)〉|n(t)〉〈n(t)|
)

(12)

or, equivalently,

Ĥ(1)(t) = ih̄
∑
n 6=m

|n〉〈n|∂tH0|m〉〈m|
Em − En

. (13)

We shall proceed now to obtain the explicit form of Ĥ(1) for the Hamiltonian of the DQD, Eq. (1),

such that its state evolves rapidly along adiabatic LZ states.

III. SUPERADIABATIC LZ TRANSITIONS

A. Transitionless quantum driving approach

We aim to use the approach presented above in order to speed up the switching between the

qubit states along the adiabatic LZ ground state of Fig 2. Although a direct application of the

superadiabatic approach is possible, it leads to a counterdiabatic control Hamiltonian, eq. (13),

explicitly depending on the SO strength and, therefore, on the precise knowledge of the material

properties. Instead, we shall firstly apply such an approach under the approximation of vanishing

SO interaction and afterwards we will include its the effect by means of a physical approximation.

Finally, we shall asses numerically the range of validity of such an approximation. As a result we

will show that such a SO-independent control Hamiltonian still turns out to be highly efficient for

a wide range of SO parameters of usually studied semiconductors.

In the absence of SO interaction, the Hamiltonian H0(t) is block diagonal and, therefore, sz-

conserving

H(0)
sz (t) =

 ĥ
(0)
− 0

0 ĥ
(0)
+

 , (14)
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with

ĥ
(0)
± =

 ±∆ + εL(t) −V
−V ±∆ + εR(t)

 (15)

with εL/R = ±λt; the ± sign labels each of the two sz = ±h̄/2 spin projections of the electron.

Introducing the half-detuning ε = (εL − εR)/2 and the average offset εav = (εL + εR)/2, it can be

written as

ĥ
(0)
± (t) =

 ±∆(t) + ε(t) −V
−V ±∆(t)− ε(t)

 , (16)

with ∆(t) = ∆ ± εav(t). For the usual LZ dependence, εav(t) = 0 and hence ∆(t) = ∆ becomes

time-independent. For each one of these two-level Hamiltonian ĥ
(0)
± , the counteradiabatic correction

for the LZ protocol, ε = λt, in the adiabatic basis is

h(1)(t) = ih̄∂tε

 0 V
2(ε2+V 2)

− V
2(ε2+V 2)

0

 = V ϑ(ξLZ, t)

 0 i

−i 0

 , (17)

where the off-diagonal elements couple states localized at dots L and R, and

ϑ(ξLZ, t) =
ξLZ

(1 + ξ2
LZV

2t2/h̄2)
(18)

describes the time-dependence of the interdot coupling required for a given finite-speed process ξLZ;

h(1)(t) vanishes for a infinitely slow LZ dynamics (ξLZ = 0), but becomes h
(1)
LR(t) ' ih̄2/ξLZV t

2 ∼
O(t−2) for large ξLZ values, so it becomes negligibly small, except within a time interval near to

the avoided crossing occurring at t = 0. Interestingly, this Hamiltonian depends on the departure

from adiabaticity of the process, as measured by ξLZ, and the interdot coupling V , but it does not

on neither ∆(t) nor the initial spin projection.

Transforming to the diabatic basis set, the total Hamiltonian Ĥsz = H
(0)
sz (t) + Ĥ

(1)
sz (t) remains

block diagonal

Ĥsz =

 ĥ− 0

0 ĥ+

 =

 ĥ
(0)
− + ĥ(1) 0

0 ĥ
(0)
+ + ĥ(1)

 , (19)

where ĥ± take the form

ĥ± =

 ±∆ + λt −V (t)eiΦ(t)

−V (t)e−iΦ(t) ±∆− λt

 (20)

with
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Φ(t) = tan−1 ϑ(ξLZ, t) (21)

V (t) = V
√

1 + ϑ2(ξLZ, t). (22)

Interestingly, the off-diagonal elements ĥLR of eq. (20) have amplitude V (t) and a phase Φ(t).

V (t) is the bias associated to the electric field along the interdot axis. The phase Φ(t) formally

reminds the form of Peierls substitution for a tight binding Hamiltonian subject to a magnetic

field, i.e., ĥLR → ĥLR exp(iΦ) [34], where the magnetic field is incorporated into the phase of the

hopping terms as the line integral of the vector potential A as Φ(t) =
∫ R

L A(r, t)·dl to be consistent

with the continuum description. Therefore, in our tight-binding model, we assign the origin of the

time-dependent amplitude and phase in ĥLR, to a time-dependent magnetic field Bz(t) and a time

dependent hopping V (t). The corresponding diagonal Zeeman terms produced by such a Bz(t)

are absent due to it can be shown to lead to a vanishing counterdiabatic term, so that its only

effect being the time-dependent phase modulation Φ(t). Assuming a uniform magnetic field Bz(t)

derived from a vector potential A(t) = B(t) × (r − r0)/2, where r0 = (x0, y0) fixes the arbitrary

gauge origin, the Peierls phase results Φ(t) =
∫ R

L A(r, t)·dl = −Bz(t)y0d, i.e., proportional to the

magnetic field Bz(t) and the dot separation d, following the same time dependence as Φ(t), eq.

(21), up to an arbitrary magnitude due to the freedom for the choice of the gauge origin.

Fig. 3 shows the form of the driving fields Φ(t) and V (t), given by eqs. (21) and (22). Both

of them are bell-shaped pulses amenable to experimental realization. They are centered around

the time of the avoided crossing of the diabatic levels, have time widths τΦ and τV (defined as

half-distance between inflection points of the curves, as shown in Fig 3) and maximum values Φmax

and Vmax. From eqs. (21) and (22), analytic expressions can be given for Φmax, τΦ and Vmax (while

τV has to be determined numerically), namely,

Φmax = tan−1 ξLZ (23)

τΦ =
2h̄√

3V ξLZ

(√
3ξ2

LZ + 4− 1

)1/2

(24)

Vmax = V
√

1 + ξ2
LZ (25)

For slow LZ processes (ξLZ � 1), Φmax ' 0 and the time-dependent driving interdot coupling

V (t) is rather flat and nearly time-independent V (t) ' V , except for times around t = 0 where

it presents a pronounced peak. As the speed ξLZ of the LZ process increases, the pulses becomes

stronger and tighter, i.e., Φmax and Vmax increase while τΦ and τV diminish. These pulses becomes



10

Φmax

2τΦ
Φ

(t
)

t

V

Vmax

2τVV
(t
)

t

FIG. 3: Driving fields Φ(t) and V (t), eqs. (21)-(22), calculated with the transitionless quantum

driving approach aimed at following the adiabatic state of a LZ process. The pulses are

asymptotically flat and act during a short time of order τΦ and τV .

particularly tighter and stronger for the fastest LZ processes as a direct consequence of the fact

that the counterdiabatic fields must act strongly in shorter periods of time to hold the adiabaticity

of fast LZ processes.

As a summary of the above discussion, we state that the counterdiabatic correction for our

model, calculated within the transitionless quantum driving approach in the absence of SO effects,

amounts to the simultaneous application of two time-dependent driving fields Bz(t) and V (t). From

such a physical picture, we propose a dynamical control strategy using those same fields for the

system with SO interaction. Since in that case, the dynamics will not be strictly adiabatic, we

dubb it quasi-adiabatic (QA) as described by the Hamiltonian HQA = HSz +HSO

ĤQA(t) =


−∆′(t) + λt −V (t)eiΦ(t) 0 tSOe

iΦ(t)

−V (t)e−iΦ(t) −∆′(t)− λt −tSOe−iΦ(t) 0

0 −tSOeiΦ(t) ∆′(t) + λt −V (t)eiΦ(t)

tSOe
−iΦ(t) 0 −V (t)e−iΦ(t) ∆′(t)− λt

 (26)

where we have reintroduced the off-diagonal SO-dependent blocks, ±tSO exp(±iΦ(t)), mixing the

up and down spin projections with their corresponding Peierls phases, and ∆′(t) is the Zeeman

splitting due to both the external field and BQA
z (t). Now we shall numerically asses the efficiency

of the Hamiltonian HQA(t) for performing fast transitions between our qubit states.

B. Quasi-adiabatic dynamics with SO interaction: numerical results

Fig. 4 shows, in thick solid lines , the probability of occupation PL↑(t), PR↑(t) and PR↓(t) as

a function of time, calculated with HQA(t) without SO interaction and with tSO = 26 µeV, 39
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FIG. 4: Probabilities of occupation PL↑, PR↑ and PR↓ calculated with the quasi-adiabatic

approach (QA, solid lines) and Landau-Zener dynamics (LZ, dash-dotted lines), for V = 30 µeV,

λ = 5 meV ns−1, with (a) tSO=0 µeV, (b) tSO=26 µeV, (c) tSO=39 µeV and (d) tSO=52 µeV. In

the first pannel we also show the corresponding pulses V (t) (in units of Vmax) and Φ(t). The gray

area highlight a time window |t| < 0.01 ns which approximately corresponds to both τV and τΦ

µeV, and 52 µeV, hopping V = 30 µeV and λ = 5 meV ns−1. For comparison, the Landau-Zener

evolution is also shown in dash-dotted lines.

In the absence of SO effects (Fig. 4a), the QA dynamics is equivalent to the transitionless dy-

namics for the avoided crossing of the diabatic qubit states and produce a fast switching, achieving

PQA
R↑ ' 1 within the range |t| <∼ 0.5 ns. By contrast, the LZ process is not efficient for the desired

spin-conserving transition L→R: PLZ
R↑ ' 0.6 while PLZ

L↑ ' 0.4; PLZ
R↓ = 0 since no transitions are

allowed between different spin projections.

Figures 4b, 4c and 4d show the dynamics of the probabilities for increasing values of the SO

parameter. The QA dynamics turns out quite robust as it remains similar to the case without SO;

hence, the control with the counteradiabatic fields BQA
z (t) and V (t) becomes fast and efficient even
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for large values of tSO
>∼ V . In all cases, the protocol holds a small leakage from the computational

space, i.e., PR↓(t) <∼ 10−3. By comparison, the LZ protocol spoils the transition as tSO increases,

enhancing the oscillations between the qubit states and the magnitude of the leakage. It should be

noted that for the larger value tSO = 39 µeV, the LZ dynamics completely drives the system out

of the computational space.

We study now the effect of interdot coupling V on the fidelity of the transition performed

with the QA Hamiltonian, eq. (26), for moderate and large SO parameters, as compared to LZ

dynamics.

(a) Spin− conserving LZ (b) Spin− conserving QA
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(c) Spin− flip LZ (d) Spin− flip QA
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FIG. 5: Probability of electron transitions from the left to the right quantum dot for

spin-conserving, PR↑ with LZ (a) and QA (b) strategies, and spin-flip, PR↓, processes (c) with

Landau-Zener and QA dynamics(d), versus the spin-conserving hopping V and the spin-flip

hopping tSO.
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In the Figure 5 we show a comparison between the spin-conserving and spin-flip probabilites for

the LZ(pannels (a) and (c)) a QA strategies( pannels (b) and (d)) versus both the spin-conserving

V and spin-flip tSO hoppings. For the QA strategy, the spin conserving probability is very close to

1, and therefore we have express it as 105(1− PR↑). On the other hand the spin flip probability is

expressed as 103PR↓, since its values are also very small. As expected, the PLZR↑ depends strongly

on the values of V , roughly with the typical exponential behaviour given by the Landau Zener

formulae, while is less sensitive to the value of tSO. On the other hand, the spin-flip probability

for LZ protocol is near 1 for small values of V and large values of tSO, following the approximation

PR↓ ' [1 − exp(−π/ξSO)] exp(−π/ξLZ), where ξSO = 2h̄λ/t2SO . The QA strategy, on the other

hand, increases the spin-conserving probability to a fidelity which differs from 1 in ∼ 10−3 for all

of the values of tSO and V . On the other hand, the spin-flip transition probability is less than 0.1%

for the all of the values of V and tSO, and therefore this shows the improvement that represents

the use of the QA strategy respect to the LZ one.

IV. CONCLUSIONS

We have studied the shuttling of an electron with a fixed projection of spin between two coupled

quantum dots in the presence of the spin-orbit interaction. The electron states localized at left and

right dot are assumed as suitable qubit states in charge qubits and can be connected by well-known

LZ processes. We applied the transitionless quantum driving approach to produce a fast transition

along the lowest adiabatic level of a given LZ process whithout SO Hamiltonian. The resulting

time-dependent fields can be identified as a magnetic field BQA
z (t) perpendicular to plane of the

dots and an interdot coupling V (t) driving the electron state along the adiabatic LZ level for each

spin projection. The resulting driving fields are numerically tested in systems with SO coupling,

such as InSb, using realistic parameters for those materials having strong SO effect. While Landau-

Zener process become remarkably sensitive to the SO perturbation, with large leakage out of the

computational space due to spin-flip transitions, the driving fields designed with the transitionles

driving approach are almost SO-independent, giving rise to negligible leakage. We expect that this

proposal can be useful for designing driving fields amenable of experimental realization and able

to transfer rapidly the qubit states along a prescribed LZ adiabatic process while still protecting

them from SO mixing.
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