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ABSTRACT 

 

Shade intolerant plants respond to the decrease in the red (R) to far-red light (FR) ratio 

(R:FR) occurring under shade by elongating stems and petioles and re-positioning leaves, in a 

race to out-compete neighbors for the sunlight resource. In some annual species, these shade-

avoidance responses (SAS) are accompanied by the early induction of flowering. Anticipated 

flowering is viewed as a strategy to set seeds before the resources become severely limiting. 

Little is known about the molecular mechanisms of SAS in perennial forage crops like alfalfa 

(Medicago sativa). To study SAS in alfalfa, we exposed alfalfa plants to simulated shade by 

supplementing with FR. Low R:FR produced a classical SAS, such as increased internode 

and petiole length but, unexpectedly, delayed flowering. To understand the molecular 

mechanisms involved in uncoupling SAS from early flowering, we used a transcriptomic 

approach. SAS were likely mediated by increased expression of msPIF3 and msHB2 in low 

R:FR. Constitutive expression of these genes in Arabidopsis led to SAS, including early 

flowering, strongly suggesting their roles are conserved. Delayed flowering was likely to be 

mediated by the downregulation of msSPL3, which promotes flowering in both Arabidopsis 

and alfalfa. Shade-delayed flowering in alfalfa may be important to extend the vegetative 

phase under sub-optimal light conditions and thus assure the accumulation of reserves 

necessary to resume growth after the next season.  

 

INTRODUCTION 

Alfalfa (Medicago sativa) is a perennial legume used widely around the world as one of the 

most important forage crops. This is mainly due to its abundant yield, high forage quality, 

plasticity and capacity to engage in symbiotic associations to fix nitrogen, which makes it an 

ideal companion crop for other species (Elliott, 1972; Li & Brummer, 2012)  

One of the current agronomic goals is to improve the performance of alfalfa plants at high 

densities, either as pure stands or as a companion crop with grasses, as this would represent 

an increase in production due to a major number of shoots per unit of area (H. Lin et al., 

1999; Varella, 2002; Varella et al., 2010). Since densely grown plants become increasingly 

mutually shaded, knowing the degree of plasticity in response to crowding signals is of utter 

importance for future alfalfa improvement.  
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Green tissues strongly absorb ultraviolet radiation and visible light, including the red-light 

(R) region of spectrum (around 620 nm), while transmitting and reflecting more effectively in 

the far-red-light (FR) region (around 730 nm). As a result, the radiation reflected from or 

transmitted through neighbor vegetation becomes relatively enriched in FR light and bears a 

low R to FR ratio (R:FR), which is perceived by phytochrome and provides a warning cue of 

the presence of plant competitors (Casal, 2013; Ballare & Pierik, 2017). Phytochromes have 

two interconvertible forms: an inactive Pr form, which upon R light absorption is converted 

into the active Pfr form (Burgie et al., 2014). The Pfr can be rapidly converted back to the Pr 

form by FR light, or by thermal reversion, which serves as a thermosensing mechanism (Jung 

et al., 2016a; Legris et al., 2016). “Shade intolerant plants” (Gommers et al., 2013) exposed 

to low R:FR exhibit elongated stems and petioles which redirect growth to avoid shade, a 

group of responses known collectively as the “Shade Avoidance Syndrome” (SAS) (Casal, 

2012; Ballare & Pierik, 2017). “Shade tolerant plants” mount an opposing response which 

aims to optimize photosynthesis and other physiological responses under shade (Valladares & 

Niinemets, 2008; Gommers et al., 2013; Gommers et al., 2017). 

Besides increased petiole length and plant height (Schmitt et al., 2003), the SAS include 

altered pigment biosynthesis involving reduced photosynthesis and chlorophyll (Chl) content 

(Lichtenthaler et al., 2007; Moon et al., 2008; Cagnola et al., 2012; Li et al., 2014), lower 

carotenoid levels (Cagnola et al., 2012; Bou-Torrent et al., 2015) and anthocyanin content, 

depending on the plant species (Steyn et al., 2002; Cagnola et al., 2012; Ding et al., 2016). 

SAS is also characterized by an upward bending of cotyledons and leaves (hyponasty) 

(Whitelam & Johnson, 1982; Vandenbussche et al., 2003; Millenaar et al., 2005), and early 

flowering (Deitzer et al., 1979; Casal et al., 1985; Halliday et al., 1994). The latter is 

considered to be initiated in order to ensure reproductive success under resource limited 

conditions (Casal, 2012; Yuan et al., 2017).  

Phytochrome B (phyB) is the main repressor of the SAS under high R:FR (Weller & Reid, 

1993; Takano et al., 2005; Suzuki et al., 2011; Karve et al., 2012; Sanchez-Lamas et al., 

2015). phyB directly regulates transcription factors involved in plant SAS which have been 

described in Arabidopsis thaliana  (Devlin et al., 2003; Roig-Villanova et al., 2006). Among 

them, members of PHYTOCRHOME INTERACTING FACTOR family (PIF)  (Leivar & 

Monte, 2014) are positive promoters of SAS and are degraded upon interaction with phyB Pfr 

(Lorrain et al., 2008; Stephenson et al., 2009; Hersch et al., 2014). Other factors are known 

to act downstream phys such as the HD-zip transcription factor ARABIDOPSIS THALIANA 
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HOMEOBOX 2 (ATHB2), a positive regulator of SAS (Steindler et al., 1999), 

CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1), a negative regulator (McNellis et 

al., 1994; Pacín et al., 2013) and FAR INSENSITIVE 219/JAR1, which regulates multiple 

shade genes (Swain et al., 2017).  

In legumes, SAS studies mostly focused on annual species like Pisum sativum (Weller 

& Reid, 1993; Weller et al., 1995; Weller et al., 1997; Weller et al., 2001) and Glycine max 

(soybean). In Pisum, phyB mutants showed increased plant height, reduced leaflet area and 

early flowering (Weller & Reid, 1993). In soybean, shade caused increased internode length, 

delayed seedling development, reduced branching, total biomass and seed yield (Green-

Tracewicz et al., 2011). Interestingly, photosynthesis efficiency increased in soybeans grown 

under shade, probably as a mechanism of shade tolerance (Gong et al., 2015).  

Alfalfa plants grown in the field under different shade treatments (intercropped with 

trees or using wooden slats) showed a reduction in total dry weight in response to shade (H. 

Lin et al., 1999; Varella, 2002). Varella et al. (Varella et al., 2010) observed an increase in 

height and internode length, with a concomitant reduction in the leaf:stem ratio in shade 

grown plants, implying a reduction in forage quality. Other experiments performed in pure 

stands of alfalfa showed that growing plants at high density had a positive effect on total 

biomass, due to a higher number of shoots per unit area (Volenec et al., 1987; Mattera et al., 

2013).. 

Although physiological assays have been performed to study the SAS in legumes, 

whether the molecular mechanisms are conserved with model species is still unclear. Recent 

experiments have been performed in annual legume species employing transcriptomic 

approaches (Wang et al., 2009). Horvath et al characterized several putative soybean 

orthologs of shade responsive genes by RNAseq (Horvath et al., 2015). Among others, they 

identified orthologs of PHYTOCHROME INTERACTING FACTOR 3 (PIF3) and B-BOX 

PROTEIN 19 (BBX19), alongside several heat shock protein orthologs. Another recent study 

with an annual subterranean clover (Trifolium subterraneum L) showed several putative 

flowering promoting genes were up-regulated under FR enriched light, such as orthologs of 

FLOWERING LOCUS T (FT) and CONSTANS like (COL) genes (Pazos Navarro et al., 

2017). 
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In this study, we characterized the alfalfa SAS at physiological and molecular levels. 

Alfalfa plants grown under low R:FR displayed changes in plant architecture and pigment 

content typical of SAS responses in shade intolerant plants. These changes were likely due to 

the shade-induced expression of msPIF3 and msHB2, whose role we show is conserved in 

Arabidopsis. Surprisingly, shade delayed flowering in alfalfa, and we found that it correlated 

with the down regulation of msSPL3. Our data suggest that perennial alfalfa might use a 

different strategy to annual species; by delaying flowering under suboptimal light conditions, 

alfalfa may accumulate enough reserves before reproductive stages, which are also necessary 

to survive the next winter season.  

 

RESULTS 

 

Simulated shade promotes changes in adult plant architecture and in pigment 

accumulation 

To evaluate the effect of simulated shade on plant architecture during adult stages of alfalfa 

we placed 3-week-old plants (when the first trifoliated leaf was expanded) under W or W+FR 

conditions and followed their subsequent development (Fig. 1). Simulated shade promoted 

SAS, as we observed an increase in height (Fig. 1 a,b), petiole length (Fig. 1c) and internode 

elongation (Fig. 1d,e). To explore the effects of shade on yield and forage composition we 

measured the dry weight of leaves and stems for shaded vs unshaded plants. Though no 

differences were seen in biomass yield, shaded plants showed a decrease in total leaf dry 

weight (Fig. 1f) and a concomitant reduction in the ratio of leaf to stem biomass (Fig. 1g). 

This reduction is not due to decreased photosynthetic active radiation (PAR) as both 

treatments received the same PAR, but to decreased R:FR ratio. These data suggest that 

phytochrome status is important for forage quality, which would be expected to decrease with 

the reduction of leaf to stem ratios. 

We additionally tested two protocols of simulated shade in alfalfa seedlings under SD or LD. 

We compared the W+FR treatment against a 15 min pulse at the end of each photoperiod to 

decrease active phytochrome during the subsequent dark period (EOD-FR) (Fig. S1 a-e). We 

found both protocols to be equally effective to induce SAS in seedlings regardless of 

photoperiod. 
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We also tested if shade affected pigment accumulation in alfalfa (Fig. 2). We observed that 

alfalfa plants grown under simulated shade presented chlorotic leaves (Fig 2a). This 

correlated well with a reduction of total Chl levels by approximately 25% in leaves of plants 

grown under shade (Fig. 2b), with the major reduction observed in Chlb rather than Chla 

levels, producing a high Chla:Chlb ratio (Fig. 2c,d). Interestingly, carotenoid levels, which 

have been reported to decrease in low light conditions (Bou-Torrent et al., 2015), were 

slightly increased under simulated shade (Fig. 2e) while anthocyanins were reduced 

considerably (Fig. 2f). 

 

Flowering is delayed by both simulated and natural shade 

It has been widely reported that several shade intolerant species flower early when grown 

either under natural or simulated shade as part of the SAS triggered by a low R:FR. 

Therefore, we analyzed how shade affected flowering in alfalfa (Fig. 3). Contrary to our 

expectations, alfalfa plants under shade flowered later (Fig. 3a). Flowering was measured as 

days to flower (Fig. 3c) and as the number of nodes at the moment the first flower appeared 

(Fig. 3d). By both parameters, shaded alfalfa plants flowered later (Fig. 3a-d). Also, under 

these conditions flowering plants displayed other SAS phenotypes such as longer internodes 

confirming these plants were indeed responding to shade signals (Fig. 3e). To rule out that 

differences in flowering time resulted from variation in the rate of leaf production, we 

measured leaf appearance over time and found it to be the same in both treatments (Fig. S2). 

Additionally, we confirmed that this late flowering phenotype was consistent under a range of 

R:FR ratios (0.8-0.2, Fig. S3). 

The data presented above shows that at constant PAR the R:FR ratio controls flowering in 

alfalfa. However, in natural settings shade leads to decreased R:FR and also to decreased 

PAR. To investigate the effect of natural shade in flowering, we compared alfalfa plants 

grown at contrasting planting densities (Fig. S4). Once again, we found that alfalfa plants 

grown at higher plant density flowered much later than plants grown at low density (Fig. S4 

a,b,c). Also, the magnitude of this effect was even stronger that the one we observed under 

simulated conditions (Fig. 3), which could be due to decreased PAR produced by mutual 

plant shading.  
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Transcriptome changes induced by simulated shade 

To investigate the downstream mechanisms of SAS in alfalfa we studied changes in the 

transcriptome induced by shade. The simulated shade conditions used in our experimental 

design changed the R:FR without affecting other regions of the spectrum. Therefore, we 

expected that the responses observed were mainly triggered by phytochromes. We performed 

an exploratory RNA-seq analysis of shaded vs unshaded plants. The sequencing produced 

around 35 million reads per library with around 27 million reads aligned to the MSGI 

(O’Rourke et al., 2015) (Fig. S5). We identified a cluster of 186 differentially expressed 

genes (DEGs) with a log2FC ≥  1 and ≤  -1 for upregulated and downregulated genes 

respectively and a corrected p-value ≤  0.05 (Table S2). Among the primary upregulated 

genes (Table 1), we identified putative orthologs of Arabidopsis shade responsive genes, such 

as PIF3, ARABIDOPSIS THALIANA HOMEOBOX 1 (ATHB2), ARABIDOPSIS THALIANA 

HOMEOBOX 1 (ATHB1), FAR RED INSENSITIVE 219/ JASMONATE RESPONSE 1, and 

FLOWERING PROMOTING FACTOR (FPF1)  (Kania et al., 1997; Ni et al., 1998; Steindler 

et al., 1999; Lin & Wang, 2004; Capella et al., 2015; Swain et al., 2017). Additionally, 

orthologs of gibberellin synthase genes (GA20OX1, GA20OX2) were upregulated. In 

particular, GA20OX1 whose overexpression has been associated with increased cell division 

and plant growth (Rieu et al 2008, Voorend et al 2016). 

An ortholog of PHYTOENE SYNTHASE (PSY) was also upregulated by shade, which could 

account for the higher content of carotenoids we found in shaded plants (Fig. 4E) 

(Hirschberg, 2001).  

The downregulated group of genes (Table 2) presented several orthologs of the light 

harvesting complex family (LHCB) such as LHCB1.5, LHCB3, LHCB2 (Jansson et al., 

1992); as well as genes involved in photosystem II assembly like PSBP-1 (Yi et al., 2009). In 

addition, an ortholog of Arabidopsis GLUCOSE-6-PHOSPHATE TRANSLOCATOR 2 

(GPT2), a gene that has been tightly associated to dynamic acclimation of photosynthesis 

(Athanasiou et al., 2010), was strongly downregulated. Likewise, we observed low 

expression of genes associated to anthocyanin biosynthesis such as 

LEUCOANTHOCYANIDIN DIOXYGENASE (LDOX) (Abrahams et al., 2003). 
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Identification of alfalfa genes involved in SAS 

After our initial RNAseq identification of DEGs under shade, we focused on candidate 

regulators of the alfalfa SAS. Based on the magnitude of expression changes and roles 

established in Arabidopsis, we studied the alfalfa orthologs of Arabidopsis ATHB2 and PIF3, 

as candidates promoting the SAS (Schena et al., 1993; Ni et al., 1998). ATHB2 is one of the 

most prominent characterized players in the Arabidopsis SAS, so its role could be conserved 

in alfalfa (Carabelli et al., 1993; Roig-Villanova et al., 2006; Iannacone et al., 2008; Wang et 

al., 2016). In the case of PIF3, one of its homologs in soybean, gmPIF3a, was found to be 

upregulated in weed shaded plants (Horvath et al., 2015).  

 

Since there is a significant sequence variation among legume species and Arabidopsis, we 

performed a phylogenetic analysis using the complete amino acid sequence of the identified 

PIF3 and HB2 (Fig. 4), comparing them to other putative legume orthologs in order to 

evaluate their conservation. As expected, the now renamed msPIF3 grouped nearby other  

putative legume PIF3 homologs. This legume PIF3 clade is a sister to the clade that includes 

the Arabidopsis PIF1, PIF3, PIF4 and PIF5, and likely both clades share a common ancestor 

(Fig. 4a) (Arya et al., 2018). msHB2 grouped with putative legume orthologs (though branch 

was unsupported) with atHB2 as an outgroup (Fig. 4b). We also confirmed the upregulation 

of both genes under shade independently, by qPCR analysis (Fig. S6a,b). 

 

In order to test whether the roles of msPIF3 and msHB2 were conserved, we transformed 

Arabidopsis plants with constructs of msPIF3 and msHB2 under the 35S constitutive 

promoter (Fig. 5). Overexpression of either msPIF3 or msHB2 led to a constitutive SAS 

response in transgenic Arabidopsis, including early flowering (Fig 5a,b,c) and elongated 

hypocotyls (Fig. 5d). Additionally, msPIF3 overexpressor lines had decreased Chl and 

carotenoid content (with a low Chla:Chlb ratio) (Fig. 5e-g). Therefore, msPIF3 or msHB2 

overexpression was sufficient to produce a constitutive SAS phenotype in Arabidopsis, 

similar to the responses we observed in shaded alfalfa plants. 
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The role of msSPL3 in shade-delayed flowering 

Interestingly, overexpression of PIFs in Arabidopsis leads to early flowering (Galvao et 

al., 2015), and we show above that overexpression of msPIF3 and msHB2 in Arabidopsis 

also produce early flowering. These results imply that msPIF3 and msHB2 upregulation are 

unlikely to delay flowering in alfalfa. Therefore, we searched for putative orthologs of 

Arabidopsis flowering genes that could explain the delayed flowering.  

Even though we found putative flowering regulators (both promoters and repressors) in 

the upregulated gene group, such as AGAMOUS (AG)  (Bowman et al., 1989), APETALLA1 

(AP1) (Gustafson-Brown et al., 1994), TEMPRANILLO (TEM1), DIE NEUTRALIS/EARLY 

FLOWERING FACTOR 4 (ELF4) (Liew et al., 2009; Sgamma et al., 2014), we found that the 

expression levels of SQUAMOSA PROMOTER BINDING LIKE (SPL3) ortholog, msSPL3, 

was downregulated by more than 60-fold in shaded alfalfa plants (Table 2). We considered 

msSPL3 as a strong candidate to explain the shade induced delay of flowering based on 

previous evidence. SPL3 in Arabidopsis has been described as an important promoter of 

phase transition and flowering (Cardon et al., 1997; Jung et al., 2016b) through the 

upregulation of FLOWERING LOCUS T, a prominent flowering promoter in Arabidopsis 

thaliana (Jung et al., 2016b). More importantly, SPL3 is a conserved target of microRNA 156 

and overexpression of microRNA 156 in alfalfa downregulated msSPL3 mRNA levels and 

delayed flowering (Gao et al., 2016). Finally, the microRNA 156 genes and their SPL targets 

are well conserved among plants (Poethig, 2013) Therefore, we investigated msSPL3 as a 

strong candidate for the shade-induced delay of flowering in alfalfa. First, we confirmed the 

downregulation of msSPL3 in shaded plants by qPCR in an independent set of experiments 

(Table 2 and Fig. 7). Also, msSPL3 grouped nearby other legume SPL3 genes, though it was 

closer to atSPL6 rather than to the atSPL3/4/5 clade (Fig. 6a). Therefore, to test if the role of 

msSPL3 was conserved, we cloned msSPL3 cDNA and expressed it constitutively under the 

35S promoter in Arabidopsis (Fig. 6b-f). After an initial screening, we observed several T1 

lines showing an early flowering phenotype (Fig. 6a,b). The overexpression of msSPL3 

resulted in a hastened phase transition, evidenced by a very short vegetative phase with very 

few leaves (Fig. 6c,d) and an early bolting time (Fig. 6e,f) confirming msSPL3 as a potent 

flowering inductor.  

Since SPL3 promotes FT expression in Arabidopsis (Jung et al 2016), we turned our attention 

to FT homologs in alfalfa. We found that FT genes in alfalfa have been poorly characterized, 

but five FT genes could be identified in closely related legume species like Pisum sativum 
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(Hecht et al., 2011) and Medicago truncatula: FTA1, FTA2, FTB1, FTB2 and FTC (Laurie et 

al., 2011) with FTA1 and FTB1 as the most likely candidates to induce flowering due to their 

expression patterns and conserved role as flowering inductors in both species. However, our 

RNAseq analysis did not show changes for any FT-like genes in shaded conditions. We 

suspected this was probably because these genes are usually expressed later in LD conditions 

(Laurie et al 2011). So, we analyzed by qPCR msFTA1 and msFTB1 expression again at zt5 

but also at zt12 and zt16 in W light and W+FR treated plants (Fig. 7). Expression levels of 

msFTA1 were similar under both W light and W+FR conditions at zt5 (Fig. 7), while msFTB1 

was not detected. Later in the day, at zt12 we observed a significant reduction of both 

msFTA1 and msFTB1 expression in plants grown under W+FR (Fig.7). At zt16 the 

expression of msFTA1 continued to be low under simulated shade, while the decrease of 

msFTB1 expression was not observed (Fig. 7). Low expression of msSPL3 was observed 

under simulated shade at the three time points tested (5, 12 and 16 hr from lights ON), but 

only later, at zt12 and zt16, reduced expression of msFTA1 under shade correlated with 

decreased msSPL3 expression (Fig. 7).  

msSPL3 downregulation under shade is partially independent of microRNA 156 in 

alfalfa 

The microRNA156 target SPL genes for degradation. This phenomenon is widely 

conserved, including legumes as alfalfa (Aung et al., 2015; Gao et al., 2016) and soybean 

(Sun et al., 2019). Furthermore, Xie and collaborators recently showed that microRNA156 

genes are downregulated in response to shade, resulting in the upregulation of SPL genes and 

early flowering in Arabidopsis (Xie et al., 2017). We hypothetized that shade regulation of 

microRNA156 could also be part of the response to shade in alfalfa. Therefore we measured 

the levels of mature microRNA156 at different time points to test if they correlated with SPL 

genes expression (Fig 8). Interestingly, at zt5 the downregulation of SPL3 by shade was about 

60 fold (Fig 7) and we did not observe differences in the levels of mature microRNA156 (Fig 

8a), suggesting that shade can induce the downregulation of SPL3 mRNA by a mechanism 

largely independent of microRNA156. Similarly, at zt12 we could detect a modest 1.8 fold 

increase in the abundance of microRNA156 under shade (Fig 8a), while the downregulation 

of SPL3 by shade was still maximal, above 60 fold decrease (Fig 7). If the effects were 

dependent on microRNA156, we would expect similar effects on other targets of 
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microRNA156, such as SPL4 and SPL2 (Aung et al., 2015; Gao et al., 2016). However, we 

only detected relatively minor changes of msSPL2 and msSPL4 mRNA levels in response to 

shade (Fig 8c,d). Despite we cannot completely rule out a role for the microRNA156 in 

response to shade, our data indicate that the mechanism to regulate SPL3 expression in 

response to shade is partially independent of microRNA156. 

Our results, taken together with previous reports on the role of msSPL3, strongly 

suggest that downregulation of msSPL3 is important to delay flowering of alfalfa in response 

to shade and suggests a mechanism has emerged in alfalfa to uncouple SAS from flowering 

induction. The roles of different genes and proteins seem to be conserved in arabidopsis and 

alfalfa, but in this later species, a mechanism has evolved to downregulate SPL3 expression 

in response to shade, contributing to flowering delay. 

 

DISCUSSION 

The SAS is an adaptive group of responses that increase fitness in crowded plant stands by 

reshaping the plant architecture and modifying physiological processes  (Schmitt et al., 2003) 

. Our study shows that, under simulated shade, alfalfa plants induced SAS, which involve, as 

in other shade intolerant plants, increased plant height, longer petioles and internodes, 

reduced leaf biomass (Fig. 1), reduced total Chl, reduced anthocyanins and increased 

carotenoid levels (Fig. 2). Notably, the induction of SAS was accompanied by a delay in 

flowering time (Fig. 3, S4).  

Our transcriptomic analysis of SAS in alfalfa enabled us to reconcile the phenotypes 

observed with the expression changes of putative orthologs of Arabidopsis SAS genes. 

Putative orthologs of Arabidopsis PIF3 and ATBH2, i.e. msPIF3 and msHB2, were 

upregulated by simulated shade. To further test their roles, we expressed these genes 

constitutively in Arabidopsis. Both msPIF3 and msHB2 were sufficient to induce a 

constitutive SAS phenotype in Arabidopsis, strongly suggesting that their roles are conserved 

between Arabidopsis and alfalfa. Other genes could also contribute to the SAS in alfalfa like 

the orthologs of FPF1 (Table 1). In particular, FPF1 and its cotton ortholog (ghFPF1) have 
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been shown to induce the SAS when overexpressed in Arabidopsis  (Kania et al., 1997; 

Melzer et al., 1999; Wang et al., 2014) therefore its role may be conserved in alfalfa as well. 

Interestingly, gmPIF3 has been recently shown to be induced in weed-shaded soybeans 

(Horvath et al., 2015), suggesting that PIF3 orthologs might play a conserved role in the SAS 

across legumes.  

ATHB family members have also been associated to SAS in Arabidopsis and other plant 

species (Steindler et al., 1999). In tomato, the overexpression of a dominant negative ATHB2 

gene from Arabidopsis led to a reduction of SAS (Iannacone et al., 2008). In Arabidopsis, 

ATHB2 levels are regulated by PIF4 and PIF5 (Lorrain et al., 2008). Whether msPIF3 acts 

upstream msHB2 upregulating its expression is currently unknown and requires further 

experimentation.  

The pigment analysis revealed that the SAS caused a reduction in total Chl levels 

(Fig. 2). But, contrary to our expectations, the reduction was mostly attributed to a significant 

decrease in Chlb rather than Chla, which resulted in higher Chla:Chlb ratios in shaded plants 

(Fig. 2 c,d). Our RNA-seq analysis also accounts for these results, since several members of 

the Lhcb family were downregulated in shaded plants, consistent with the fact that 

Arabidopsis plants with reduced levels of Lhcb1 and Lhcb2 have higher Chla:Chlb ratios 

(Andersson et al., 2003). This may suggest that the Chla:Chlb ratio changes are inherent to 

some specific species. Also, it could be inferred that the Chla:Chlb ratio should not be solely 

regarded as an indicator of shaded leaves, since changes could be the result of specific 

acclimations to different growth limiting conditions.  

Regarding other pigments, we found a higher content of carotenoids in shaded plants 

(Fig. 2e), which could be due to the higher expression (8-fold) of msPSY. This is consistent 

with reports showing increased carotene content in shaded plants (Czeczuga, 1987) and also 

with reports showing that overexpression of PSY genes leads to higher carotenoid content 

(Busch et al., 2002).  

Among all the alfalfa SAS phenotypes we observed, the delay of flowering became 

the most striking feature (Fig. 3, Fig. S4). Although this phenotype has been previously 

assayed in particular soybean lines (Cober & Voldeng, 2001), how shade affects flowering 
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time in iteroparous perennial species has not been deeply analyzed. According to plant 

strategy theory (Grime, 1977), annual semelparous plants which are common in highly 

disturbed habitats respond to resource limitations by favoring early and intense reproduction. 

Contrarily, perennial plants which grow in less disturbed habitats respond to resource 

limitations by delaying reproduction. Experimental support for this idea was obtained by 

evaluating flowering time under water limitation of two congeneric annual and perennial 

species of nettle. Urtica uren, a semelparous annual, responded by accelerating reproduction 

under water stress, whereas Urtica dioica, an iteroparous perennial delayed reproduction 

(Boot et al., 1986). A similar trend was observed when different annual and perennial grasses 

were subjected to competition and stress and disturbance gradients (Campbell & Grime, 

1992). Competition for light resources could also trigger similar diverging responses in 

iteroparous perennial vs semelparous annual. This proposition has been tested by growing 

plants with different life histories (semelparous annuals vs iteroparous perennials) under 

simulated shade. Strikingly, independently of life histories, shade induced reproductive 

behavior and plants allocated more resources to reproduction at the expense of total biomass 

and leaf number. (Fazlioglu et al., 2016). Our results show this may not be the case for alfalfa 

as shade delayed flowering without decreasing biomass, which is in accordance with 

predictions of the plant strategy theory for iteroparous perennials growing in relatively 

undisturbed areas. We went further to investigate the molecular nature of this behavior. Our 

results strongly suggest that downregulation of msSPL3 is an important mechanism to delay 

flowering in alfalfa grown in shade conditions (Table 2, Fig. S6, Fig. 7). In Arabidopsis, 

shade produces high PIF activity which represses mir156 expression, leading to high levels of 

SPL mRNAs, high FT levels and accelerated flowering (Xie et al., 2017). Here we found that 

despite the same orthologs seem to be involved in alfalfa, the opposite modulation of msSPL3 

in response to shade has diversified, consistent with the life history of alfalfa. Under the life 

history theory, life histories evolved depending on the probability of the adult surviving to the 

next reproductive event. We propose that by delaying flowering in the shade and 

accumulating more reserves, alfalfa increases the chance of surviving the next winter and 

reaching the following reproductive season  
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EXPERIMENTAL PROCEDURES 

Plant material  

Seeds of Medicago sativa cv Patricia (Fall dormancy 7) were provided by the Instituto 

Nacional de Tecnología Agropecuaria (INTA) and used in all assays. Seeds were surface 

sterilized with ethanol 70% followed by SDS/Sodium hypochlorite (1 min each), rinsed with 

sterile water, dried in a vertical flow cabinet and further treated with chlorine in vapor phase. 

Seeds were plated in 0,8% agar half strength Murashige and Skoog media (MS) (Murashige 

& Skoog, 1962) and stratified for 3 days in darkness at 4ºC before transferred to the different 

experimental conditions. 

 

Shade avoidance assays  

For shade assays with seedlings, seeds were plated in magenta boxes and placed in a Percival 

chamber (Model I30BLL, Percival Scientific, Perry, IA, U.S.A.). The chamber was 

physically divided in two, both halves sharing same temperature and the same intensity and 

quality of white (W) light. W light was provided by cool white fluorescent tubes. In the W 

light supplemented with FR light (W+FR) treatments, FR light was provided laterally by four 

FR LED lights (Hyper FAR RED – 730nm, LED buy group); both halves were swapped 

between experiments to rule out any position effect. Photosynthetically active radiation 

(PAR) registered in the chamber was approximately 100 mol/m
2
.s. Hypocotyl length and 

appearance and length of the first monofoliate leaf were measured after 7 days, under both 

long day (LD, 16:8) or short day (SD 8:16) conditions. For the end of day (EOD) 

experiments, a 15 min light pulse was provided at the end of the respective photoperiod; FR 

light (15 mol/m
2
.s) for EOD with FR light (EODFR) and R light for controls. For the W+FR 

assays the resulting R:FR ratio was 0.4. PAR and R:FR were measured using a 

SpectroSense2 attached with a SKR-1850SS2 light sensor (Skye Instruments).  

 

To test the effect of shade in the architecture and development of alfalfa, seedlings were 

transferred to individual 1.5 liters pots with a mixture of 3:1:1 soil, perlite and vermiculite 

supplemented with Red Hakaphos fertilizer (Compo Agricultura, http://www.compo.es). 

Plants were assorted in trays with a 10 cm distance amongst them and grown for 2 weeks at 

23ºC in an incubator under W light and LD conditions until emergence of the first trifoliate 
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leaf. Next, plants were randomly allocated in two groups, one of them treated with W+FR 

light, and the other only received W light as control. FR light was provided vertically by two 

FR lamps. The total PAR registered at soil level was of 109-124 mol/m
2
.s with a R:FR of 7 

for the W light treatment and a R:FR of 0.2 for the W+FR light treatment. Plants were grown 

for two months from the initial transfer to shade conditions. 

The length of the main branch, internode length, petiole length and total node number were 

determined for each plant. At the end of the experiment, stem, petiole and leaf tissue of each 

plant were dried at 65ºC for 5 days and then weighted.  

 

Flowering time assays 

In order to evaluate the effect of shade on flowering time, seedlings were placed in individual 

1.5 l pots and grown in an incubator at 23ºC in LD photoperiod under W light until the first 

trifoliate leaf appeared. Then half of them were supplemented with FR light and the rest 

remained growing under W light without FR supplementation. The total PAR was 130 mol 

m
2
 s with a R:FR of 7.47 for the W light conditions and a 0.4-0.6 ratio for the W+FR light 

conditions. For specific low R:FR ratio assays, Far red was provided laterally and plants were 

assorted to fixed ratios of R:FR of 0.2 and 0.8. 

Flowering time was determined by the appearance of the first flowering bud in the primary 

stem of each plant. Days to flowering, number of nodes in the primary stem  (Sachs, 1999), 

internode length and the plant height were registered in each condition at the time of 

flowering. 

 

High vs low density plant growth experiments 

To study the effect of plant density on flowering, the same protocol was followed until the 

first trifoliate leaf appeared, then plants were assorted at a low density per tray (10 cm 

distance between plants) or at high density (5cm between plants). Days to flowering, number 

of nodes in the primary stem and the plant height were registered in each condition at the 

time of flowering. 
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RNAseq assay 

Alfalfa seedlings were grown at 24 °C in LD with W light for 2 weeks and assorted randomly 

to the two light treatments (W and W+FR). After plants have developed their 6
th

 node 

(approximately 1 month old plants under W/W+FR treatment), two trifoliate leaves per 

sample emerging from this 6th node belonging to two different plants were sampled after 

complete expansion and fast frozen in liquid nitrogen at zt5. Total RNA was extracted with 

Trizol Reagent (Invitrogen) following the manufacturer’s protocols. To estimate the 

concentration and quality of samples we used NanoDrop 2000c (Thermo Scientific) and the 

Agilent 2100 Bioanalyzer (Agilent Technologies) with the Agilent RNA 6000 NanoKit, 

respectively. Library preparation and pair-end sequencing with an Illumina HiSeq 1500 were 

performed at INDEAR, Argentina. Two replicates for each treatment were sequenced and 

further analyzed. 

 

RNAseq data analysis 

Reads obtained were aligned to the Medicago sativa Gene index (MSGI v1.2, JA  (O'Rourke 

et al., 2015) using Tophat (Kim et al., 2013). A complete list of normalized  counts per 

million per contig is provided in Table S3.  For differential expression analysis a pipeline 

adapted from ASPli (Mancini et al., 2016) was employed. Edge R was used for p-value and 

false discovery rate (FDR) correction. Transcripts with at least 0.5 fold change and a FDR 

corrected p value of 0.05 or less were selected for further analysis. Transcripts were identified 

by protein Blast (Blastp. version 2.2.25) to databases (NCBI) of mRNA from M. sativa, M. 

truncatula, Glycine max and Arabidopsis thaliana. RNAseq raw data files were uploaded to 

Sequence Read Archive (SRA) of NCBI, under the id SUB5088515. 

 

Determination of pigment content 

Primary leaves were sampled from the 7
th

 node of 2-month-old alfalfa plants, grown under 

either W light or W+FR light. For Chl and carotenoid analysis, folioles were weighted and 

then extracted in dimethyl formamide (Cicarelli) at 4ºC overnight and pigment quantification 

was determined by using the equations detailed in Wellburn (R. Wellburn, 1994). 

Anthocyanins were measured as described in Sims (Sims & Gamon, 2002). 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Phylogenetic analysis 

Amino acid sequences of msPIF3, msHB2 and msSPL3 were obtained from the MSGI, and 

putative orthologs sequences from Glycine max, Medicago truncatula, Lotus japonicus, 

Cajanus cajan, Cicer aerinethum and Arabidopsis thaliana were obtained from GeneBank 

databases. Sequences were analyzed using MEGA  (Tamura et al., 2011). Alignments were 

performed with MUSCLE  (Edgar, 2004) and phylogenetic trees were created using the 

maximum likelihood method with a bootstrapping of 1000. For each tree, sequences 

belonging to legumes were obtained from the legume IP website 

(http://plantgrn.noble.org/LegumeIP/): Medicago truncatula (Medtr7g110810.1, 

Medtr5g013010.1, Medtr2g014200.1, Medtr1g069155), Glycine max (Glyma19g40980.1, 

Glyma11g03850.1, Glyma17g15380.1, Glyma13g31090.1, Glyma15g08270.1, 

Glyma.02G282100, Glyma.14G032200, Glyma.10G138800, Glyma.19G222000), Phaseolus 

vulgaris (Phvul.002G230300.2, Phvul.003G223200.1, Phvul.008G196800, 

Phvul.006G028500, Phvul.001G218800, Phvul.007G206000), Cajanus Cajan 

(C.cajan_10677, C.cajan_01609, C.cajan_36197), Cicer aerietinum 

(cicar.ICC4958.Ca_07181, cicar.ICC4958.Ca_22460, cicar.ICC4958.Ca_20229), Lotus 

japonicus (chr6.CM0114.730.r2.m). 

 

Cloning and ectopic expression of msPIF3, msHB2 and msSPL3 in Arabidopsis  

The msPIF3, msHB2 and msSPL3 whole cDNAs were PCR amplified from shade treated 

cDNA samples using primers bearing BamHI, SalI or XbaI restriction sites and cloned in a 

binary plasmid with these enzymes (New England Biolabs) under the 35S promoter. 

Constructs were checked by Sanger sequencing (Macrogen, Korea) and introduced into 

Arabidopsis thaliana Col-0 plants by floral dip transformation (Clough SJ 1998). Selection of 

transformants was performed by plating in MS media supplemented with Ammonium 

glufosinate (Duchefa). 
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qPCR measurements 

Total RNA was extracted from trifoliate leaves at different time points using TRIzol (Sigma) 

from trifoliate leaves belonging to 45 days old plants treated under W or W+FR.  

A total of 2g of RNA were employed to generate oligo-dT primed cDNAs by using MMLV 

reverse transcriptase (Life technologies). For the PCR reaction, primers were designed using 

the corresponding sequences obtained from MSGI (Table S1). qPCRs amplifications were 

performed using Paq Hot Start DNA polymerase (Stratagene). msActin2 was used as 

reference gene (Wang et al., 2015). All determinations were performed on a Roche 480 

lightcycler and fold change calculations were performed following the Livak mehod (Livak 

& Schmittgen, 2001). For microRNA 156 measurements, stem loop qPCR (Varkonyi-Gasic 

et al., 2007) was performed based on primers and sequences detailed for alfalfa 

microRNA156 by Aung et al 2015 and Gao et al 2016 (Table S1).  
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Table 1: List of upregulated genes under simulated shade in alfalfa (Medicago sativa) identified in the RNA 

seq. For all genes listed the most likely orthologs name, the orthologs ID, a brief putative function description 

and the log2 Fold change is provided. All identified genes have a log2FC>1 and an adjusted p-value of p<0.05. 

Table 2: List of downregulated genes under simulated shade in alfalfa (Medicago sativa) identified in the RNA 

seq analysis. For all genes listed the most likely orthologs name, the orthologs ID, a brief putative function 

description and the log2 fold change is provided. All identified genes have a log2FC>1 and an adjusted p-value 

of p<0.05. 

Fig. 1: Changes in plant architecture triggered by SAS in alfalfa (Medicago sativa). (a) Comparison of an adult 

plant grown under white (W) light or under white supplemented with far-red (W+FR). (b) Stem height and (c) 

petiole length of white light vs shaded alfalfa plants. (d) Detail of an internode of a W light grown plant (upper 

panel) or grown under W+FR (lower panel), scale bars represent 1cm. (e) Internode length measurements of W 

vs W+FR grown plants. (f) Total leaf dry weight and (g) Leaf /stem ratio of dry weights of plants grown under 

W or W+FR. Bars represent the means + SE of 20 individual grown plants per condition. Results were analyzed 

by T-student tests and asterisk represents different levels of significance (p<0.05=*, p<0.01=**, p<0.001=***). 

Fig. 2: Pigment determinations from leaves of plants grown under W  (gray bars) or W+FR(black bars) in 

alfalfa (Medicago sativa). (a) Phenotype of an unshaded trifoliate leaf (left) vs a shaded one (right). (b) Total 

Chl determination. (c) Total Chla and Chlb values and (d) ratio of ChA:Chb. (e) Total carotenoids and (f) Total 

anthocyanins. Bars represent the means + SE of 15 leaves. Results were analyzed by T-student tests and asterisk 

represents different levels of significance (p<0.05=*, p<0.001=***). 

Fig. 3: Flowering time measurements of plants grown under W (gray bars) or W+FR (black bars) in alfalfa 

(Medicago sativa). (a) Phenotype of an alfalfa plant grown under W vs W+FR. (b) Detailed view of first 

flowers in W grown plants vs W+FR, white arrows indicate the position of the apical meristem in the shoot. (c) 

Flowering time measured as both days to first flower and (d) node to first flower. (e) Mean internode length of 

plants grown under W or W+FR at the time of flowering. Bars represent the means + SE of 20 plants per 

condition. Results were analyzed by T-student tests and asterisk represents different levels of significance. 

(p<0.001=***). 

Fig. 4: Phylogenetic trees of proteins coded by msPIF3 (a) and msHB2 (b) compared to other legume orthologs 

of the same putative genes. Different initials stand for:  ms (Medicago sativa), mt (Medicago truncatula), gm 

(Glycine max), pv (Phaseolus vulgaris), ca (Cicer arietinum), cc (Cajanus Cajun), lj (Lotus japonicus), at 

(Arabidopsis thaliana). All trees were developed using the Maximum likelihood method and a bootstrapping of 

1000. Bootstrapping values are indicated at each branch. 
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Fig. 5: Ectopic expression of msPIF3 and msHB2 in Arabidopsis thaliana. (a)  Phenotype of a wt line 

transformed with empty vector vs msPIF3 and msHB2 overexpressor lines. (b) Flowering time measured as total 

leaf number or (c) number of days to bolting, (d) mean petiole length, (e) total Chl (f) Chla:b ratio and (g) total 

carotenoids of wt compared to msPIF3 and msHB2 lines. Bars represent the means + SE of 30 T1 plants for the 

flowering time and petiole length measurements and 15 T1 lines for the pigment measurement assays. Results 

were analyzed by a one way ANOVA with posterior Dunnett´s test. Asterisks represent different levels of 

significance. (p <0.05=*, p< 0.01=**, p<0.001=***). 

Fig. 6: Ectopic expression of msSPL3 in Arabidopsis thaliana. (a) : Phylogenetic tree of proteins coded by 

msSPL3 compared to other legume orthologs of the same putative genes.   (b) Phenotype of a T1 selection of wt 

(right) vs msSPL3 overexpressor plants (left). (c) Detail of an individual wt line vs a msSPL3 overexpressor line. 

(d) Comparison of leaves of wt vs msSPL3 overexpressor lines. (e) Flowering time measured as total leaf 

number or (f) number of days to bolting.  Bars represent the means + SE of 30 T1 plants per condition. Results 

were analyzed by T-student tests and asterisk number represents different levels of significance. (p<0.001=***). 

Different initials stand for:  ms (Medicago sativa), mt (Medicago truncatula), gm (Glycine max), pv (Phaseolus 

vulgaris), ca (Cicer arietinum), cc (Cajanus Cajun), lj (Lotus japonicas), at (Arabidopsis thaliana). All trees 

were developed using the Maximum likelihood method and a bootstrapping of 1000. Bootstrapping values are 

indicated at each branch. 

Fig. 7: msSPL3, msFTA1 and msFTB1 mRNA levels of adult plants grown under W vs W+FR. Trifoliate leaves 

belonging to adult alfalfa plants grown under either W or W+FR were harvested at zt5 (left panel), zt12 (middle 

planel) and zt16 (right panel), and the indicated genes (abscissas) measured by qPCR. Bars represent the means 

+ SE of 3 biological replicates consisting of 1 trifoliate leaf per 45 days old plant treated under W or W+FR. 

Results were analyzed by a one way ANOVA with posterior Dunnett´s test. Asterisks represent different levels 

of significance. (p <0.05=*, p<0.01=**). 

Fig. 8: Expression levels of microRNA 156 and its targets msSPL2-msSPL4 in plants grown under W vs W+FR. 

Trifoliate leaves belonging to adult alfalfa plants grown under either W or W+FR were harvested at zt5 (left 

panels) or zt12 (right panels), and microRNA156 (a), msSPL2 (b) and msSPL4 (c) were measured by qPCR. Bars 

represent the means + SE of 4-6 biological replicates, each consisting of 1 trifoliate leaf per 45 days old plant 

treated under W or W+FR. Results were analyzed by a one way ANOVA with posterior Dunnett´s test. 

Asterisks represent different levels of significance. (p <0.05=*). 
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Table 1 

Gene Orthologous ID Putative Roles Log FC 

PIF3 Medtr7g110810.1, AT1G09530.2 Shade  promoter 5.9847 

ATHB-2 Medtr5g013010.1,AT4G16780.1 Shade  promoter 2.6787 

ATHB-1 Medtr5g038280.1,AT3G01470.1 Shade  promoter 1.3135 

FPF1 Medtr1g009900.1,AT5G10625.1 Shade promoter/ flowering promoter 4.3042 

TEM1 Medtr1g093600.1,AT1G25560.1 Flowering Repressor 1.3233 

DNE/ ELF4 Medtr3g070490.1,AT2G40080.1 Flowering Repressor 1.7608 

mtCOLd Medtr4g128930.1,AT5G57660.1 Non determined 1.1126 

ILA 
Medtr7g116425.1,AT1G64790.1 

Required for systemic acquired 

resistance 2.3169 

JAR1/FIN219 Medtr7g117110.1,AT2G46370.4 

Modulation of Shade avoidance 

response 5.2214 

IMPA-4 AT1G09270.3 Mediates nuclear protein import 4.5586 

PSY Medtr4g107290.1,AT5G17230.3 Carotenoid biosyntesis 2.7707 

ANX2 Medtr4g052290.1,AT5G28680.1 Supression of ABA signalling 3.7128 

CKX6 Medtr3g036100.1,AT3G63440.1 Catalyzes the oxidation of citokynines 3.6736 

GA20OX1 Medtr6g464620.1,AT4G25420.1 Gibberellin biosyntesis 1.7547 

GA20OX2 Medtr3g096500.1,AT5G51810.1 Gibberellin biosyntesis 2.2744 

JMT Medtr1g022465.1,AT1G19640.1 Jasmonate biosyntesis 1.5273 

HAB1 LIKE AT1G72770.3 ABA signalling 1.0761 

TPS02 Medtr2g089130.1,AT4G16730.1 Terpene biosyntesis 3.9512 
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Table 2 

Gene Orthologous ID Putative Roles Log FC 

TPX2 Medtr6g032995.1,AT3G23090.2 Negative regulator of hypocotyl cell elongation in the light -3.5671 

LHCB3 AT5G54270.1 Photosyntesis promotion -2.1796 

ELIP1 Medtr1g102780.1,AT3G22840.1 Photosyntesis regulation -1.8300 

LHCB1.5  AT2G34420.1 Photosyntesis promotion -1.7966 

Photosystem 

II 5 kD 

protein  Medtr3g030850.1,AT1G51400.1 Photosystem II regulation -1.7947 

LHCB2 Medtr6g012080.1,AT2G05100.1 Photosyntesis promotion -1.4812 

SPL3 Medtr2g014200.1,AT2G33810.1 Strong vegetative phase change and flowering promoter -6.5017 

CYP714A1  Medtr0147s0030.1,AT5G24910.1 Inactivation of early GA intermediates. -6.1178 

PRT6  Medtr7g061540.1,AT5G02310.1 Ubiquitin ligase -12.3889 

MC5 Medtr0340s0030.1,AT1G79330.1 Modulation of programmed cell death -9.9573 

GSTF11 Medtr3g064700.1,AT3G03190.1 Conjugation of reduced glutathione -6.5334 

GPT2 Medtr2g022700.1,AT1G61800.1 Required for dynamic acclimation of photosynthesis -3.7291 

PHB3 Medtr5g093030.1,AT5G40770.1 Ethilene response modulation -13.2134 

LDOX Medtr5g011250.1,AT4G22880.2 Involved in anthocyanin and protoanthocyanidin biosynthesis  -9.1434 

HCT Medtr8g075610.1,AT5G48930.1 

Influence on the accumulation of flavonoids which  inhibit 

auxin transport. -8.3434 

ATMES1 Medtr5g018365.1,AT2G23620.1 Conversion of methyl salicylate (MeSA) to salicylic acid (SA)  -3.7007 

IPT3 Medtr1g072540.1,AT3G63110.1 Involved in cytokinin biosynthesis -1.2807 

CAP160 Medtr1g100627.1,AT4G25580.1 Cold acclimatation protein -5.3210 
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