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a b s t r a c t

Inflammatory processes contribute widely to the development of neurodegenerative dis-

eases. The expression of many inflammatory mediators was found to be increased in central

nervous system (CNS) disorders suggesting that these molecules are major contributors to

neuronal damage. Melanocortins are neuropeptides that have been implicated in a wide

range of physiological processes. The melanocortin alpha-melanocyte stimulating hormone

(a-MSH) has pleiotropic functions and exerts potent anti-inflammatory actions by antag-

onizing the effects of pro-inflammatory cytokines and by decreasing important inflamma-

tory mediators. Five subtypes of melanocortin receptors (MC1R-MC5R) have been identified.

Of these, the MC4 receptor is expressed predominantly throughout the CNS. Evidence of

effectiveness of selective MC4R agonists in modulating inflammatory processes and their

low toxicity suggest that these molecules may be useful in the treatment of CNS disorders

with an inflammatory component. This review describes the involvement of the MC4R in

central anti-inflammatory effects of melanocortins and discusses the potential value of

MC4R agonists for the treatment of inflammatory-related disorders.
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1. Introduction

Melanocortins are neuromodulatory peptides that share a

seven amino acid core sequence and are generated by post-

translational processing of the precursor protein pro-opiome-

lanocortin (POMC) [91]. The selective cleavage of POMC by

prohormone convertases (PCs) yields alpha, beta and gamma

melanocyte-stimulating hormones (a-MSH, b-MSH and g-

MSH) and adrenocorticotropin (ACTH). The activity of PCs,

which belongs to the family of serine proteases, is tissue

specific and their presence determines POMC selective

expression [100]. The hormone a-MSH is a tridecapeptide

that is produced in the presence of PC1, a convertase that

cleaves POMC into ACTH and b-lipotropin, and PC2 that

cleaves ACTH into a-MSH [4] (Fig. 1).

Melanocortins are expressed in a variety of tissues, but

mainly in the pituitary gland and the central nervous system

(CNS). Melanocortin-expressing neurons are found in the

arcuate nucleus of the hypothalamus, and the nucleus of the

solitary tract in the brain stem [29]. Melanocortin fibers project

from these sites to the paraventricular nucleus, the lateral

hypothalamus, and throughout the brain, e.g. amygdala,

cortex, hippocampus, medulla, mesencephalon, and spinal

cord [29].

The earliest known function of a-MSH was its ability to

stimulate melanogenesis in melanocytes in the skin and

therefore to increase pigmentation [69]. Later on, the cloning

of five different melanocortin receptors allowed new research

on the effects of a-MSH revealing its influence on energy

homeostasis [17,54], stimulation of exocrine gland secretion
Fig. 1 – Diagram of POMC cleavage. The proprotein POMC is

processed in a tissue specific manner. PC1 (also known as

PC3) convertase cleaves this protein to generate pro-ACTH

and b-lipotropin (b-LPH). Pro-ACTH is further cleaved by

PC1 to generate ACTH, N-terminal peptide (N-POC) and

joining peptide (JP). In the brain, PC2 cleaves ACTH into

ACTH 1–17 and corticotropin-like intermediate lobe

peptide (CLIP). Another peptidase (CPE) is needed to yield

mature a-MSH from ACTH 1-17. PC2 also generates g-

lipotropin (g-LPH) and b-endorphin (b-END) from b-LPH

cleavage, b-MSH from g-LPH, and g-MSH from N-POC

cleavage.
[19], stimulation of erection [83], regulation of sexual behavior

[118] and endocrine glands [27,66], and regulation of the

cardiovascular system [53].
2. Melanocortin receptors

Five related G protein-coupled receptors mediate the actions

of melanocortins: MC1R-MC5R. Each receptor is the product of

a small, intronless separate gene. All MCRs have several N-

glycosilation sites in their amino terminal domains, conserved

cysteines residues in their carboxyl termini, and consensus

recognition sites for protein kinase A (PKA) and C [124].

The MC1R was the first melanocortin receptor cloned from

melanoma cells [20,88], and is known to play a pivotal role in

the regulation of pigmentation in mammals. It is expressed

primarily in melanocytes but it is also detected in immune

cells including neutrophils, monocytes, dendritic cells,

endothelial cells, and B lymphocytes [14], glioma cells,

astrocytes [125] and in a few neurons of the periaqueductal

gray [126]. The MC2R is the receptor for ACTH in the adrenal

cortex [88] and its activation stimulates the secretion of

adrenal steroids. MC2R expression was also detected in the

skin [109], and in murine adipocytes [7]. MC3R is expressed in

the CNS, the gastrointestinal system, and the kidneys [34]. In

the CNS, the most intense expression was found in the

ventromedial hypothalamus, medial habenula, ventral seg-

mental and raphe areas. In the gastrointestinal system, this

receptor is found in the stomach, duodenum and pancreas.

The melanocortin effects mediated by MC3R are related to

feeding and energy homeostasis [17]. Also, this receptor

mediates the natriuretic effects of melanocortins, and among

them, g-MSH seems to be the most specific melanocortin in

this respect [53].

MC4R is expressed primarily in the CNS [87,35] where it is

the predominant MCR subtype and is detected widely in

neuroendocrine and autonomic centers as well as in basal

ganglia, hippocampus and cerebral cortex [63]. The most

conspicuous sites where this receptor is expressed are the

paraventricular nucleus in the hypothalamus and the dorsal

motor nucleus of the vagus nerve [88,103]. Expression of

functional MC4R in the hypothalamic GT1-1 cell line has also

been detected [62]. The MC4R binds both a and b-MSH and,

with lower affinity, g-MSH. This receptor mediates melano-

cortin effects related to energy homeostasis and also erectile

functions. Melanocortins acting on this receptor may also

affect blood pressure and heart rate. Some synthetic agonists

have proven to enhance sexual functions and erectile activity

in males and to increase sexual desire and genital arousal in

females [44].

MC5R is expressed in exocrine glands, but not in the CNS

[64]. The ligand with the highest binding affinity to this

receptor was shown to be a-MSH. This receptor is mostly

expressed in sebaceous, Harderian, lacrimal, and preputial

glands. Likely, this receptor mediates the stimulation of the

production of pheromones by the preputial glands, therefore

influencing sexual behavior [9].

Knock-out mice models and genetic studies have pointed

to the importance of the melanocortins in complex human

pathways such as pigmentation, lipolysis, food intake, thermo-
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genesis, sexual behavior, memory and inflammatory respon-

ses. MC3R and MC4R are likely targets for controlling body

weight; MC1R may be used in the treatment of inflammation

and MC2R for the treatment of glucocortical deficiency. A role

for MC5R still remains unclear, but the evidence suggests a role

in exocrine gland function [19] (Table 1).

There are many complex and unique aspects of melano-

cortin signaling such as the existence of endogenous

antagonists, the agouti proteins that act at three of the five

melanocortin receptors. The agouti protein is produced in the

skin and binds MC1R whereas the agouti-related protein

(AgRP) is present in the brain where it promotes increased

feeding and decreased energy expenditure by binding MC4R

[22]. The system is also unique from a regulatory point of view

as it is composed of fibers expressing both agonists and

antagonists of melanocortin receptors. In contrast to many

peptides, the melanocortin agonists and antagonists are

expressed in a limited number of very discrete locations.

Similarly, the melanocortin receptors are also expressed in a

limited number of discrete locations where they tend to be

involved in rather circumscribed physiological functions [22].

In the CNS, melanocortin peptides are agonists of the MC3R

and MC4R, whereas AgRP is a high-affinity antagonist of both

these receptors. AgRP and a-MSH are believed to be the natural

antagonist and agonist respectively of MC3R and MC4R.

MC4R has generated wide interest for its involvement in

obesity. Pharmacological [30,23] and genetic [54] studies

demonstrate that this receptor is critical for the regulation of

energy homeostasis. Furthermore, haploinsufficiency of the

MC4R is linked to obesity in up to 4% of severe cases in humans

[31,117]. The central administration of melanocortins is capable

of regulating both feeding [30] and metabolism [23,47]. There-

fore, MC4R is a potential target for new antiobesity drugs.

The expression of the MC4R is regulated by stress exposure.

Several reports have indicated that the stimulation of the

MC4R activates the hypothalamus–pituitary–adrenal (HPA)

axis, and that the MC4R mediates stress-related behaviors and

anxiety in rodents [122]. The recent development of selective

antagonists for MC4R has provided pharmacological evidence

that the blockade of MC4R could be a useful way of alleviating
numerous conditions such as anxiety, depression and addic-

tion to drugs of abuse [16].
3. a-MSH and inflammation

a-MSH is normally produced in the pituitary, brain, and

several peripheral tissues including immune cells, and

has been shown to play a crucial role in the regulation of

immune and inflammatory reactions. Anti-inflammatory

effects of a-MSH can be elicited through centrally expressed

MCRs, which orchestrate descending neurogenic anti-inflam-

matory pathways. On the other hand, a-MSH can also exert

anti-inflammatory effects on the cells of the immune system

as well as on resident non-immune cell types of peripheral

tissues.

Several findings indicate that a-MSH inhibits the produc-

tion and activity of pro-inflammatory cytokines while enhan-

cing the secretion of anti-inflammatory cytokines. a-MSH has

been shown to interact with various cells of the immune

system and to downregulate either the production or the

action of the pro-inflammatory cytokines such as IL-1, IL-6,

TNF-a, IL-2, and IFN-g [71,110,76], and thus acting as an anti-

inflammatory agent. In macrophages, a-MSH decreases nitric

oxide (NO) production by inhibiting the NO synthase [110]. In

contrast, the synthesis of the anti-inflammatory cytokine IL-

10 is up-regulated by a-MSH [5].

Endotoxins, like lipopolisaccharide (LPS), are surface

bacterial polysaccharides that can elicit an immune response.

a-MSH can antagonize many of the biological effects of LPS

and of the pro-inflammatory cytokines, including effects on

body temperature, immune and endocrine functions, and

behavior [12]. a-MSH has been shown to act directly on MCRs

on peripheral immune cells to down-regulate pro-inflamma-

tory cytokine production in response to endotoxin in vitro

[112]. The intracerebroventricular (icv) injection of a-MSH has

also been shown to inhibit peripheral inflammation, such as in

the skin [72]. This appears to be mediated by descending anti-

inflammatory neural pathways induced by the stimulation of

MCRs within the brain [79]. Central MCRs have also been
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shown to modulate temperature, neuroendocrine, and beha-

vioral responses to inflammatory stimuli [108,127,81].

The expression of MC1, 3, and 5 receptors has been

reported in immune cells. MCRs have been detected in rodents

on peritoneal macrophages and splenic lymphocytes and on

circulating human monocytes and macrophages [112,36,93,1].

There are data supporting a functional role for both MC1R and

MC3R in modulating inflammatory responses [112,36]. Experi-

mental data support the notion that agonist activity at MC3R

can be used for the design of novel drugs to treat inflammatory

conditions [37]. However, the central anti-inflammatory

actions of a-MSH seems to be mediated by MC4R [10,11].

a-MSH participates in the physiological regulation of the

pyretic and HPA responses to inflammation [98]. Icv infusions

of a-MSH attenuated the HPA response to IL-1b, whereas the a-

MSH antagonist, AgRP, enhanced this effect, suggesting that

endogenous a-MSH plays a physiological role in this process

[127]. a-MSH may act both centrally and peripherally to

modulate the HPA response to inflammatory stimuli. In

monkeys, the intravenous administration of a-MSH agonist

[Nle4, d-Phe7]a-MSH (NDP-a-MSH) attenuated the release of

IL-1b, TNF-a, and IL-6, which are known to stimulate the HPA

axis [116]. On the other hand, icv infusion of a-MSH attenuated

the HPA response to icv IL-1b in the monkey, consistent with

an effect on central MCRs [106]. Moreover, in rodents, a-MSH

inhibits CRH release from the hypothalamus [77,129].
4. Central anti-inflammatory actions
of a-MSH

It has been known for over 20 years that the central

administration of a-MSH can suppress fever [41,114]. a-MSH

serum levels increase during endotoxemia [82], after admin-

istration of pyrogens and in inflammatory conditions [13]. The

MC4R appears to be the mediator of the antipyretic effects of a-

MSH since it appears to participate in regulation of thermo-

regulatory responses, including fever. Anatomic studies have

revealed the presence of MC4R mRNA-expressing cells and

high densities of specific melanocortin-binding sites in

preoptic, hypothalamic and brainstem nuclei implicated in

thermoregulation and fever [63,113]. Moreover, the suppres-

sion of LPS-induced fever by icv a-MSH was prevented by an

equimolar coinjected dose of the MC4R-selective antagonist

HS014 [108]. On the other hand, centrally administered a-MSH

potentiates fever in the presence of MC4R blockade. This

finding may be relevant to recent findings implicating an

important role of central MCR subtypes in mediating the

anorexia and cachexia associated with inflammation and

chronic illness [67].

Novel small molecule MC4R agonists such as, Ro 27-3225 and

[1R-(4-chloro-benzyl)-2-(4-cyclohexyl-4-[1,2,3,]triazol-1-

ylmethyl-piperidin-1-yl)-2-oxo-ethyl]-amide (THIQ) have been

considered ideal anti-obesity drugs due to their low molecular

weight, enzymatic stability and potential selectivity for MC4R

versus MC3R. Few studies have examined the role of these

compounds in inflammation. Ro 27-3225 improves survival

after haemorrhagic shock and shows anti-shock effects

inhibiting free radicals formation through activation of MC4R

located within the brain [39]. THIQ, administered together with
LPS, possesses anti-inflammatory activity and to some extent

inhibits the LPS-induced increase in NO levels in a mouse model

for brain inflammation [89].

We have observed that melanocortins inhibit NO and

prostaglandin (PG) production induced by IL-1b in the

hypothalamus [24] and that icv administration of a-MSH

attenuates the hypothalamic expression of iNOS and COX-2

during endotoxemia by activating MC4R [11]. These findings

suggest that a-MSH anti-inflammatory effects involve down-

regulation of iNOS and COX-2 expression, reducing inflam-

matory mediators such as NO and PGs which have been

associated with pro-inflammatory activities in neurodegen-

erative processes of several acute and chronic brain diseases

[90,84].

It was pointed out that MC1R and MC3R are involved in the

anti-inflammatory effects of melanocortins in the periphery

[78,65] but MC4R is the primary candidate for the central anti-

inflammatory action of melanocortins [11,56]. Moreover, a

recent study reported that the selective MC3R agonist, g-MSH,

had no protective effect in the ischemic stroke, whereas a

MC4R agonist, NDP-a-MSH, did exert a potent neuroprotective

effect [38].

Melanocortinshave a life-saving effect inanimaland human

hypoxic conditions such as circulatory shock, prolonged

respiratory arrest and myocardial ischemia [3,39,42,43,75].

The treatment with a-MSH decreases the expression of TNF-

a and IL-1b after brain ischemia in dogs [51] and mice [52].

Moreover, decreased a-MSH plasma levels have been detected

in patients with acute traumatic brain injury and decreased

levels havebeenrecorded inpatientswith unfavorable outcome

[13].

The a-MSH agonist, NDP-a-MSH, has been shown to exert a

strong neuroprotection, through the activation of MC4R,

against damage consequent to transient global cerebral

ischemia in gerbils [38] and in focal cerebral ischemia induced

by endothelin-1 in rats [40]. An ischemic brain injury in rats

was found to increase mRNA expression of MC4R (but not

MC3R or MC5R) in the controlateral, uninjured striatum [86].

Accordingly, Hwang et al. [55] reported that global cerebral

ischemia induced an ectopic expression of ACTH-like immu-

noreactivity in the gerbil hippocampus. Consistent with the

idea that the protective effect of melanocortins against

ischemic stroke occurs through selective stimulation of

MC4R, administration of g2-MSH, a selective agonist of

MC3R, did not reduce cortical and striatal damage in two rat

models of focal cerebral ischemia [48]. Some studies also

suggest that a-MSH promotes restoration of injured nerves

and the spinal cord [59]. Taken together, these data indicate

that melanocortins might be physiologically involved in

neuroprotection through the activation of central MC4R.
5. Effect of a-MSH on glial cells

The anti-inflammatory actions of melanocortins could be

exerted through different routes including central activation

of MCRs on inflammatory cells that would lead to a local

control of inflammation within the brain. Indirect effects

mediated by melanocortins, such as diminished death signals

from non-neuronal cells, e.g., astrocytes, cannot be ruled out.
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a-MSH is known to cross the blood–brain barrier [2] and the

efficacy of intraperitoneal NDP-a-MSH treatment preventing

cerebral ischemia indicates that it has sufficient access to

MC4R-expressing cells either within the brain or in systemi-

cally exposed elements of the neurovascular unit. Previous

studies reported widespread expression of MC4R in low levels

as well as dense expression within specific neuron-rich areas

such as the hypothalamus and the hippocampus [74,63]. The

widespread low-level expression of MC4R may be indicative of

their presence in non-neuronal cells. Indeed, a significant

astrocyte hyperplasia was found inside ischemic areas of NDP-

a-MSH-treated animals [40].

Human microglial cells express several MCR subtypes (MCR

1, 3, 4 and 5) [70]. MC1R is expressed in astrocytes but it was

reported that this receptor is not involved in the anti-

inflammatory effects of a-MSH [56]. Selkirk et al. [105] reported

the selective expression of MC4R with analysis of mRNA levels

and established a functional response of MC4R using cAMP

accumulation in cultured rat astrocytes. Accordingly, we

reported that rat astrocytes express MC4R, as we detected

MC4R mRNA and protein expression. On the other hand we

showed no expression of MC3R in these cells [10].

a-MSH and its COOH-terminal tripeptide (KPV) inhibited

TNF-a production induced by a bacterial endotoxin in cells of a

human glioma line [125]. Melanocortins suppress the tran-

scription factor NF-kB activation and expression of TNF-a and

iNOS in activated microglia and peripheral macrophages

[13,26,33] and also inhibited iNOS and COX-2 induction within

rat hypothalamus in vivo through MC4R [11]. a-MSH acting on

MC4R attenuates the increase of NO and PGE2 release and

iNOS and COX-2 expression induced by LPS/IFN-g in astrocytes

[10], suggesting that the anti-inflammatory actions of a-MSH

in the brain may result, in part, from a direct action on these

glial cells.

The neuroprotective effect of melanocortins could be the

consequence of direct modulation of mechanisms such as

inflammatory reaction and apoptosis associated with neu-

roinflammatory diseases. Recent reports indicate that a-MSH

has an antiapoptotic role in different cell types [6,49,68] and in

the ischemic renal failure [58]. These studies suggested that a-

MSH has a protective effect on melanocytes and tubular renal

cells by modulating Bcl-2 protein levels [68]. Reactive astro-

cytes have been implicated in the pathology of neuroimmu-

nological diseases such as multiple sclerosis, ischemia and

Alzheimer disease. Reactive astrocytes produce NO and pro-

inflammatory cytokines and chemokines [28]. Thus the

control in the activation of astrocytes can be effective in

decreasing the severity of neurodegenerative diseases. a-MSH,

acting on MC4R, prevented apoptosis of rat astrocytes by

blocking the increase of the Bax/Bcl-2 ratio induced by LPS plus

interferon-g and a-MSH per se increased Bcl-2 levels [10]. The

antiapoptotic action of a-MSH could be important at early

stages of the inflammatory response when preservation of

astroglial function is necessary to promote neuron survival.

These results are consistent with the antiapoptotic action of a-

MSH via MC4R in brain ischemia [38] and in neuronal death

induced by excitotoxicity in the hippocampus [32]. MC4R up-

regulates an endogenous neuroprotective pathway enhancing

two anti-apoptotic enzymes Bcl-2 and Bcl-xL in hippocampal

neurons [38].
6. a-MSH and autoimmunity

a-MSH induces regulatory T (T reg) cells that are antigen-

specific and require the presence of the antigen in a target

tissue to mediate immunosuppression. It was reported that it

is possible to generate antigen-specific T reg cells by a-MSH in

vitro and then transfer them intravenously to suppress

antigen-specific T helper type I cells mediating inflammation

[92,96]. This finding opens the possibility to use this

melanocortin to induce antigen-specific T reg cells to prevent

and suppress autoimmune diseases. In fact, in vitro generated

a-MSH-induced T reg cells suppressed ocular autoimmune

disease in vivo [95]. It has been reported that a-MSH may be

useful as treatment of inflammatory experimental autoim-

mune encephalomyelitis [128]. This is a T-cell mediated

inflammatory autoimmune process of the CNS that resembles

in some aspects the human demyelinating disease multiple

sclerosis. Orally administered a-MSH can reduce the signs of

the disease and inhibit CNS inflammation [8]. Moreover, Han

et al. [46] proposed that genetic engineering of self-reactive T

cells with a-MSH may represent a clinically viable approach to

the treatment of autoimmune diseases. The use of a-MSH in

gene therapy would be a desirable new approach to the

prevention and treatment of autoimmune diseases such as

multiple sclerosis that results in a neurological impairment.
7. a-MSH mechanisms of action

Although the anti-inflammatory effects of melanocortin

peptides have been clearly demonstrated, their mechanisms

of action are not well understood. Several studies have

addressed the molecular mechanisms by which a-MSH may

exert its anti-inflammatory effects. a-MSH has been shown to

block LPS receptor signaling, on macrophages and to attenuate

endotoxin stimulation of macrophages [115]. In addition, a-

MSH has been reported to inhibit the production of chemo-

kines, endothelial cell adhesion molecules, PGs and NO, which

all contribute to the inflammatory process [104,110]. Thus, it

seems that a-MSH can affect the inflammatory response at

multiple levels and by multiple mechanisms.

The transcription factor NF-kB is required to induce

expression of inflammatory cytokine genes in response to

various inflammatory agents. There are large numbers of

genes involved in cellular inflammation that need NF-kB

activation, including TNF-a, IL-1, IL-6, chemokines, cyclo-

oxygenase, lipoxygenase, cell adhesion proteins, and NO

synthase [107]. a-MSH has been shown to block the activation

of NF-kB in several experimental models [56,57,80,102]. For

example, a-MSH suppresses nuclear translocation of NF-kB

induced by TNF-a and this effect could be mediated by an

intracellular increase of cAMP [80]. a-MSH has been shown to

inhibit NO and TNF-a production [80,102, 110] and PG

synthesis [73], which are NF-kB-dependent and are involved

in inflammation. In addition, the p65 subunit of NF-kB has

been colocalized with a-MSH in the rat brain, suggesting a

close relationship [60].

Thus, the anti-inflammatory properties assigned to a-MSH

are due to its ability to down-regulate the activation of NF-kB

by a variety of inflammatory stimuli in cells of the immune
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system. Since a-MSH has no known pharmacologic toxicity

and is able to suppress NF-kB, it has potential for use in

conditions initiated through NF-kB activation, such as

inflammatory diseases, HIV replication in AIDS, and septic

shock.

This suppression of NF-kB activation by a-MSH was not cell

type specific but it was mediated through generation of cAMP

and activation of PKA [80]. Reports show that elevation of cAMP

reduces NF-kB activity [18,50,94,97]. Ollivier et al. [97] found

inhibition of NF-kB-mediated transcription by elevated cAMP or

by overexpression of PKA without any inhibition of the IkBa

degradation or nuclear translocation of p65. In contrast, Chen

and Rothenberg [18] and Neumann et al. [94] reported that the

effects of cAMP are mediated through stabilization of IkBa and
Fig. 2 – Model for MC4R signaling. a-MSH binds to and stimula

Then, cAMP will activate protein kinase A (PKA) leading to the

protein (CREB). The activation of CREB induces its binding to cAM

Target genes expression could be induced by pro-inflammatory

by CD14 to bind its receptor (TLR4). LPS signaling induces the r

degradation of the inhibitor (IkBa) of the nuclear factor-kB (NF-

transcription of inflammatory genes like iNOS and COX-2. Activ

PKA can prevent IkBa degradation reducing pro-inflammatory

interact with mitogen-activated protein-kinases (MAPK) and co

leading to the activation or inhibition of transcription factors (TF

apoptosis by modulating the expression of proteins of the Bcl-2

protein Bax while reducing the expression of antiapoptotic Bcl-2

by apoptosis. a-MSH prevents apoptosis by increasing Bcl-2 an

MC4R decreases caspase-3 activation.
impairment of the nuclear transport of p65. Similarly, Manna

et al. [80] found that the elevation of intracellular cAMP induced

by a-MSH inhibited IkBa degradation and p65 translocation to

the nucleus as well as gene transcription. It was also reported

that the catalytic subunit of PKA binds IkBa, the inhibitory

subunit of NF-kB in the cytoplasm [130].

Ligand binding to MCRs activated adenyl cyclase, which led

to the production of cAMP and subsequent activation of a

cAMP response element-binding protein (CREB) [85]. a-MSH

had an activating effect on hypophysiotropic TRH neurons via

the phosphorylation of CREB [66] and MC4R agonist increased

phosphorylation of both ERK1/2 and CREB in the solitary

nucleus of the rat [106]. CREB is responsible for cell survival

during episodes of metabolic or oxidative stress [99] and
tes MC4R leading to the production of cyclic AMP (cAMP).

phosphorilation of the cAMP-responsive element-binding

P-responsive element (CRE) sequence in the target genes.

stimuli like bacterial lipopolisaccharide (LPS). LPS is helped

ecruitment of several adaptor proteins leading to the

kB), allowing NF-kB translocation to the nucleus and the

ation of MC4R may block NF-kB activation since cAMP or

gene expression. On the other hand, MC4R might also

uld induce ERK activation or inhibit JNK and p38 MAPKs

) like AP1 or CREB. LPS plus interferon-g (IFN-g) can induce

family. LPS + IFN-g increase the expression of proapoptotic

leading to caspase-3 activation and subsequent cell death

d decreasing Bax expression. Consequently, activation of
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modulates the expression of Bcl-2 [25]. Therefore, it is possible

that CREB activation could mediate the anti-inflammatory and

antiapoptotic actions of a-MSH.

MC4R activation in vitro induced an increase in the

phosphorylation of mitogen-activated protein kinase/extracel-

lular signal-regulated kinase (MAPK/ERK) in the hypothalamus

[15], and in CHO-K1 cells [111]. On the other hand, the treatment

with a-MSH attenuated the increase in the phosphorylation of

p38 MAPK, resulting in a decrease of TNF-a production in

leukocytes [61]. The MC4R agonist, NDP-a-MSH diminished the

activation of the stress-activated kinase, JNK3 in a model of

brain ischemia [37]. MC4R agonists activated ERKs through a

mechanism that involved phosphatidylinositol 3-kinase in a

hypothalamic cell line [120]. It is possible that cAMP inhibits NF-

kB activation through inhibition of the mitogen-activated

protein kinase kinase-c-Jun N-terminal kinase (MAPK/JNK)

pathway, as overexpression of MAPK reversed the inhibitory

effects of cAMP on NF-kB activation [50]. Thus, MAPKs might

participate, at least in part, in the anti-inflammatory effect of a-

MSH. The intracellular signaling pathways involved in MC4R

activation are shown schematically in Fig. 2.

Although there are several small molecule and non-peptide

inhibitors of cell signaling known to block NF-kB activation,

there are very few normal physiologic peptide hormones

reported to block NF-kB activation. It was recently shown that

IL-4, IL-10, and growth hormone can block NF-kB activation

[21,45,123]. It is known that a-MSH increases production of the

anti-inflammatory cytokine IL-10 by modulating the inflam-

matory cascade [13,124]. On the other hand, low plasma

concentrations of such cytokine appear to be associated with

early worsening of neurological symptoms in patients with

acute ischemic stroke [119]. Some anti-inflammatory effects of

a-MSH are mediated via IL-10 production, because IL-10

knockout mice are resistant to a-MSH treatment [101].

Moreover, Vulliemoz et al. [121], showed that SHU9119, a

mixed MC3/4 receptor antagonist, can decrease the IL-10

response, establishing a physiological role for endogenous a-

MSH in modulating the release of an anti-inflammatory

cytokine.
8. Conclusions

There is new evidence for a broader role of a-MSH and MC4R in

inflammatory processes. The finding of potent anti-inflam-

matory effects of a-MSH in different models of brain

inflammation encourages the development of synthetic

analogs. Due to their long-lasting activity a-MSH-like peptides

may turn out to be very useful compounds for their use in the

treatment of neuroinflammatory conditions. In addition, a-

MSH has no evident toxicity since it has been demonstrated to

be safe when given in large and continuous doses to animals

and humans. However, a-MSH is very unstable in vivo and its

therapeutic use would require daily administration. Since

anti-inflammatory and neuroprotective effects of a-MSH

might involve MC4R activation, selective MC4R agonists

appear to be suited for the treatment of immune-mediated

brain inflammatory diseases, without having corticosteroids

side effects. Although, a-MSH and MC4R agonists have been

shown to possess promising in vitro as well in vivo anti-
inflammatory effects, additional studies are necessary to

define the role of MC4R and the mechanisms by which a-MSH-

like peptides modulate responses to neuroinflammation. The

data collected here should help in the design of a new

generation of a-MSH-like peptides that could activate MC4R.
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