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We numerically and theoretically investigate the evolution of the ridges and rifts produced by the
convergent and divergent motions of two substrates over which an initially uniform layer of a
Newtonian liquid rests. We put particular emphasis on the various asymptotic self-similar and
quasi-self-similar regimes that occur in these processes. During the growth of a ridge, two
self-similar stages occur; the first takes place in the initial linear phase, and the second is obtained
for a large time. Initially, the width and the height of the ridge increase as t1/2. For a very large time,
the width grows as t3/4, while the height increases as t1/4. On the other hand, in the process of
formation of a rift, there are three self-similar asymptotics. The initial linear phase is similar to that
for ridges. The second stage corresponds to the separation of the current in two parts, leaving a dry
region in between. Last, for a very large t, each of the two parts in which the current has separated
approaches the self-similar viscous dam break solution. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2908356�

I. INTRODUCTION

Viscous gravity currents in which inertia is negligible
and viscous stresses balance the gravity force are common in
nature as well as in man-made situations. In many instances,
the thickness of these currents is small compared to their
horizontal extension, so that they can be described by means
of the lubrication approximation.1 The specific problems we
consider in this paper are the evolution of the ridges and rifts
produced by the convergent and divergent motions of two
substrates over which an initially uniform layer of a Newton-
ian liquid rests. The formation of a ridge has been investi-
gated theoretically and with a laboratory model,2 and
numerically3,4 because of its connection with the process of
mountain building. The theoretical model that is the basis of
these investigations belongs to the class of the so called thin
sheet models,5 which have been extensively employed to
study the deformations of the continental lithosphere mainly
by means of numerical simulations. A classification of these
models was given by Medvedev and Podladchikov.6 The
fluid mechanics involved in several geophysical problems
has been discussed by Huppert.7–9

In a previous paper10 by Gratton, the scaling laws for the
evolution of the height and width of a mountain belt were
derived by means of dimensional analysis, with physical as-
sumptions essentially equivalent to those of the model of
Buck and Sokoutis.2 We shall not present details that the
reader can find in many papers such as that by Rey et al.11

since it is not the purpose of this paper to investigate moun-
tain building. Our aim is to achieve a better basic under-
standing of the fluid mechanics involved in the evolution of

the ridges and rifts produced by viscous flows, with particu-
lar emphasis on the various asymptotic self-similar and
quasi-self-similar regimes that occur in these processes.

This paper is divided into five parts. In the next section,
we derive the governing equations of the viscous flows for a
symmetric convergent or divergent motion of the substrates.
In Sec. III, we discuss the numerical solutions obtained by
means of a finite difference method. In Sec. IV, we investi-
gate the behavior of the solution close to the beginning of the
process, when the governing equations can be linearized. We
find that a self-similar regime occurs in this stage, during
which the width and the height �depth� of the ridge �rift�
scale as t1/2. In Sec. V, we investigate the remaining self-
similar and quasi-self-similar asymptotics that occur in other
space-time domains for ridges as well as for rifts. In Sec. VI,
we show that some of the results reported in the previous
sections can be generalized to the case when the substrates
move nonsymmetrically. Final comments are presented in
Sec. VII.

II. GOVERNING EQUATIONS

Consider a uniform liquid film with thickness H0 that
rests on a horizontal rigid surface, which is divided into two
parts at X=0. At T=0, both parts start to converge or diverge
with the same constant speed U0, producing a ridge or a rift,
respectively �see Fig. 1�. Due to the symmetry of the prob-
lem, it is sufficient to consider only the half-plane X�0 and
imagine that at X=0, there is a vertical impermeable wall
along which the liquid slips. We define the velocity of the
substrate as �U0 �here, U0�0 and �= �1�. Then, if �=1,
the substrate is moving to the right, away from the wall, so
that a rift is formed. If �=−1 the substrate moves to the left,
accumulating the fluid against the wall, thus producing a
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ridge. We shall assume a slow viscosity-dominated flow and
we shall employ a slight generalization of the well-known
lubrication approximation �see, for example, Refs. 1 and 12–
14� to take into account the motion of the substrate. Let H
�H�X ,T� be the thickness of the liquid. We assume that the
slope of the free surface is gentle, so that the horizontal
component V of the velocity of the fluid is much larger than
the vertical one and that the vertical gradient of V is much
larger than the horizontal gradient. In this way, the Stokes
equation takes the form

0 = −
1

�

�P

�X
+ �

�2V

�Z2 ,

�1�

0 = −
�P

�Z
− �g ,

where P is the pressure, g is the acceleration of gravity, � is
the density, and � is the kinematic viscosity. From the last
equation, one obtains that the pressure is hydrostatic, and by
replacing P in the first one, integrating twice, and imposing
the no stress condition �V /�Z=0 at Z=H�X ,T� and the no
slip condition V=�U0 at the substrate, one obtains

V = �U0 −
g

�

�H

�X
�ZH −

1

2
Z2� . �2�

We define U�U�X ,T� as the vertical average of V, so that

U = �U0 −
g

3�

�H

�X
H2. �3�

By using the continuity equation, we finally obtain

�H

�T
= − �U0

�H

�X
+

g

3�

�

�X
�H3�H

�X
� . �4�

We define the dimensionless variables u, h, x, and t by
means of

U = U0u, H = H0h ,

�5�

X =
g

3�

H0
3

U0
x, T =

g

3�

H0
3

U0
2 t ,

so that Eq. �4� takes the form

�h

�t
= − �

�h

�x
+

�

�x
�h3�h

�x
� , �6�

and from Eq. �3�, the connection between u and h is given by

u = � − h2�h

�x
. �7�

We solve Eq. �6� in the domain x�0 starting from the initial
condition h�x ,0�=1. Since u must be continuous at x=0 and
the motion of the substrates is symmetric, we must require
u�0, t�=0, which implies

h2� �h

�x
�

x=0
= � . �8�

This boundary condition holds provided there are no sources
nor sinks at x=0 and only if the motion of the substrates is
symmetric �the appropriate boundary condition for the non-
symmetric convergent motion of the substrates is given by
Eq. �26��. In Eqs. �6�–�8�, �=1 for rift formation and
�=−1 for ridge formation. Notice that the conservation of
mass implies that 	0

�htdx=−�.

III. NUMERICAL SOLUTIONS

Problems �6�–�8� do not admit closed form solutions so
that they must be solved numerically. To this purpose, we
used a second order implicit finite difference scheme.15

Some results for ridge formation are shown in Fig. 2. It
can be seen that h has an inflection point that is located near
x=0 at the beginning and moves toward large x as t in-
creases, tending to reach the leading part of the ridge, where
h approaches 1. It can be also noticed that the aspect ratio
�height/width� of the ridge diminishes with time. This occurs
because as the ridge grows, its width increases more rapidly
since the diffusion term of Eq. �6� scales as h4. The evolution
of hw�h�0, t� is shown in Figs. 3 and 4.

Results for rifts are shown in Figs. 5 and 6. As t in-
creases, hw rapidly decreases and vanishes at a certain time
ts=0.1786. At this moment, the current separates into two
parts, and for t� ts, there is a dry region that extends from
x=0 to a front located at xf�t�; thus, h�x , t� ts�=0 for 0�x
	xf�t�. For t� ts, the boundary condition �8� no longer
applies.

To our knowledge, the separation predicted by the nu-
merical solution has not been observed yet and the present
problem still awaits investigation in the laboratory. However,
it is reasonable that separation will actually occur for a di-
vergent motion of the substrates. The average flow uh is a
combination of the effect of the motion of the substrate that
tends to carry the fluid to the right �the first term in the right
hand side of Eq. �7��, thus lowering h near x=0, and of the

U0

U0U0

a)

b)

FIG. 1. Formation of ridges and rifts. �a� Due to the convergent movement
of the substrate, the fluid accumulates in the region of convergence gener-
ating a ridge. �b� Due to the divergent movement of the substrate, the fluid
leaves the region of divergence generating a rift.
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FIG. 2. Numerical profiles of a ridge for t=0.6, 2.4, 4.2, and 6.
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effect of the gravity spreading �the second term in the right
hand side of �7�� that tends to keep h uniform. The first effect
prevails everywhere �except only at x=0 where both effects
are exactly balanced�, so that hw decreases with time. It will
be shown later that as hw becomes very small, the flow ap-
proaches an asymptotic self-similar regime for which hw

vanishes at a finite ts. After this has happened, the current has
a front that is carried to the right by the motion of the sub-
strate. As we will show later, immediately after ts, the motion
close to the front is also self-similar. These results follow
from the lubrication approximation in which we have ne-
glected surface effects and from our assumption that the ve-
locity of the substrates is discontinuous at x=0. We believe
that the inclusion of surface effects will certainly modify the
phenomenon, but we expect that some sort of separation will
also happen, eventually with more complex topological
changes, like the production of droplets �as occurs in situa-
tions involving dewetting�. On the other hand, if the velocity
of the substrates is assumed to change smoothly on a small
interval 
x centered at x=0, we believe that a small quantity
of liquid, which vanishes as t→�, will remain inside this

interval, so that, strictly speaking, no separation will take
place.

IV. LINEAR REGIME

For small t, when h is close to 1, we can write h=1
−�z with z�1, thus allowing to linearize Eqs. �6� and �8�,
which reduce to

�z

�t
= − �

�z

�x
+

�2z

�x2 , � �z

�x
�

x=0
= − 1. �9�

The solution of these equations �for details, see the Appen-
dix� for a ridge ��=−1� and for a rift ��=1� is given by

z = − �
e−s2


�
�2
tH−2�s� + �

j=1

�

�2
t� jH−1−j�s�
 , �10�

where s= �t−�x� /2
t and Hq�s� denotes the Hermite
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FIG. 4. Maximum height of a ridge. The thick line is the numerical result,
the thin line is calculated from Eq. �20�, and the dashed line is from
Eq. �18�.
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FIG. 5. Numerical profiles of a rift for t=0.05, 0.1, 0.15, 0.2, and 0.25.
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FIG. 6. Minimum height of a rift. The insets show the behavior close to
t=0 and to t= ts.
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FIG. 3. Maximum height of a ridge. The thick line corresponds to the
numerical results and the dashed line corresponds to the scaling law given
by the self-similar solution �11�.
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function of order q. Notice that this approximate solution
does not conserve the mass since 	0

�ztdx=1+�z�0, t��1.
In Fig. 7, we show the z profiles �for �=−1� for different

times. Notice that within this approximation, the solutions
for a rift and a ridge are symmetric around the axis h=1.

These solutions are not self-similar, but tend to self-
similarity for t→0. To see this, we seek solutions of Eq. �9�
of the form z= t1/2f��� with �=x /2
t. By substituting this
into Eq. �9�, one obtains

f� + 2�� − �t1/2�f� − 2f = 0, f��0� = − 2.

Here and in what follows, primes denote derivatives with
respect to the argument. For small t, we can neglect the term
proportional to t1/2 �this implies x
2t�. Then, the solution
that is bounded for z→� is

zs = 2
t� e−�2


�
− � erfc���
 , �11�

where erfc��� is the complementary error function. In Fig. 3,
it can be seen that for a small time, z�0, t� tends to the self-
similar behavior zs�0, t�=2
t /�. In this regime, the height
�depth� and the width of the ridge �rift� increase as t1/2, so
that the aspect ratio is constant while the area of the cross
section increases as t.

V. SELF-SIMILAR AND QUASI-SELF-SIMILAR
REGIMES

To find the self-similar solutions of the full nonlinear
problem �6� and �8�, we assume h of the form16

h = t�f���, � = xt−�. �12�

By substituting in Eqs. �6� and �8�, one finds

�f − ��f� = t1−��− �f + t3�−�f3f���, �f2f���=0 = �t�−3�.

�13�

The initial condition h�x ,0�=1 and the condition h�� , t�=1
both require

f��� = t−�. �14�

Finally, mass conservation implies

�
0

�

��f − ��f��d� = t1−�−�.

Since f depends on t only through �, the variable t must
disappear from the preceding formulas. This is not possible
in general, but it can be approximately achieved in certain

spatial and/or temporal domains. Then, to go further, we
must specify the type of self-similar solution we are seeking.

A. Self-similar and quasi-self-similar regimes
in ridge formation

Now, we look for a self-similar regime for large t and
small x, so that this regime has to satisfy the conservation of
mass and the boundary condition at �=0. These two condi-
tions imply �=1 /4 and �=3 /4. With these exponents, the
leading term of Eq. �13� can be integrated once to obtain

f3f� + f = A = const. �15�

By comparing this with the boundary condition at �=0, we
find that A=0. Then, the solution of Eq. �15� is

f = ��b − 3��1/3 if � 	 b/3
0 if � � b/3,

� �16�

where b=const. This solution has a front at �=b /3. From the
mass conservation between �=0 and �=b /3, we obtain
b=
8. From this, we find the self-similar solution for t
1 as

hs = hw�1 −
x

xf
�1/3

if x 	 xf, 0 if x � xf , �17�

where

hw = 
2t1/4, xf =

8

3
t3/4. �18�

In Fig. 4, we compare the preceding expression of hw to the
numerical result to see how this self-similar regime is ap-
proached.

A better approximation can be achieved by means of the
quasi-self-similarity approach.17–21 To this purpose, we allow
the integration constant b to depend weakly on time. The
justification of this procedure was clearly presented by
Bertsch et al.21 Accordingly, we require that the mass added
to the ridge appears above h=1 �i.e., for f � t−1/4�. Then, the
conservation of mass implies

�
0

�a

�f − 3�f��d� = 4,

where �a= �b− t−3/4� /3 is the place where h=1. One then
finds a quasi-self-similar solution of the form

hq = hw�1 −
x

xf
�1/3

if x 	 a, hq = 1 if x � a . �19�

Here, a=xf −1 /3 is the half-width of the ridge, and hw and xf

are given by

hw = b�t�1/3t1/4, xf = 1
3b�t�t3/4, �20�

where b is the positive real root of the polynomial b4− �4
+bt−1/4�3.

It can be observed in Fig. 4 that the maximum height
given by hq agrees much better with the numerical results
than that given by hs. Actually, hq�0, t� never differs from the
numerical values by more than 8% for any t. In Fig. 8, we
compare the numerical solutions for large times to the quasi-
self-similar solution hq. The quasi-self-similar solution de-
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x

FIG. 7. Analytical solution �10� of the linearized problem for t=0.005, 0.01,
0.015, and 0.02.
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scribes very well the large time behavior near the crest of the
ridge, but not so well far from the crest where h�x , t� is close
to 1. This should be expected since the quasi-self-similar
regime does not verify condition �14�.

To obtain a better description far from the crest, we fol-
low a similar approach as before, that is, we look for a so-
lution that satisfies condition �14�, sacrificing the condition at
�=0. As before, we set �=1 /4, �=3 /4 and integrate the
leading term of the differential equation for f . The result is
again Eq. �15� but now A�0 and the solution of Eq. �15� is
given in implicit form by

� = −
1

3
f3 −

A

2
f2 − A2f − A3 ln�f − A� + c , �21�

with c=const. Now, we allow the integration constants A and
c to weakly depend on t. To satisfy Eq. �14�, we set
A= t−1/4, and to determine c, we require that when x=0,
h=hw. The solution is then

x =
1

3
�hw

3 − h3� +
1

2
�hw

2 − h2� + �hw − h� + ln�hw − 1

h − 1
� .

�22�

Solutions of this kind have been found in other contexts, for
example, as the large time asymptotic of a current produced
by a piston that is pushing a viscous layer.13 In the previous
expression, we have not yet specified hw. The logical choice
is expression �20�, which describes very well the time behav-
ior at the crest, but this improvement is not sufficient because
the solution so obtained does not satisfy yet the boundary
condition at x=0 �except in the limit t→��. Fortunately, it
can be shown that it is possible to modify Eq. �22� in such a
way as to fulfill this condition. By omitting details, the idea
is to rescale � in Eq. �15� to ensure that f��0� has the appro-
priate value. The necessary scaling factor is found to be
f�0� / �f�0�−A�. This implies that we must rescale x by
multiplying the right hand side of Eq. �22� by the factor

�hw−1� /hw. In Fig. 9, we compare the numerical profiles at
different times to the profiles given by the rescaled solution
�22�, in which hw is given by Eq. �20�. It can be observed
that the agreement is excellent even for times that are not
very large.

B. Self-similar regimes in rift formation

Since the self-similar regime for very small t has been
discussed before, we shall deal here with the self-similar
regimes that occur in later stages of the process.

1. The behavior at separation

As previously mentioned, the minimum height of a rift
decreases rapidly and vanishes at ts, so that h�1 for �x��1
and t���t− ts��1 �see Figs. 5 and 6�. Then, in this domain,
there is no scale for h. We then expect a self-similar regime
in which the dimensional height H does not depend on H0.
From Eqs. �5� and �12�, it is clear that such a regime requires
�= 1

3 and �=1 �this pair of values is the only one for which
Eq. �13� does not depend on time�. Then,

h = t�1/3f��� , �23�

where now �=x / t�. In the lower inset of Fig. 6, we compare
the numerical results with the scaling law for hw predicted by
this type of self-similarity.

By replacing Eq. �23� in Eq. �6�, we obtain
1
3 f − �f� = � �− f + f3f���, �24�

where the � sign is for t	 ts and the � sign is for t� ts. To
integrate Eq. �24� for t	 ts, we only need the value of f�0�
�then f��0� is determined by the boundary condition f2f�=1
at �=0�. To this purpose, we notice from the lower inset of
Fig. 6 that hw=0.757t�1/3; then, by comparing this with Eq.
�23�, we find f�0�=0.757. To integrate Eq. �24� for t� ts, we
notice that according to Eq. �7�, we need h� �x−xf�1/3 to have
a front that moves with a finite nonzero velocity with respect
to the substrate. Then, by using Eq. �23�, we find that near
the front, f =k��−� f�1/3, where � f is the self-similar coordi-
nate of the front and k is a constant. To find k, we notice that

0

1

0.60.2 1.20.80.40 1

0.6

0.2

0.8

0.4

x/xf

h/hw

FIG. 8. Comparison of the quasi-self-similar solutions �19� and �20� �thick
line� with the numerical solutions for t=18, 78, 216, 576, and 1026 �thin
lines�.
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FIG. 9. Comparison of the numerical profiles �lines� at different times with
the profiles of the rescaled solution �circles� from Eq. �22� in which hw is
given by Eq. �20�.
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before separation and for small x, the profile h�x , t� ap-
proaches �3x�1/3 for t→ ts. Then, it seems reasonable to as-
sume that h�x , t�= �3x�1/3 for t= ts and small x since we see no
reason why an abrupt change in the shape of the profile of
the current should occur at this moment. On the other hand,
the moment t= ts and finite x corresponds to �→�, so that
near the front, f →k�1/3. Then, for t� ts to avoid as before
abrupt changes in the behavior for which we see no reason,
we require k=31/3. With this value of k and a value of �s, we
employ the form of f near a front to start the numerical
integration of the ordinary differential equation �ODE� �24�,
using � f as a fitting parameter.

In Fig. 10, we compare the �numerical� solutions of
these equations with our numerical solutions of Eq. �6� for t
close to ts and small x. The best fit with the numerical solu-
tions of the partial differential equation �PDE� �6� is
achieved with � f =0.045. It can be appreciated that there is
excellent agreement between the numerical solutions of the
PDE and the self-similar regimes obtained from Eqs. �23�
and �24�, a fact that incidentally validates our numerical fi-
nite difference scheme.

2. Large time behavior

For very large t, h tends to the solution of the viscous
dam break problem,13 as seen by an observer moving with
velocity −U0. This solution is self-similar and in this refer-
ence frame has the form h= f�x� /� f


t�, where x�=x−U0t and
� f =−0.492¯. There is no closed form for f . In Fig. 11, we
can observe this solution.

VI. ASYMMETRIC MOTION OF THE SUBSTRATES

A simple generalization of the problem studied before is
to assume that the velocities of the two parts of the substrate
are different. For definiteness, we shall consider only the
formation of a ridge. Let us assume that the left part of the
substrate in Fig. 1 moves with a velocity U0�0 and the right
half with a velocity −�U0	0, where 0���1 quantifies the
asymmetry. This means that the influx of mass coming from
the left is larger than that arriving from the right. The dimen-
sionless variables are defined as in Eq. �5�. Then, Eq. �6�
�with �=1� holds for x�0, but for x�0 we have

�h

�t
= �

�h

�x
+

�

�x
�h3�h

�x
� . �25�

At x=0, the height h is continuous, but �h /�x has a discon-
tinuity given by

� �h

�x
�

x→0−
− � �h

�x
�

x→0+
=

1 + �

h�0,t�2 . �26�

This condition implies that at x=0, there is mass flowing
from the left to the right, which did not happen in the sym-
metric case.

In the asymmetric case for a given �, Eqs. �6� and �25�
must be solved in x�0 and x�0, respectively, starting from
the initial condition h�x ,0�=1 and subject to the matching
condition �26�. Notice that now the conservation of mass
implies 	−�

� htdx=1+�.
We now give the main results, omitting details for

brevity.

• The crest of the ridge remains at x=0 for all t.
• In the linear self-similar regime �small t�, the ridge is

symmetric around x=0 independently of �, and its
width and height scale as t1/2. The solution for x�0 is
given by Eq. �11� with the factor 2 replaced by 1+�.
For x	0 is its specular image.

• For larger t, the ridge becomes asymmetric, being nar-
rower and steeper for x	0.

• For t very large and 0	��1, a self-similar
asymptotic of the same kind as Eqs. �17� and �18�
develops. The profile of the ridge is asymmetric, but
its height and width scale as t1/4 and t3/4, respectively.

• The case �=0 is different. As t grows, the x�0 por-
tion of the ridge becomes increasingly dominant, and
its height and width scale as t1/5 and t4/5, respectively.

It should be mentioned that Buck and Sokoutis2 investi-
gated the self-similar regime that appears for small t in the
linearized problem for the case �=0. They obtained the t1/2

0.1 1 10

f

ξ
0.1

1

10

FIG. 10. Self-similar behavior near separation. The circles are points with
coordinates �x / �t− ts� ,h�x , t� / �t− ts�1/3� calculated from the numerical solu-
tions of the PDE �6� with boundary condition �8� for �=1. For each of the
eight numerical h�x , t� profiles immediately before separation �open circles�
and for each of the eight numerical h�x , t� profiles immediately after sepa-
ration �filled circles�, we plot the points that fall within the range 0.1��
�10. The lines are the solutions of the ODE �24� with the initial conditions
described in the text; the straight line is the solution h= �3x�1/3. The fact that
the circles are located almost over the lines indicates that problems �6� and
�8� develop the self-similar regime defined by Eq. �23� with f determined by
Eq. �24� near x=0 and t= ts.
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FIG. 11. Self-similar solution of the viscous dam break problem.
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scaling for the width and height of the ridge, but they give a
wrong formula for z that does not satisfy the differential
equation.

VII. FINAL COMMENTS

From Figs. 3 and 4 it can be observed that during the
growth of a ridge, two self-similar stages occur. In the initial
linear stage, the profile h is given by the self-similar solution
�11�. Later on, h is described by the self-similar solutions
�17� and �18� and even better by the quasi-self-similar solu-
tions �19� and �20�. The transition between these stages oc-
curs for t of the order of unity and corresponds to the migra-
tion of the inflection point of h, which is initially very close
to x=0, while for t→�, it approaches xf. During the linear
phase, both the width and the height of the ridge increase as
t1/2. As the height increases, the lateral spreading becomes
dominant, so that most of the mass accumulated in the ridge
increases its width, which grows as t3/4, much faster than its
height, which increases as t1/4. These scalings agree with
those obtained in the context of the growth of mountain
belts.10 The peak of the ridge always remains at x=0 even if
the motion of the substrates is not symmetrical. The shape of
the ridge is symmetrical during the linear stage, regardless of
�, but for later times, it becomes asymmetrical for ��1.
The scaling laws we obtained in the symmetric case for both
stages are also obtained in the nonsymmetric case, except for
�=0.

On the other hand, in the formation of a rift, there are
three spatiotemporal domains, in which self-similar asymp-
totics develop. The initial linear stage is the same as for
ridges, with a change of sign of z. The second domain occurs
close to x=0 and near t= ts, where the separation of the cur-
rent into two parts leaving a dry region in between takes
place. In this domain, there is a self-similar regime in which
hw scales as �t− ts�1/3 and the width of the dry region grows as
�t− ts�. Last, for very large t, each of the two parts in which
the current has separated approaches the self-similar viscous
dam break solution.
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APPENDIX: LINEARIZED SOLUTION

To find the solution of Eq. �9�, we define �= t−�x and
set z�x , t�=��� , t� in Eq. �9� to obtain

��

�t
=

�2�

��2 , � ��

��
�

�=t
= � . �A1�

Due to the peculiar boundary condition at �= t, the usual
methods to solve the heat diffusion equation cannot be used.

We assume �= f�t�g�t ,��, substitute in the first equation of
Eq. �A1�, and divide by fg to find

f�

f
=

1

g
� �2g

��2 −
�g

�t
� , �A2�

which implies that the right hand side depends only on t. By
assuming g=g�w� with w=� /
t and integrating, one finds

g� + 1
2wg� = Kg, K = const. �A3�

If K=0, one obtains from Eq. �A3� the familiar self-similar
point source solution of heat diffusion. If K�0, the general
solution of Eq. �A3� can be expressed in terms of a linear
combination of Hermite functions and confluent hypergeo-
metric functions. In the present case, we must discard the
hypergeometric functions as they diverge for large x. On the
other hand, the solution for f is f =AtK, A=const. Then, it can
be shown that the solution that satisfies the boundary condi-
tion �A1� is given by the series

� = − �
e−�2/4t


�
�2
tH−2� �

2
t
� + �

j=1

�

�2
t� jH−1−j� �

2
t
�
 .

�A4�
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