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Abstract

Letg : R — [0, c0) be an integrable function such thay_, 0y = 0 andg is decreasing in
(0, 00). Letty f (x) = f(x —h), withh € R\ {0} and fr(X) = (1/R) f (x/R), with R > 0. In
this paper we study the pair of weigkits v) such that the operatoM, f (X) = supr.o | f|*
[thelr(X) are of restricted weak typ@, p) with respect tqu, v), 1 < p < co. As particular
cases, these operators include some maximal operators relatechto €esvergence. We also
characterize those functiogsfor which My, is of (restricted) weak typép, p) with respect
to the Lebesgue measure. Unlike the case of théu@emaximal operators, it follows from
the characterization that the interval of thgsesuch thatM,, is of weak type(p, p) can be
left-closed | pg, oc], or left-openy(pg, oo], without having restricted weak tyg@o, po)-

1. Introduction

Let ¢ be a non-negative integrable function on the real line and let us denoterby) =
(1/R)p(x/R), R > 0. Itis well known that for allf € LP(R), 1 < p < oo, the convolutions

f % gr converge inLP(R) to (/ ¢) f asR goes to zero. The study of the almost everywhere (a.e.)

convergence of xR is harder and we need to add certain assumptions &r instance, ik has
support in[0, co) and it is decreasing itD, co) then f x gr converges t@ [ ¢) f a.e. asR — 0T,
f € LP(R), 1 < p < oo. This result follows from the fact that the maximal operator

M, f () = Sup| f| * ¢R
R>0

is of weak type(p, p), 1 < p < oo.
Let us consider now the maximal operator associated with the transkiig®) = ¢(x — h),
that is,
M f(X) = ;UEI fl«[thelr(X), h e R\{0}.

We note the following facts.
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2 A. L. BERNARDIS AND F. J. MARTIN-REYES

(a) The support of the is not necessarily contained in [0, co); if it is, then the is ot necessarily
bounded for a decreasing function in (0, c0).

(b) Examples of such operators are

1 (xR - R-y\*
My f(0 = sup = |f(y)|<u> dy, -l<a<0,
R>0 R Jx—2R R
and X+R
~ 1 R — ¢
M7 f(x) = sup = |f(y)|(M> dy, —l<a<O.
R>0 R X R
These operators coincide with M, with h = 1 and h = —1 respectively where ¢(t) =

t* x0,1;(t). These operators are related to the Cesaro convergence of singular integrals and
Cesaro continuity [1,5]. It isknown that they are of restricted weak type (1/(1+«), 1/(1+«)),
of strong type (p, p) for p > 1/(1+ «) and they are not of weak type (1/(1+ @), 1/(1+ «));
see, for instance, [5].

(c) Weighted wesk type inequalities for M and l\ﬁojr have been studied in [3, §].

It follows from (&) that one cannot apply the classical theory to study the boundedness of M, nor,
consequently, the a.e. convergence of f * [the]r (however, the convolutions f x [th¢]r converge
in LP(R), 1 < p < oo, since the isintegrable). On the other hand, (b) and (c) lead to us to study
the following questions.

(1) Isthe behaviour of the maximal operator M, with respect to the L ebesgue measure anal ogous
to that of M and M+’? More precisaly, isit alwaystrue that for all ¢ there exists pp > 1 such
that My, is of Weak type (p, p) if and only if p > po and My, is of restricted weak type
(Po, Po)?

(2) Weighted wesk type inequalities for My, , in L P-spaces.
(3) Restricted weak type inequalities for My, , in weighted L P-spaces.

As for the first question, we shall see in this paper that the behaviour of M, is not always
analogous to that of M and M+ We shall demonstrate with examples of ¢ that the following
situations are possi blefor po >

(i) My, isof wesk type (p, p) if and only if p > po and My, is not of restricted weak type
(Po, Po);

(i) My, isof weak type (p, p) if and only if p > po and My, is of restricted weak type (p, p),
and thisisthe caseif and only if p > po (the case of M, and M,});

(iii) My, is of week type (p, p) if and only if p > po, and My, is not of restricted weak type
(p. P if p < po.

These examples will be given in Corollary 2.13, the proof of which uses answersto (2) and (3).
Since question (2) was studied in [2], we shall investigate only (3) in this paper. We present our
resultsin the next section. For the sake of completeness, we start with the results from [2].
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Throughout the paper, p’ stands for the conjugate exponent of p, 1 < p < oo, and the letter C
means a positive constant that may change from one line to another. If E isa L ebesgue measurable
set then |E| stands for the Lebesgue measure of E. Given a positive measurable function u, the
maximal operator M} is defined by

fx Iflu
a<x fa

We shall use that this operator is of weak type (1,1) with respect to the measure u(x)dx [13].

M, f(x) =

2. Statement of results

The problem of acharacterization of two weighted weak type inequalitiesfor M, , was solved in[2]
for functions ¢ belonging to a subset of

Ft = {go:R—>[0,oo): PX(—00.0) = 0, (pdecreasingin(O,oo),O</go=A<oo}.

The characterization depends on the behaviour of ¢ near zero and on the sign of h. In particular the
following theorem was proved [2, Theorems 1.6, 1.7 and 1.8].

THEOREM 2.1 Let1 < p < oo, h € R\{0}, 0 < y < |h|, 5e(Ol)and<pe€ ={p €

Ft: p(y) > 0and t®ep(t) isincreasingin (0, ¥1}. Let u and v be positive neawrablefunctions
(weights).

(@) If h > 0, then M, is of weak type (p, p) with respect to the pairs of weights (u, v), that is,

there exists C > 0 such that
/ ung‘p/|f|pv (1)
(Mg T>2) R

for all A > Oandfor all f € LP(v) if and only if (u,v) € A3
thatforalla<b <c

c \VP b e c—a 1 1
(L (oo ()l 3o
b a 14 p p

(i) If h < 0and supp(¢) C (O, |h|], then (1) holdsif and only if (u, v) € A}
C > Osuchthatforalla<b <c

b \1/p 1/p _
(L) ([rrow (G=) o) <ot
a b 14

(iii) If h < 0and supp(e) N (h], co) # @, then (1) holdsif and only if (u, v) € A+ 0.y N Ap, Where
Ap isthe Muckenhoupt's class of weights [9], that is, (u, v) € Ap if there e><|stsC such that for all

a<b
b \1/p b ) 1/p’
(/ u) (/ vlp) < C(b-a).
a a

. that is, there exists C > 0 such

AP that is, there exists
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Notice that Ap , , and K;gw , arerelated to the Sawyer’s classes A and Af [7,12] which are
the classes of the good weights for the one-sided Hardy—L ittlewood maX| imal operators

X
M—f(x>=wp(x—a)—1f | f]
a

a<X
and

Mt f(x) = sup(b—x) 1[ [f].
Infact,if 1 < p <00, = xpyandy =1then A; = A; and Af = A";M For future use,
werecall that (u, v) € A} (A*) if and only if M*u < Cv(M7u< Cv) a.e. The Muckenhoupt Az
class[9] isdefined in the same way with M replaced by the Hardy—L ittlewood maximal operator

b
Mf(x) = sup (b—a)‘1/ |f].
a<x<b a
When ¢(0+) = limi_, g+ ¢(t) < 400, the characterization given in Theorem 2.1 is simpler as
the following theorem shows; see, [2, Theorem 1.5].

THEOREM 2.2 Let1 < p < 00,9 € FT and ¢(0+) < +oo.

(i) If h > O, then (1) holdsiif and only if (u, v) belongsto Aj.

(i) If h < 0.and supp(p) C (O, |hl], then (1) holdsif and only if (u, v) belongsto Af.
(iii) If h < 0 and supp(e) N (Ih], o) # ¥, then (1) holdsif and only if (u, v) € Ap.

Observe that if po is such that ¢ ¢ LPo(0,y), where 1/po + 1/p; = 1, and

essinfye(a, b)v p0(x) > 0 for some interval (a, b) then the conditions Ao, and A+ do
not hold and therefore the two weighted weak type (p, p) inequdities for M., are not true for
1 < p < po. However itisstill possible to have restricted weak type (po, o). Thishappensfor M,
and M with pg = 1/(1+ «) (see[1,3,8]). Thisisour motivation for studying acharacterization
of the restricted weak type inequalities in weighted L P-spaces for the general operator Mq,,. In
order to simplify the statements of the results we start with a definition.

DEFINITION 2.3 It is said that an operator T is of restricted weak type (p, p) with respect to the
pair of weights (u, v) if there exists C > 0 such that

/ U< CA—P/ e @
{ITxel>2} R

for al A > 0and for al measurable sets E.

In the proofs of our results, we need the characterization of the weighted restricted weak type
inequalities for the one-sided Hardy—L ittlewood maximal operators M+ and M—, and for the two-
sided Hardy—Littlewood maximal operator M (see [4, Theorem 3 and Lemma 2.8; 6, Proposition
1] for M and [10, 11] for the corresponding results for M+ and M~ ). These characterizations are
collected in the next theorem.



AUTHOR PLEASE SUPPLY SHORT TITLE 5

THEOREM 2.4 Let1 < p < o0.

(i) The one-sided Hardy-Littlewood maximal operator M~ is of restricted weak type (p, p) with
respect to the pair of weights (u, v) if and only if (u, v) € RA, that is, there exists C > 0 such
that for all a < b < c and all measurable sets E,

c b
(/ u)lEﬂ(a,b)|p<C(c—a)p/ XEV.
b a

(ii) The one-sided Hardy-Littlewood maximal operator M~ is of restricted weak type (p, p) with
respect to the pair of weights (u, v) if and only if (u, v) € RA’g, that is, there exists C > 0 such
that for all a < b < c and all measurable sets E,

b c
</ u)|Eﬂ(b,c)|p<C(c—a)p/ XEV.
a b

(iii) The Hardy—Littlewood maximal operator M is of restricted weak type (p, p) with respect to the
pair of weights (u, v) if and only if (u, v) € RAp, that is, if there exists C such that for all a < b
and all measurable sets E,

b b
(/ u>|Em(a,b)|P<C(b—a)P/ YEV.
a a

Now we are ready to state our first result which characterizes the weighted restricted weak type
inequalities when ¢ (0+) < oo.
THEOREM 25 Let1 < p < 00,9 € FTand ¢(0+) < +oo.

(i) If h > 0, then M., , is of restricted weak type (p, p) with respect to the pairs of weights (u, v) if
and only if (u, v) € RAE.

(ii) If h < 0 and supp(¢) C (0O, [h[], then My, isof restricted weak type (p, p) with respect to the
pairs of weights (u, v) if and only if (u, v) € RAE;.

(iii) If h < 0 and supp(e) N (|h|, co) # B, then My, , is of restricted weak type (p, p) with respect
to the pairs of weights (u, v) if and only if (u, v) € RA,.

Now we state our main result, that is, without assuming that ¢ (0%) < oo.
THEOREM 2.6 Let1< p <oo,h e R\{0},0<y < |h|,8 € (0,1) and ¢ € £ ;.

(i) If h > 0, then My, is of restricted weak type (p, p) with respect to the pairs of weights (u, v)
if and only if (u,v) € RAp 4. that is, there exists C > O such that for all a < b < c and all
measurable sets E,

(f:“) (/abXE(y)w (%y) dy)p <c (C;_a)p/:XEU‘

(i) If h < 0 and supp(e) C (O, |h[], then My, is of restricted weak type (p, p) with respect to the
pairs of weights (u, v) if and only if (u, v) € RAg’W, that is, there exists C > 0 such that, for all
a < b < cand all measurable sets E,

(/abu> (/bcxeww (=) dy>p <c (?‘)p/;mu
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(iii) If h < 0 and supp(g) N (|h], 00) # @, then My, is of restricted weak type (p, p) with respect

to the pairs of weights (u, v) if and only if (u, v) € RA;;W, N RAp.

REMARK 2.7 \We observe that RA; and RA] are equal to RA, , ,, and Rﬂ?g’(p’y with ¢ = (0.1
and y = 1, respectively.

The proof of Theorems 2.5 and 2.6 will be given in section 3. The last section is dedicated to
the proof of the relations between the classes of weights for My, and thosefor M and M. The
results read as follows (we distinguish the caseswhen p > 1and p = 1).

PROPOSITION 2.8 Lety > 0,8 € (0,1) and p(1 — §) > 1. Assumethat ¢ € 5;3. Then

() RApq 5 C RAG,, C RAG,

i + A+ +
(i) RAG1-s) C RAG,, C RAG.

PROPOSITION 2.9 Lety > Oand ¢ € F*. Then
@) (u,v) € RALM ifand only if (u, v) € A7 and ¢(0+) < oo.

(i) (u,v) € RAT__ ifandonlyif (u, v) € A and p(0+) < oo.

Itis clear (see[14]) that, for the operator M., ,, the weak type (1, 1) inequality is equivalent to
the restricted one. Therefore, Proposition 2.9 together with Theorem 2.6 characterize the weighted
weak type (1, 1) inequality. In particular, ¢ (0+) < oo is necessary.

It isworth noticing that it is possible to state and prove the corresponding theorems for the class
F~ ={g:@(—Xx) € FT}. Thentheresultsfor ¢ € F = {p(X) = ¥ (X) + ¥ (—X) : ¥ € FT} can
be obtained. It follows that if ¢ € F and the support of ¢ is equal to R, then the class of weights
characterizing the (restricted) weak type (p, p) inequality is contained in (RAp) Ap. Therefore, it
isinteresting to characterize the weights w in the Muckenhoupt class (RAp) Ap such that (w, w) is
agood pair for the (restricted) wesk type (p, p) inequality for My, .

PROPOSITION 2.10 Let y > Oand ¢ € F'. Assumethat w belongsto Ap, 1 < p < oo, that is,
the pair (w, w) belong to Ap. The following statements are equivalent:
HweAy,,;
(i)weAf,
(iii) there exists C > 0 such that

b 1 / / b_ y b 1 /

/ w P ()P (b—y) dy < C/ w*P(y) dy
a —a a

foralla < b.
PROPOSITION 2.11 Let y > Oand ¢ € F*. Assume that w belongsto RAp, 1 < p < oo. The
following statements are equivalent:
(HweRAG,,;

. ~+ .
(i)we RAL,
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(i) there exists C > 0 such that

b b—y 1 b 1/p
/ Xe(Y)g (my) dy < Cllw™ X@b llp, 00w (/ XEw>
a a

for all a < b and any measurable subset E, where

1/p
”f”p’,oo;w :S.lpt </ w) .
t>0 {x:| f (x)|>t}

Propositions 2.10 and 2.11 together with Theorems 2.1 and 2.6 alow to describe the class of
functions ¢ for which My, , is of weak or restricted weak type (p, p) with respect to the L ebesgue
measure.

THEOREM 2.12 Leth e R\{0},0 <y < |h[,8 € (0,1) and ¢ € 5;5.

(i) My, isof weak type (p, p), 1 < p < oo, with respect to the Lebesgue measure if and only if
(pp/ isintegrable on (0, y) (or on any bounded interval (0, a)).

(i) My, is of restricted weak type (p, p), 1 < p < oo, with respect to the Lebesgue measure if
and only if there exists C > 0 such that fé p(s)ds < CtYPforallt e (0,y) (or forall t € (0, a),
a < 00).

We first note that the conditions on ¢ in Theorem 2.12 describe only the behaviour of ¢ near to
zero. Furthermore, thistheorem answers question (1) from theintroduction. Thefollowing corollary
provides examples of functions ¢ with adifferent behaviour near the left endpoint of the interval of
numbers p where My, is of weak type (p, p).

COROLLARY 213 Letp>1l. Let—1 <o <OandB € Rwithg > 0ifa = 0. Let n, y and § be
such that o (t) = t*(log 1/t) x0. (1) € & 5.

) If -1 <o <0andp > O, then My, is of weak type (p, p) with respect to the Lebesgue
measureif and only if p > 1/(1+ «) and it isnot of restricted weak type (p, p) for p < 1/(1+ «).
(i) If -1 <« < Oand B = 0O, then My, is of weak type (p, p) with respect to the Lebesgue
measureif and only if p > 1/(1+ «); itisfurther of restricted weak type (1/(1+ @), 1/(1+ «))and
it isnot of restricted weak type (p, p) for p < 1/(1+ ).

(i) If -1 <o < O0and B < «, then My, is of weak type (p, p) with respect to the Lebesgue
measureif and only if p > 1/(1+ «) and it isnot of restricted weak type (p, p) for p < 1/(1+ ).
(iVyIf -1 <o <Oanda < B < 0, then My, is of weak type (p, p) with respect to the Lebesgue
measure if and only if p > 1/(1 + «); itisfurther of restricted weak type (1/(1 + «), 1/(1 + «))
and it is not of restricted weak type (p, p) for p < 1/(1 + «).

To prove this corollary, we just have to check when the conditions in Theorem 2.12 are satisfied.

3. Proof of Theorems 2.5 and 2.6

Proof of Theorem 2.5. The proof of Theorem 2.5 is an immediate consequence of [2, Lemma 2.1]
and Theorem 2.4 stated in section 2. We reproduce here [2, Lemma 2.1].
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LEMMA 3.1 Let ¢ € FT and ¢(0+) < +oo. Let £ > 0 besuch that ¢(¢) > 0. There exist positive
constants C; and C» such that the following hold.

(i) 1fh > 0, N
C1p(ORM™ £ () < Mayy T () < (¢(0>h+ [ go) M~ ().
(i) If h < 0 and supp(¢) C (O, |h|], 0
Cop(O)INIM* £ (X) < Mgy £ () < 9@ 1M+ £ (x).
(iii) If h < 0, supp(e) N (Jh], 00) # B and £ > |h|

20y min{|h|, £ + h}MF (X) < My, f(X) < 2<¢(O)Ih| +/ (p) M (x).
hi

Proof of Theorem 2.6. The proof of Theorem 2.6 follows the lines of that of Theorem 2.1 (see [2,
proofs of Theorems 1.6, 1.7 and 1.8]). We shall give only the proof of (i) because the proofs of (ii)
and (iii) can be obtained in the same way (following [2, proofs of Theorems 1.6, 1.7 and 1.8]).

Asin[2], wewriteg = ¢ x(0.y1+¢X(y.00)- Thenif wedefine My h, := Mz, (pxq,) ad Mg h0o 1=
Man(x(.0) WE gt the following inequalities:
maX{Mq),h,ya M(p,h,oo} < Mrh(p < sz,h,y + M(p,h,oo- (3)

Therefore, My, , satisfies (2) if and only if (2) holds for My, 1, and My, h oo. The study of My h
is completely analogous to that of M., with ¢(04) < oo. The difficult part is concentrated in the
local operator My b .

To prove (i) in Theorem 2.6, we start studying the local part M n,,,. More precisely, we shall
prove the following theorem.

THEOREM 32 Let1 < p<o00o,h > 0,0 <y < h,§ € (0,)) and ¢ € 5 . The following
statements are equivalent:

(@) My,n,, isof restricted weak type (p, p) with respect to the pairs of weights (u, v);
(b) (u,v) e RA,, ,

Proof. Noticethatif 8 = (h+y)/h > 1, then M‘p h,y Can bewritten as

—hR-—
Moy f (X) = R/ 1 ()le ( y) dy.
R>0 x—BhR

Asin [2], we define the following non-centred version of My p,
b
Y b—y
Ng,hy f(X) = sup —/ If(y)l<p(—y> dy,
oy (abjedy P—2aJa b—-a

where Ax = {(a,b) : b < xandb —a > y(x — b)/h}. In[2, Proposition 3.2] it was proved that
forg e E}jf there exists C > 0 such that

Mg.h,y FOO < Ng,hy £(X) < CMg h,y f(X). (4)
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Therefore, (a) is equivalent to the same inequality involving Ny n., .
(@ = (b). Leta<b<cand f = xenean)- First, assumethatb —a > y(c—b)/h. Sincete(t)
isincreasing, we have, for al x € (b, ¢),

b
14 b—y
N f > — —
p,h,y (x) b— a/a XY (b—ay> dy

b
14 b—y
> —y ) dy=1.
C_a/a XE(y)<p<C_a7/> y

Assumenow thatb —a < y(c —b)/handleta < abesuchthatb —a = y(c—a)/h. For all
x € (b, c), weaobtain

b b
Y b-vy h b—y
> — —_— = — _—
Nw,h,yf(x)/b_a/a XE(W‘P(b_aV) dy C_a/a XE(Y)§0<C_ah) dy
b
Y b—y
> =
C_a/a XE(Y)<P<C_a7/>

Applying (a) with N, 1, ,, we have, in both cases,

([) ([ reme (22Lr) o) < (S2) [Mrew

(b) = (a). In order to prove this implication we need the following proposition.

PROPOSITION33 Let1 < p<oo,h>0,0<y <h,d e (0,)andy € 6;5. Assume that
(uv) e RAG, - Then, there exists C > 0 such that for every measurable set E

1/p

No.ny xe00 < C [My (xevu™) 0o

Before proving the proposition, we give the proof of (b) = (a). By inequality (4) and the
proposition we have

[ e[ e
(Mg xE>) (Ng.ny xE>) Mg (xevu1)>(%))

Now (&) follows from these inequalities and the fact that M, is of weak type (1,1) with respect to
the measure u(x)dx.

Proof of Proposition 3.3. Letx € Rand (a, b) € Ax. First, let usassumethat 4 ;' u > [ u. Since

(u,v) € RAE«/:,V' we have

b b— X —a b 1/p x N\ —-1/p
/XE(V)‘P( yV) dy<C (/ xEv> (/ u)
a b—a 14 a b
_ X 1/p x N\ —L/p
(e[
Y a a
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Now, (a,b) € Ay impliesthat x —a=x—-b+b—-a < h(b—a)Jr(b—a) h;jy(b—a).
Therefore

/:XE(y)w(E ! )dy<CbTa‘(VTM[Mu(xevu Yoo p>.

Now, assume that 4fg( u< f;‘ u. Let {x} bethe increasing sequence in [a, x] defined by xg = a

and
/X Xit1 1 X
u =/ u= —/ u
X1 Xi 2 Xi

Let N besuchthat xy < b < Xn41 (Observethat N > 2). Then we have

Xi+1 b
/XE(Y)‘P<—V) y—Zf dy+/ cedy=1+11.
a XN-1

We first estimate | | . By RA;
X X
Sxny U< 4 [y u, we get

b b—y
X </ YE®) ( )d
- EWe{ =37 )
x—a [P b—y
< — —9yd
X Xn_1 /XNl)(E(y)(ﬂ(X_XN_lV) y
. b 1/p x \ —1/p
<2 () (L)
14 XN-1 b

X —a X 1/p X -1/p
<2 (=) (/)

14 XN_1 XN-1

b— h v
e (5o by

Now we shall estimate |. Notice that for each i, 0 < i < N — 2, there exists g =
UxXjy1—b)/U —-1) where U = (b—a)/(Xi+1— %) > 1 suchthat g € [x,X+1] and
b-y/b-—2a) > X+1—Y)/X+1— %) ifandonlyif y > qgi. Wecanthuswrite

Xi+1 b—y Qi Xi+1
/ XE(Y)‘P<—V>dy:/ --‘dy+/ coody=1114+1V.
X b-a X G

p.0.y» the monotonicity of ¢ and te(t) on (0, y], and the inequality
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p.¢,y

Xj+1 . _ Xi+1
IV</ mw(M )dy</ - dy
Gi Xi

Since ¢ isdecreasing, the hypothesis (u, v) € RA and the definition of the sequence {x; } give

14
Xi+1 — X

X; — X Xi4+1 1/p Xi42 _1/p
<C i+2 i </ XEU) (/ u)
14 Xi Xit1
Xi 19 — Xi X 1/p X \ —1/p
<C i+2 i (/ XEU) (/ u)
V Xi Xi
Xi+2 — Xi 1/p
clir2= A [Mu‘ (XEvu—l) (x)] .
14

Toestimate | I 1, weshal usethat (b — y)/(b—a) < (Xi+1 — Y)/(Xi+1 — Xj) ifandonly if y < g
and the fact that t®p(t) isincreasing in (0, y]. Then

_ [ b—y 4 Xit1— Y
[l _/Xi XE(Y)¢ (my> 0|y</Xi Xe(Y)¢ <my> g(y) dy,

b—y\ 7 (Xis1—-y)’
where g(y) = (b a) <x-+1 x-> . Since g isdecreasing in (x;, g;), we have
- | |

b — X 3 i Xi+1—Y
I < ————=y | dy.
(b—a) /xi XE(y)(p<Xi+l—Xi y) Y
Using the same argument as in the boundedness of 1V and the increasingness of (b — y) % we get
that

N

I <cC (t;__z)é Xi+2y— Xi [MJ ()(Evuﬂ) (X)]l/p

(LG o)l ey ] ™

Now, summing over i, we get
b—a2-3$ 1/p
l<2c 2270 [Mu‘ (XEvu_l) (x)] .

Finally, putting together the estimates of | and | |, we are done.

As a consequence of Theorem 2.5 we get the following characterization of the restricted weak
typeinequalities for My h oo.

THEOREM 3.4 Letp € Ft,h > 0and 0 < y < h. Then My h « is of restricted weak type (p, p)
with respect to the pairs of weights (u, v) if and only if (u, v) € RA}.

Proof. Lety = 17—y, (¢X(y,00))- Itisclearthat v € 1 and th(¢x(y,00)) = Th+y (¥). Then My h oo
is equal to the operator M, . Therefore, sinceh +y > 0and ¥ (0+) = ¢(y) < +o0, applying
Theorem 2.5 (i) we are done.

Isthisreferring
to anintegral?
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Proof of Theorem 2.6(i). If (2) holds, then the same estimate is true for My, and, by Theorem
32, (uv) e RA;, .

Conversely, by (3), we only have to show that My, 1, , and My, 1 o satisfy (2). First, by Theorem
3.2, (u,v) € RAY  impliesthat M, 1, , satisfies (2). On the other hand, since ¢ is decreasing, we

p.¢.y
have
b p b b— y p
(co(y)/ XE) < </ Xe(Y)o <—V> dy) ,
whence RA, , ., C RA,. Now, Theorem 3.4 gives that M, n,oo is Of restricted weak type (p, p)

with respect to the pair (u, v).

4. Proofs of Propositions 2.8, 2.9, 2.10 and 2.11, Theorem 2.12 and Corollary 2.13

Proof of Proposition 2.8(i). We only prove the first inclusion in (i) as the second was already
established in the proof of Theorem 2.6. Let a < b < ¢, let E be a measurable set and
E' = EN(a, b). Theintegral

b b—y b—y
/a XE(y)¢<C_ay) dy=/E,¢<C_ay> dy

is not greater than the integral

b b— c—a [UEl/(c-ayy
/ @ ( yy) dy = —/ @(s) ds,
b—|E/| c—a vy Jo

since the measure of E’ is equal to the measure of the interval (b — |E’|, b) and the function y —

b—
%) ( yy) isincreasing in (a, b). Thisremark and the fact that ¢ € 6;3 gives

c—a
b b—y b b—y
=LAl E=2L
/a}(Ey(P c—a’) Vs ) e flczar)

c—a [UEl/ECc-ay
= @(s)ds
14 0

c—a (IE'|/(c—a))y _
< —w(y)y‘sf s’ ds
14 0

S
_ ey’ <C—a> E/L,
y

1-36
Raising the last inequality to the pth power and multiplying by ftf u we get that

¢ b b—y P ¢ o)y’ Prc—a\P 7 p(1—8)
(o) (e (=2 o) < (o) (525) (5°) e

If the pair (u, v) belong to RAg(l_é) the last term is dominated by

C <¢(y),,a>9 (C— a) e (C— a) pA~2) /b
UXE1
1-6 Y Y a

and consequently (u, v) € RA, , ...
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Proof of Proposition 2.8(ii). We shall begin by proving the second inclusion. Assumethat (u, v) €

RA}

c
Py Leta < b < cand let E be a measurable set. Since the functiony — ¢ <—yy>

isincreasing in [a, ¢) it follows that ¢(y) < ¢ (%y) foraly e (b,c). Using that (u, v) €

RAY

Doy we have

b c p b c c—y p
<f u) (/ XE(Y)dy) (W()P < (/ u) (/ XEWY (—y) dy)
a b a b c—a
_ p rc
ol [
Y b
Therefore (u, v) € RA+

We prove now theﬂrst inclusionin 2.8 (ii). Assumethat (u, v) € RAIO(1 5" Leta<b<c,let

c
E be ameasurable set and E’ = E N (b, ¢). Sincethe functiony — ¢ <—yy> isincreasing in

(b, ¢), the measure of E’ isequal to the measure of theinterval (c — |E’|, ¢) and we obtain
¢ c—y c—y
——y ) dy= —y]d
ft)XE(y)so(C_ay) y /E/¢<C_ay> y
c cC— c—a (|E/|/(C_a))y
</ <p< yV) dy = f @(s) ds.
c—|E/| c—a v Jo

Thisinequality and the fact that ¢ € £ ; gives

c . (E'/(c—a)y
/XE(Y)‘P( Y ) y< S w(y)y‘s/ s ds
b c—a Y

zwl(y)J; < - > /|,
- %

Raising the last inequality to the pth power, multiplying by fa u and using that (u, v) € RAp(1 5)
we get that

b c c—y p b (p()/))/a p c—a ps ) 5
(o) ([ e (G=3r) o) < ([o)(925) (55°) e
S\NP /o a\PS s~ A\ P8 o\ P
<C (w(y)y ) (c a) (c a) /CUXE e <u> /CUXE.
1-6 Y Y b Y b

Therefore (u, v) € RAW "

Proof of Proposition 2.9. We only prove (i). Let (u, v) € RA‘w e .Givenne N, let Ep = {v < n}
and vy = vxg,. Leta < b < ¢, where b is a Lebesgue point of XE, and vy for al n € N. Now,
applying the condition RA*’(N with E = Ej, we get

(el ([ (G=2r) ) < [
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Since ¢ is decreasing,

1 fcu b—a 1 /b cc b /b
c—aly JP\c=a’)b=al, *B) S~ pa ), "™
Onletting a 1 b, we have

1 C
<—C b /b U) @(04+) xg, (b) < Cun(b).

Finally, on letting n — oo, we abtain

1 C
<m/b U) ¢(0+) < Cu(b)

for almost every b € R, and we are done.
Conversely, if (u,v) € A} and ¢(0+) < oo then, by Theorem 2.2, My, with h > Ois of weak
type (1, 1) with respect to (u, v) and thereforeis of restricted weak type (1, 1) with respect to (u, v),

or equivaently (u, v) € RAI’W.

Proof of Proposition 2.10. (i) = (iii). Let a < b and choose ¢ such that b = %(a +c¢). Asg is

decreasing, w isin A, , ., and by the Holder inequality we have

c 1/p b - o b—y 1/p
- e d
([ o) (Lo (=) o)
c \lp / rb b— 1/p’
_n / Yy
< 1-p Py =7 d
([ o) (Lo (3=3r) o)

_ _ c \Vp/ pc AP

gcuzcc_b<9</ w) </ wlD) .
14 14 Y b b

b . (b— c (¢ .
/ wiP (y)pP (b—yy> dy < —/ wiP.
a —a Y Jb

Aswisin Ap we havethat w!~P € Ay and then w!~P isadoubling weight. Consequently,

C / b /
/ wli =P <C/ wi P,
b a

Putting together the last two inequalities we obtain (iii).

Therefore

(iii) = (i). Leta < b < ¢. We have to show that

c \1/p b ’ ’ _ /e _
([ (oo (2o 2
b a C—a 14
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Letustakea <aandC > csuchthatb= (a+C)/2andC — a < 2(c — a). Since ¢ is decreasing,
td¢(t) isincreasing in (0, y], and the fact that (iii) holds together with w € Ap gives

c \NV/p / b ) /b— /e
(o) (Lo (G2 )
¢ \VpP , b b— 1/p’
-0 (o P y
“(fe) (oo (G )
¢ \Y/p b _ /9
2(f o) (oo (5= )
b a b—a

c \lUp b ) 1/p c
<C</ w) (/ wl_p()/)dy> <C(C-a < —(c—a.
b a 14

(ii) = (iii). Leta < bandleta < a besuchthata = %(a+ b). As ¢ isdecreasing and w isin
At

.o,y
a \1lp b b— 1/p
w w= P (y) p/< y )d )
</a ) (/a e \b=a”) ¥
a \Vp/ rb ) /b e
<( _ w) (/ w' P (y)pP <b YV) dY)
a a
< Cb;a < E(Q—a)
14 14
C a 1/p a 1/p
(L) ([ o)
14 a a
Therefore

b / / b—y a /
f wl P (y)pP (—y) dy < C/ w'™P (y) dy.
a b-a a

Now (iii) follows from the fact that w'~P' is a doubling weight because w~P € Ay.

(iii) = (ii). Leta < b < c. We have to show that

b \l/p c ' ) _ 1/p _
(L) (oo (Er) o) <58
a b c—a 14

Letustakea < aandb < bsuchthatb = (a+c)/2andc — a < 2(c — a). Asw isadoubling
weight (because w € Ap) we have that
b b
/ w <C/ w.
a a
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Therefore

(L) (om0 )
T ol

Since ¢ is decreasing, t?¢(t) isincreasing in (0, y), the fact that (iii) holds together with w e Ap
givesthat the last term is dominated by

b \YP/ rc e (S 1/p
C(/a o) (o (3 o)
5 o\Wp c , ooy 1p
<2C (/ w) (/ w! P (y)pP <—V> dy)
a b c—b
b \YP e | e C
<C(/ w) <f wl_p(y)dy> <Cc-a< -(c-a.
a b 14

Putting together al the inequalities, we obtain (ii).

Proof of Proposition 2.11. (i) = (iii). Let a < b and choose ¢ such that b = %(a +0). Asg is

decreasing, w isin RA , ., and by the Holder inequality in L (p, ¢) spaces we have

(o) ([ e (=) ) (/ o) ([ rewe (=) )
e el e
<c</a ww 1) /aXEw<C(/ )nw x<ab>||poow/a xew.

Asw isin RAp we have that w is adoubling weight. Therefore

b c
/wéC/ w.
a b

Putting together the inequalities we obtain

c b b—y p c N o b
(/ w) (/ XE(Y)§0<b—V> dy) <C(/ w) 0 a1 e [ 20
b a —a b 7 Ja

Now it isclear that (iii) follows from the last inequality.

(iii) = (i). The proof is similar to that of (iii) = (i) in Proposition 2.10, but (see [6]) it uses the
equivalence of RA, to the existence of aC such that

c 1/p 1
(/b w) lw™ Xm0l pro0;w < C(C—b)

for thewholeinterval (b, ¢).
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Leta < b < ¢c. We have to show that

() (e (=) ) <2 (552) e

Letustakeda < aandC > csuchthatb = (a+C)/2and € — & < 2(c — a). Since ¢ is decreasing,
t%p(t) isincreasing in (0, y), the fact that (iii) holds together with w € RA,; gives

([ ) ([ e (2=2r) av)
g b b—y P
<</b w)(/a XE(y)ﬁl’(C_aV) dy)

s c ( b b—y ) p
<2 (/b w) /g\XE(W@(b_aV dy)
¢ b
<C</ w) IIw_l)((a,b)llg/,oo;wf XEW
b a

b _ P b
<C(C—é)p/ XEw<C<u> / XEW.
a Y a

(if) = (iii). Leta < band let 8 be such that a = %(a+ b). Asg isdecreasing, w isin RA’g(ﬂ y
by the Holder inequality in L (p, ) spaces we have

a b b— p
(/ w) (f Xe(Y)o <—b_yy) dy)
a a
b— p
(/ )( wa( Y )dy)
a a
_ p rb
o3 [ o5 e
Y a
C b B b
<ﬁ</a w) lw 1X(a,b)||g/,oo;w/; XEW.

Asw isin RAp we have that w is adoubling weight. Therefore

b a
waC/w
a a

Putting together the last inequalities we obtain

a b b—y p C a 1 0 b
(/a w) (/a m(y)w(my) dy) <ﬁ(/a w) o x<a,b>||p,,oo;w/a wXE.

Now (iii) follows from thisinequality.
(iii) = (ii). Leta < b < c. We have to show that

(/abw> ([ rewe (=) dy>p<C<C;a)pLCwXE

for any measurable set E. We may assumethat E C (b, c).

and
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Letustakea < aandb < bsuchthatb = (a+c)/2andc— a < 2(c — a). Asw isadoubling
weight (because w € RA) we have that

b b
/ w < C/ w.
a a
Therefore

() ([ ree(2=2) )" <o o) ([ o (22r) )

Since ¢ isdecreasing, t(t) isincreasing in (0, y), the fact that (iii) holds together with w € RAp
gives that the last term is dominated by

6 (o3 C_y p
C(/a w)(fb XE(y)(/’(C_aJ/> dy)
5 b c c—y p
<2°C /w (/ XE(y)<p<—-V) dy>
a b c—b
b . o c
)t ([
C
<C(C—<’5\)p<ﬁ XEw>
b
_ p rc _ p rc
<C<u) /XEU):C(Q> /XEw,
14 b Y b

where in the last inequality we have used that E C (b, ¢). Putting together all the inequalities, we
obtain (ii).

Proof of Theorem 2.12. By Theorem 2.1 and Proposition 2.10, M, is of weak type (p, p) with
respect to the Lebesgue measure if and only if there exists C such that

b /b-y
P{—=y)dy<C(b-
faso (b_ay) y<Cb-a

for all a < b. By achange of variables, thisis equivalent to the fact that o isintegrable on (0, y).
In order to prove (ii), we use Proposition 2.11 and Theorem 2.6 to obtain that M, ,, is of restricted
weak type (p, p), with respect to the Lebesgue measure if and only if there exists C such that

/ ¢ (ﬂy> dy < C(b—a)Y?|E|M/P
E b—a

for all a < b and any subset E C (a, b). Since ¢ is decreasing, the above inequality holds for all E
if and only if it holds for any interval (b — s, b) C (a, b), that is, if and only if there exists C such

thet (s/(b—a)) b

b-— —ay b— /

a/ ¢=/ w(—yy) dy < C(b—a/Pst/P
y Jo bs \b—a

foralse (0,b—a). Settingt = ﬁy,wearedone.
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Proof of Corollary 2.13. The existence of 5, y and § iseasily verified by differentiating ¢.
We only prove (i). We observe that the limit

t
im fo‘p — lim @(t)

t—0t+ t/p - t—0t+ t@/p-1 =te [O’ o0]

isfiniteif and only if p > 1/(1 4 «). It follows from Theorem 2.12 (ii) that M, ,, is of restricted
weak type (p, p) ifandonly if p > 1/(1 + ).

On the other hand, M, is of weak type (p, p) if p > 1/(1 4+ «). Infact, if we choosee > O
such that « — ¢ > —1/p/, then ¢P'isintegrable on (0, y) since ¢(s) < Cs*~¢f for small s. By
Theorem 2.12 (i), M4, is of weak type (p, p).
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