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Abstract

We consider a maximal operator defined Rt which is related to the Cesaro continuity of
functions. We characterize the weightsfor which the maximal operator is of weak type, strong
type and restricted weak tyge, p) with respect to the measure(x) dx.

0 2003 Elsevier Inc. All rights reserved.

1. Introduction

The Lebesgue’s differentiation theorem in the real line establishes tifat iLﬁ)c(R)
then

/ /() = F()|dy =0 (1.1)

1(x,R)

lim ——
R—0* |1 (x, R)|

for almost everyx, wherel(x, R) = [x — R, x + R]. We can interpret the above limit
as CesarqC, 1) continuity of f atx (see [3]). In general, fo&x > —1, we say thatf is
(C, 1+ «) continuous ak if
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/ |f () — f]d(y,d1(x, R))*dy =0,

I(x,R)

Iim ———
R—0+ |I (x, R)|1te

whered (x, R) is the border of (x, R), i.e., the sefx — R, x + R} andd(y, 1 (x, R)) =
min{x + R—y,y— (x — R)}.

In dimension greater than one, a version of the Lebesgue’s differentiation theorem con-
sists of replacing in (1.1) the intervalgx, R) by the cube®)(x, R) =[x — R, x + R]".
Following this idea we say thgt:R" — R is (C, 1 + «) continuous ak, « > —1, if

/ |f) = f@)]d(y,00(x, R)*dy =0, (1.2)
0(x,R)

im ———————
R0t [0, R/

whered(y, 0 Q(x, R)) = minyg;<n {xi + R —yi, yi — (x; — R)} is the distance in the infinity
norm fromy to the border ofQ(x, R). It is easy to see that th€, 1 + «) continuity of f
atx implies the(C, 1+ 8) continuity of f atx forall 8 > « > —1.

In order to study the above limit, it is natural to consider the following maximal opera-
tor:

1 e
My f(x)= EUEW / lfO|d(y, 900, R)*dy, a>-1
- 0(x.R)

It follows from the results in [3] thatM,, « > —1, is of restricted weak type
(1/1+ @), 1/(1 + «)) and, consequently, it is of strong type, p) for p > 1/(1 + «).
In this paper we are interested in the characterization of the weiglstsch thatM,, are
of weak, strong and restricted weak tyqe p) with respect taw. If o > 0, the operator
M, is pointwise equivalent to the Hardy—Littlewood maximal operator. For that reason we
shall only consider negative valuescaafWe remark that the boundedness with weights for
the operatoM,, in one dimension can be obtained from the corresponding results for the
one sided versions studied in [4] (see also [2]).

Throughout this paper will be a number such that1 < o < 0 and cube means a cube
with sides parallel to the axis. Byd| andw(A) we denote the Lebesgue measuredof
and the integrayA w(s) ds, respectively. If 1< p < oo then p’ will denote its conjugate

exponent, i.e., ip+1/p’ = 1. By o we denote the functiom~”". The letterC will mean
a positive constant not necessarily the same at each occurrencecanfwe shall write

-x:(xla"'axl‘l)'

2. Weighted weak type inequalities

The first result of the paper characterizes the weighted weak type inequaliti&s, for
by means of a Muckenhoupt type condition.

Theorem 2.1. Let w be a nonnegative measurable function®h and let—1 <« < 0.
If 1 < p < oo then the following are equivalent
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(i) M, is of weak typ&p, p) with respect tav(x)dx, i.e., there exist€ such that

w(idtaf > 1) <7 [ 1f17w

forall A >0andall f € L?(w).
(i) w satisfiesA, o, i.e., there exist€ such that for any cub@,

1/p'

1/p
(fw) (fa(y)d(yﬁQ)“‘“dy) <clore/n,

Q Q

Remark 2.2. Observe that ifw satisfiesA,, then w is in the Muckenhouptd, =
Ap o class. Therefore, the weights i, , are doubling weights. On the other hand, if
—1l<a<0Oandp(l+ «) > 1 then the Muckenhoupt clags,(1+«) is contained in4 , o
(the proof is similar to the one of Proposition 6.1 in [1]).

In order to prove the theorem we introduce 2oncentred maximal operators, which
are pointwise bounded by the operatdfs. Givenz e R", R > 0 andi € {1, ...,n} we
define the maximal operators

N_. = su I F—(zi — R))%d
wi () \SUP ot |fO)|(vi — @i — R))“ dy
Vi(z,R)
and
NT. = su i+ R —y)%dy,
i fX) xev,(me”*“ /If(y)|(zl+ yi)*dy
Ui (z,R)
where
Ui(z, R) =Ki(z, ) N {y: yi 2z}, Vi(z, B) =Ki(z, R)N{y: yi <z}
and

Ki(z. R ={ye Q@ R): ly; —zjI<lyi—zl. j=1....n}.
Notice that the kernels iNafl.f(x) andNLf(x) are equal tal(y, 9 Q(x, R))“.
Proposition 2.3. Let —1 < « < 0. There exists a positive constafitdepending only on
andn such that

Neif (@) SCMof(x) and N, f() < CMaf(x)
foralli =1,...,n and all measurable functiof.

Proof. We shall only prove that, ; f(x) < CM, f (x) because the other inequality fol-

lows in a similar way. Givery e R* andR > 0, letx € U;(z, R) andS =R + x; — z;.
Clearly R < S < 2R. It is easy to see thaV¥;(z, R) C Vi(x,S) andy;, — (z; — R) =
d(y,00Q(x, S)) forall y € V;(z, R). Then we get that
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1 o o
P lfD)|(i— @i —R) dy= Rt | f]d(y,90(x, )" dy
Vi(z,R) Vi(z,R)
< Sora |fd(y, 00(x, $))" dy < CMq f (x).

0(x,9)
Taking supremum o® > 0 we are done. O

The following lemma shows necessary conditions on the waeigldr the operators
Ny andNojf,. to be of weak typép, p) with respect taw.

Lemma 2.4. Let w be a nonnegative measurable function &b, let —1 < « < 0 and
1 < p < 0. The following statements hold for alE {1, ..., n}:

i) If N . isof weaktypép, p) with respecttav(x)dx,thenw € A~ ., i.e., there exists
() If N, yp&p, p p P
C such that for allz € R* andR > 0,

1/p'

1/p )
( / w) (/U(y)(Yi—(Zi—R))ap> < CR"™™.

Ui(z,R) Vi(z,R)

(i) If N;f,. is of weak typép, p) with respect tav(x) dx, thenw € A;j_a,i, i.e., there exists
C such that for all; € R andR > 0, '

1/p

1/p
(/w) ( / (r(y)(zi+R—y,-)°‘p/> < CR™Y,

Vi(z,R) Ui(z,R)

Proof. We only prove (i) since (ii) is similar. Let € R* and R > 0. If we consider for
everyn € N the function

£ = () +1/n)7 [min{(yi — @ — B)*.n}]” kv ).
then for allx € U;(z, R),

1
Rn—i—oz

Noif(x) 2 / FO i = @ = R) dy=h.

Vi(z,R)

This means thal/; (z, R) C {Ny.:f =4} Then (i) follows by a standard argument, that is,
applying the weak type inequality fo¥, ; and lettingn tend to infinity. O

Before proving Theorem 2.1 we need the following lemma.

Lemma 2.5. Let w be a nonnegative measurable function®hand let—1 < a < 0. If
1 < p < oo then the following statements are equivalent
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(i) w satisfiesA, 4.
(”) weﬂ 1(ApalmA;_0!l)

Proof. Givenz e R" andR > 0, letQ = Q(z, R), U; = U;(z, R) andV; = V;(z, R).
(i) = (ii) Notice that
/ o0y = Gi = B)Y dy = / o (d(y, 80)*" dy < / o (Md(y,80)* dy.
Vi V; 0
Then itis easy to see thate A, o implies thatw € A, .. With a similar argument we

obtain thatd , o C Ap
(i) = (i) By (ii) we get that

w(Up) < Cw(Vy) and w(Vy) < Cw(Ui). (2.1)

On the other hand, by making the dyadic partition of the c@bee obtain 2 cubesQ;.
If we apply the above inequalities to the culg@s we get that

w(Q) < Cw(U;) and w(Q)<Cw(V)) (2.2)
foralli =1,...,n. Now, since

f o(d(y. 0)° dy
o
—Zfa(w — (@i - R)" dy+2fo(y>(z,+R ) dy,
i= lV i= lU
the inequalities in (2.2) and € ('_,(A, ; NAS ) implythatwe A, 4. O

p.a,i p.a,i

Proof of Theorem 2.1. Implication (i) = (ii) follows directly from Proposition 2.3, Lem-
mas 2.4 and 2.5.

(ii) = (i) Givenx € R" andR > 0, let Q0 = Q(x, R) be any cube with centre. By the
Holder inequality and thd ,, , condition we obtain

1/p
/|f(>’)|d(y 0)*dy < (/Ifl”w) (/a(y)d(y,Q)“”/ds)

0
-1/p
(fm”) (/w) |Q|tre/n,
Therefore,

Ma f(x) < C[Mu(1£17)]"7 ),

where

1
ng(x)_ig[w(g(x v | 'g'“’}'
O, R)

1/p
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Now (i) follows from the above inequality and the well-known fact thett, is of weak
type (1, 1) with respect tav(x) dx. O

3. Weighted strong type inequalities
The strong typép, p) for the operatol,, is characterized also by, ..

Theorem 3.1. Let—1 <o <0andl < p < co. Letw be a nonnegative measurable func-
tion onRR". The following statements are equivalent

(i) M, is of strong typ€ p, p) with respect taw, i.e., there exist§’ such that

/|Maf|"w < c/ 17w

forall f e LP(w).
(i) w satisfiesA , 4.

In order to prove the theorem we need to give a suitable characterization of the con-
dition A, . This characterization appears in Proposition 3.3 and it is given in terms of
the Muckenhoup# , condition with respect to a general Borel measure (see [5]). First we
state the definition and then the proposition.

Definition 3.2. If u is a Borel measure finite on compact sets, it is said that a nonnegative
measurable function satisfiesA (1), 1 < p < oo, if there exists a positive constat
such that

1/p 1/p
(/wdu) (/wlp’du> <Cr(Q)

0 0
for all cubesQ.

Proposition 3.3. Let —1 <o <0 and1 < p < co. Let w be a nonnegative measurable
function. The following statements are equivalent

(a) w satisfiesd , 4.
(b) There exist€ such that for any cub@ with centre inx and alli =1, ..., n,

1/p

1/p
(f w) (fa(y>|x,~ — i dy) <CloFtem,

0 0

(c) Foralli =1,...,n, the functionsy — w(y)|h — y;|~* satisfyA ,(un,;) with a con-
stant independent df € R whereduy ; = |h — yi|*dy, i.e., there exist€ such that
foranycubeQ,allheRandalli =1,...,n,



A.L. Bernardis, F.J. Martin-Reyes / J. Math. Anal. Appl. 288 (2003) 69-77 75

1/p'

1/p
(fw) (fa(ynh—y,w“”dy) <c/|h—y,~|“dy.

0 0 0

As a corollary of Proposition 3.3, we get that the claségg are left open.

Corollary 34. Let -1 <a < 0,1 < p < 00, and letw be a nonnegative measurable
function onR". If w satisfiesA, , then there exists > 0, 0 < € < p — 1, such thatw
satisfiesA ,_¢ «.

Itis clear that Theorem 3.1 follows from this corollary, Theorem 2.1 and Marcinkiewicz
interpolation theorem. Therefore, the proof of Theorem 3.1 will be complete as soon as we
prove Proposition 3.3 and Corollary 3.4.

Proof of Proposition 3.3. Givenx € R" andR > 0, Q will denote the cub&® = Q(x, R).
Foreveryi, 1 <i < n, lete; be the point ofR” with all the coordinates equal to zero except
theith coordinate which is equal to 1.

(a) = (b). For fixedi, 1< i < n, let us defineQ = Q(%,2R) and 0 = Q(%, 2R),
wherex = x — 2Re; andx = x + 2Re;. Itis clear that the sdty € Q: y; < x;} is contained
in U; (%, 2R) and the sefy € Q: y; > x;} is contained inV;(x, 2R). On the other hand,
Ixi — yil =d(y,00Q) forall y € U; (%, 2R) and|x; — y;| =d(y, d0) forall y € V;(x, 2R).
Then,

/ o ()lxi — yil* dy
0

< [ oonv00” ar [ owi.007 a.
Ui (%,2R) Vi(x,2R)
Now (b) follows by using thatv is a doubling weight and the conditions;)a’i andA;W.
(see Lemma 2.5).

(b) = (c) Letusfixi € {1,...,n}. Assume first thatx; — 1| < R. For fixedi, 1<i <n,
let 0 = Q(x, 2R), wherex = x + (h — x;)e;. Then

/“(y)lh — il dy < /O(y)lii —yil*"dy.
€ 0
Now (c) follows from this inequality, (b) and the fact tha@|*+*/" < CfQ Ih — yi|* dy.
Now, we shall assume that; — | > R. If h > x; + R (the other case is similar) then

f olh— il dy = f o ()i + R =y gy dy,
0 0
where
h —yi

Ry B
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Sinceg is an increasing function we get that

(h—(xi = R))

h— |9 dy <
/U(y)l il y( oR
0

ap’ ,
) /G(y)(xi+R—yi)°"’ dy.
0

Hence, by using the first part of the proof with= x; + R, we get that

1/p 1/p'
(/w) (/a(ynh—m“"’) <CR”(h—(x,-—R))“<c/|h—yi|“dy.
0

0 0
(c) = (a) The implication follows from the following inequalities:

f o(d(y,d0) dy
0

=Y /cr(y)(yi - (x; —R))“p/derZ/cr(y)(xi +R = y)™ dy

i=1 Vi i:lUi

n n
<> /cr(y)lyi—(xi—R)\ap dy +y /G(y)lxi+R—in“” dy,
i=1 0 i=1 0
by using (c) withh =x; — Randh=x; + R. O

Proof of Corollary 3.4. We know by Proposition 3.3 thab(y)|h — y;|™* satisfies
Ap(up,i) with an A, (us,i)-constant independent of Furthermore, the measurgs; are
doubling measures with the same doubling constant. Then (see [5, p. 5]) there exi3ts
depending only on thd , (i, ;)-constant such thab(y)|h — y;| ™ satisfiesA ,_c(un,i),
where theA ,_ (us,;)-constant depends only on ti¥g, (.4, ;)-constant and. Applying
again Proposition 3.3 we obtain thatsatisfiesA ,_. . O

4. Restricted weak typeinequalities

As we said above, the operattf, is not of weak typel/(1+ «), 1/(1+ «)) with re-
spect to Lebesgue measureik 0 but it is of restricted weak typd /(1 + «), 1/(1+ «));
in other words M, satisfies the weak type/(1+ «), 1/(1 + «)) inequality for charac-
teristic functions or, equivalenti, maps the Lorentz spade(1/(1+ «), 1)(dx) into
the Lorentz spacé (1/(1+ «), co)(dx). Therefore, it is interesting to study the weights
w such thatw({x: My xg(x) > A}) < CA~Pw(E) for all » > 0 and all measurable sets
E CR".

Theorem 4.1. Let w be a nonnegative measurable function®h and let—1 <« < 0.
If 1< p < oo then the following are equivalent

(i) M, is of restricted weak typép, p) with respect taw(x) dx, i.e., there exist€ such
thatw({x: My xe(x)>1}) < CA Pw(E) forall A > 0and all measurablé C R”.
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(i) w satisfiesRA o, i.e., there exist€ such that for every cub@ and all measurable
E CR",
p

/w /d(y,aQ)“dy < Clo|mter / w.
o ENQ ENQ

The proof of the theorem is similar to the proof of Theorem 2.1 and we omit it.
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