
Journal of Artificial Intelligence Research 61 (2018) 593-621 Submitted 05/17; published 03/18

Fully Observable Non-deterministic Planning as
Assumption-Based Reactive Synthesis

Nicolás D’Ippolito NDIPPOLITO@DC.UBA.AR
Instituto de Ciencias de la Computación
CONICET, Argentina

Natalia Rodrı́guez NRODRIGUEZ@DC.UBA.AR
Departamento de Computación, FCEN
Universidad de Buenos Aires, Argentina

Sebastian Sardina SEBASTIAN.SARDINA@RMIT.EDU.AU

School of Science (Computer Science)
RMIT University, Australia

Abstract
We contribute to recent efforts in relating two approaches to automatic synthesis, namely, au-

tomated planning and discrete reactive synthesis. First, we develop a declarative characterization
of the standard “fairness” assumption on environments in non-deterministic planning, and show
that strong-cyclic plans are correct solution concepts for fair environments. This complements, and
arguably completes, the existing foundational work on non-deterministic planning, which focuses
on characterizing (and computing) plans enjoying special “structural” properties, namely loopy but
closed policy structures. Second, we provide an encoding suitable for reactive synthesis that avoids
the naive exponential state space blowup. To do so, special care has to be taken to specify the
fairness assumption on the environment in a succinct manner.

1. Introduction

The overarching aim of this work is to contribute to the recent efforts (e.g., Camacho, Triantafillou,
Muise, Baier, & McIlraith, 2016; De Giacomo & Vardi, 2015; Kissmann & Edelkamp, 2009; Patrizi,
Lipovetzky, De Giacomo, & Geffner, 2011; Pistore & Vardi, 2007; Sardina & D’Ippolito, 2015;
Torres & Baier, 2015), in relating advanced forms of automated planning (Geffner & Bonet, 2013)
to the general long-standing Computer Science problem of automatic synthesis (Abadi, Lamport, &
Wolper, 1989; Manna & Waldinger, 1987; Pnueli & Rosner, 1989b): the problem of automatically
building an operational piece of code from (high-level) user intent. Relating these two fields has
the benefit of facilitating principle generalizations of the planning problem on the one hand, and
grounding formal synthesis approaches in practical ways to Knowledge Representation formalisms
for action and change, on the other hand. In particular, our work contributes to these efforts by (i)
developing a declarative specification of the relation between the assumptions on the environment
and the objective of a plan which arguably complements/completes the seminal work of Pistore and
Traverso (2001) on non-deterministic fully observable planning; and (ii) providing an encoding of
the assumption (and goal) that is suitable for controller synthesis that avoids the naive state space
blowup, thus achieving the complexity of the planning task at hand.1

1. This work is an extension of IJCAI’15 conference paper by the first and third authors (Sardina & D’Ippolito, 2015),
who remained the main contributors to this journal article (authors are listed alphabetically).

c©2018 AI Access Foundation. All rights reserved.

D’IPPOLITO, RODRÍGUEZ, & SARDINA

Fully observable non-deterministic (FOND) planning is an extension of classical planning that
aims to accommodate events outside the control of the agent (Daniele, Traverso, & Vardi, 2000). In
FOND planning, actions are non-deterministic, in that their execution yields one of a set of possible
effects, and this is outside the control of the executor. Once the effect has ensued, however, the agent
is able to observe its outcome. Strong-cyclic plans—those that re-try until success is obtained—have
arguably become the de-facto solution concept for FOND planning. Daniele et al. provided a first
characterization of strong-cyclic plans in CTL, as those plans for which “in any of its executions, it is
always the case that the goal can be reached.”2 Since then, several promising techniques and actual
planning systems have emerged for solving FOND planning problems (e.g., Cimatti et al., 2003;
Fu, Ng, Bastani, & Yen, 2011; Kuter, Nau, Reisner, & Goldman, 2008; Muise, McIlraith, & Beck,
2012; Ramirez & Sardina, 2014). Such techniques amount to specialized—clever though often
involved—algorithms for constructing plans that are “loopy” and “closed,” structural properties
directly capturing Daniele et al.’s requirements.

The fact is that neither Daniele et al.’s (2000) original definition nor the various algorithms for
FOND planning make explicit the intended meaning of the solution concept, namely, that strong-
cyclic plans are those that bring about the goal when executed in “fair” environments. A fair envi-
ronment is one in which “every action executed infinitely often will exhibit all its effects infinitely
often.” In fact, such concept has either been informally discussed or considered only semantically,
at the meta-level (e.g., Cimatti et al., 2003; Geffner & Bonet, 2013; Muise, McIlraith, & Belle,
2014; Patrizi, Lipovetzky, & Geffner, 2013; Ramirez & Sardina, 2014).

In this work, we ground the intended meaning of strong-cyclic plan as solution concept for
FOND planning via a declarative characterization (Section 3) within Daniele et al.’s (2000) foun-
dational framework, thus arguably “completing” it. As part of the motivation, we show how the
naive specification of fairness does not yield the intended meaning, as it is not able to properly
capture effects’ independence (i.e., effects of different actions are not coordinated by any agent).
Technically, we develop a logical specification of the environment assumptions for FOND planning
(Definition 6), which we refer as state-strong fair, and prove that strong-cyclic plans, as defined
by Daniele et al. (2000) and Pistore and Traverso (2001), are indeed sound and complete solution
concepts under such assumptions (Theorem 3 and Corollary 1). We argue that such a declarative
specification of the assumptions on the environment (i) avoids imprecise interpretations of the fair-
ness conditions required for strong-cyclic plans to work; (ii) formally grounds the accepted intended
meaning of the solution concept for FOND planning; and finally (iii) facilitates the statement of the
planning problem as a general synthesis one, thus promoting cross-fertilization.

The declarative formalization of strong-cyclic plans can be leveraged to immediately express
the FOND planning task as an instance of controller (or reactive) synthesis (Bloem, Jobstmann,
Piterman, Pnueli, & Sa’ar, 2012; D’Ippolito, Braberman, Piterman, & Uchitel, 2013; Pnueli &
Rosner, 1989a, 1989b). However, such direct restatement will rely on full LTL synthesis, which is
known to be 2EXPTIME-Complete (Rosner, 1992), while FOND planning is EXPTIME (Rintanen,
2004). Thus, in the second part of the article (Section 4), we show how to specify the state-strong fair
assumption in a succinct manner, by using a clever encoding that is inspired by that of Chatterjee,

2. Later further refined to disregard what happens after goal achievement (Cimatti, Pistore, Roveri, & Traverso, 2003;
Pistore & Traverso, 2001).

594

FOND PLANNING AS ASSUMPTION-BASED REACTIVE SYNTHESIS

Jurdzinski, and Henzinger (2004). Concretely, we develop a specification of FOND planning as a
Büchi control problem that is optimal w.r.t. computational complexity.3

We believe that the above two developments contribute to a sharper understanding of non-
deterministic planning and facilitate the synergies between the planning and the controller synthesis
communities. Indeed, the planning community can take advantage of the expressiveness, rigorosity,
and techniques provided by controller synthesis approaches. For example, one could “manipulate”
the characterization of strong-cyclic proposed to capture more subtle concepts, such as domains with
conditional fairness (i.e., where effects’ fairness depend on the state); see Section 6. Also, reac-
tive synthesis techniques, being exhaustive in nature, can yield “universal” type of plan solutions,4

and while deemed computationally impossible in the past, recent approaches (e.g., Bloem et al.,
2012; D’Ippolito, Braberman, Piterman, & Uchitel, 2011) have shown that for some quite expres-
sive specifications, the task is amenable for computation. In turn, planning formalisms can inform
meaningful specifications—for goals and assumptions—to the reactive synthesis field. Also works
like the one shown here can facilitate researchers in the synthesis community to import computa-
tional techniques from the planning field, as it is the case whereby a (domain-independent) heuristic
search is used to efficiently explore the solution space of reactive controllers (Ciolek, Braberman,
D’Ippolito, & Uchitel, 2016).

Before diving into the technical details, we point out that achieving a specification for FOND
planning capturing the fairness assumption explicitly that is declarative is central to this work. Of
course analogous definitions and results could be obtained differently, in alternative formalisms.
Particularly, there is an implicit connection between fairness and non-zero probabilities of un-
controllable events, and between strong-cyclic solution plans and success probability of 1 (Forejt,
Kwiatkowska, Norman, & Parker, 2011). As a matter of fact, our encoding in Section 4 is itself
inspired on work in stochastic reasoning (Chatterjee et al., 2004). Our approach, tough, does not
require any probabilistic infrastructure and can be integrated within Daniele et al.’s (2000) foun-
dational framework for FOND planning in a straightforward manner. We believe, still, that while
understood by the community at a conceptual level, the links between logic-based declarative spec-
ifications and probabilistic properties are worth a precise formalization (but out of the scope of this
work; see Section 5 for further discussion).

2. Preliminaries

We review the background on non-deterministic planning, CTL and LTL temporal logics, and reac-
tive synthesis required to understand the technical development of the following sections.

2.1 Fully Observable Non–Deterministic Planning

We mostly follow the characterisation of non-deterministic given by Rintanen (2003; 2008), which
captures the usual “oneof” clauses in PDDL representations (Gerevini, Bonet, & Givan, 2006).

A fully observable non-deterministic (FOND) planning problem is a tupleP=〈P,O, sI , φgoal〉
consisting of a set of Boolean state propositions P (atoms), an initial state sI , a goal φgoal as a
conjunction of literals (i.e., atoms or negated atoms), and an operator set O (see below). We use l to

3. Sardina and D’Ippolito (2015) showed that for the special case of FOND planning in which actions have “in-
tended effects,” existing efficient controller synthesis techniques developed in the Software Engineering commu-
nity (D’Ippolito et al., 2013) can be exploited. The results in the current paper generalize such a special case.

4. That is, they generally build not one solution, but a family of solutions, often all solutions.

595

D’IPPOLITO, RODRÍGUEZ, & SARDINA

denote the complement of literal l. A state s is a consistent set (or conjunction) of literals such that
|s| = |P |— every atom is either true or false. We use S to denote the set of all states of task P .

An operator is a pair o = 〈Preo,Eff o〉, where Preo is a condition describing the preconditions
of operator o, and Eff o = e1 | · · · | en the (non-deterministic) effects of o, where each ei is a
(deterministic effect) condition and n ≥ 1. The intended meaning is that one of the ei events
ensue non-deterministically, by the environment’s choice. Operator o is executable on a state s if
s |= Preo, and the set of possible successor states from its execution is next(o, s) = JEff oKs, where:

Je1 | · · · | enKs =

n⋃
i=1

{(s \ {l | ei |= l}) ∪ {l | ei |= l}}.

So, set next(o, s) denotes those states that the world may evolve to when operator o is performed in
state s. If o is deterministic (i.e., Eff o = e), then |JEff oKs| = 1, for every state s ∈ S.

A policy (or conditional plan) is a function π : S 7→ 2O mapping states s ∈ S onto the set of
executable operators π(s) such that if o ∈ π(s), then s |= Preo. The universal policy for a FOND
problem P is π̂(s) = {o | o ∈ O, s |= Preo}. A policy π is deterministic if |π(s)| ≤ 1, for all
s ∈ S. When π is deterministic we write π(s) = o to compactly denote π(s) = {o}. Note that the
non-determinism embodied in a policy (when |π(s)| > 1) is of different nature to that of actions’
executions, as it is the agent, not nature, who decides which of the actions to perform. A policy
π executed from state s defines a set of possible executions Λπ(s) made up of executions λ =
s0o0s1 · · · sioisi+1 · · · , where s0 = s, oi ∈ π(si), si |= Preoi , and si+1 ∈ next(oi, si), for all i ≥ 0.
The set of states relevant to a policy π from state s is defined as Sπ(s) =

⋃
λ∈Λπ(s){si | si ∈ λ}

(we abuse notation and write s ∈ λ to say that execution λ mentions state s). A policy π is closed
iff

⋃
o∈π(si)

next(o, si) ⊆ Sπ(sI) for all states si ∈ Sπ(sI), that is, π always returns an action for
every non-goal state it reaches. In turn, a state s is reachable by a policy π from state s′ if there is
a chance that following π leads the agent to s; formally, there exists λ ∈ Sπ(s′) such that s ∈ λ.

When it comes to FOND planning, the usual solution concept in the literature is that of strong-
cyclic plans.

Definition 1 (Bryce & Buffet, 2008; Cimatti et al., 2003). A policy π is a strong-cyclic plan for
a planning problem if π is a closed policy such that a goal state is reachable from every reachable
state using the policy, or equivalently, all partial executions of π can be extended to a finite execution
path of π to a goal state. �

A strong-cyclic plan guarantees, under plausible assumptions, that the agent eventually does
achieve the goal.5 What exactly those assumptions are and how they can be effectively captured
declaratively is at center of this work.

We close by noting that while classical deterministic planning is PSPACE-complete (Bylander,
1994), non-deterministic planning with full observability is EXPTIME-complete (Rintanen, 2004).

2.2 Temporal Logics

Temporal logics allow the formal specification of behavioral properties of systems over time (Pnueli,
1977) and are the basis for model checking and synthesis. Some widely used and studied such logics

5. Strong policies are a special case for which all executions are finite and acyclic: they solve the planning problem in
a bounded number of steps.

596

FOND PLANNING AS ASSUMPTION-BASED REACTIVE SYNTHESIS

CTL*, and its fragments CTL (Computation Tree Logic) and LTL (Lineal Temporal Logics) (Clarke
& Emerson, 1982; Emerson & Halpern, 1986; Pnueli, 1977). Whereas CTL is the basis behind the
foundational work in non-deterministic planning (Daniele et al., 2000; Pistore & Traverso, 2001),
LTL is the basis for much work on reactive synthesis. The syntax of CTL*, which subsumes both, is
defined with the following grammar:

Ψ ::= p | Ψ1 ∧Ψ1 | ¬Ψ | Aϕ | Eϕ;
ϕ ::= Ψ | ϕ1 ∧ ϕ1 | ¬ϕ | Xϕ | Fϕ | Gϕ | ϕ1Uϕ2 | ϕ1Wϕ2,

where p ranges over the set of propositions. Formulas of the form Ψ are called state formulas,
whereas those of the form ϕ are said to be path formulas. Formula AΨ (EΨ) states that all executions
(some execution) from the current state satisfy property Ψ. Then, path formulas Xϕ, Fϕ, and Gϕ
state that ϕ is true in the next state of the path, eventually in the path, or always along the path, resp.
Finally, ϕ1Uϕ2 says that ϕ1 holds along the path until ϕ2 becomes true and ϕ2 is eventually true;
ϕ1Wϕ2 is its weak version where ϕ2 is not required to eventually come true in the path. Common
combinations of path and state quantifiers allow us to say things be like all or some next states
satisfy ϕ (AXϕ and EXϕ), and ϕ holds in all or some executions (AGϕ or EGϕ).

The fragment CTL of CTL* is obtained by requiring that each temporal path quantifiers (e.g.,
X, F, etc.) be under the immediate scope of an A or E quantifier. So, EFϕ (“there exists an ex-
ecution in which ϕ eventually holds”) and AGϕ (“ϕ always holds along all executions”) are legal
CTL formulas, but AGFϕ (“ϕ is true infinitely often in every execution path”) is not. In turn, LTL
is the fragment obtained by withholding the A and E quantifiers and assuming universal path quan-
tification. So, non-CTL formula A(GF)φ can in fact be captured in LTL, but formulas examining
alternative executions along a path, such as AGEφ (“φ is always potentially reachable”), cannot.

The meaning of CTL* formulas (and of its fragments CTL and LTL) is given over the states
and paths of a transition system, with a branching-time interpretation of time. Concretely, a CTL*
transition system over a set of propositions P , also called Kripke structure (Emerson, 1990), is a
tuple K = 〈W,R,P 〉, where:

• W ⊆ 2P is the set of states of K; and

• R ⊆W ×W is the transition relation of K. When R(w1, w2) holds, it means that state w2 is
a possible successor of state w1.

A run in K from state w0 is a, possibly infinite, sequence λ = w0w1 · · · such that R(wi, wi+1),
for all i ≥ 0. A maximal run is either an infinite run or a finite run that ends in a terminal state, that
is, a state that has no possible successor state in K.6

Then, given a state formula Ψ and a state w ∈ W , one can define whether Ψ holds true (i.e.,
is satisfied) in structure K at state w, denoted K, w |= Ψ, structurally on the formula and resorting
on runs. For example, for CTL we have K, w |= p iff w |= p; and K, w |= EFφ iff there exists a
maximal run λ = w0w1w2 · · · with w0 = w such that for some k ≥ 0, K, wk |= φ). Similarly, the
semantics of LTL formulas is defined in terms of (infinite) runs of K: K, w |= ϕ iff λ |= ϕ, for all
infinite runs λ = ww1 · · · of K (that is, ϕ holds true in all runs starting in state w), where (i) λ |= p
iff w0 |= p; (ii) λ |= ¬p iff w0 |= ¬p; (iii) λ |= ϕ1 ∧ ϕ2 iff λ |= ϕ and λ |= ϕ2; (iv) λ |= Xϕ iff
w1w2 · · · |= ϕ; and (v) λ |= ϕ1Uϕ2 iff there exists j ≥ 0 such that wj |= ϕ2 and, for all 0 ≤ k < j,

6. Observe that, unlike some definitions of CTL, we account, wlog, for structures that include terminal states.

597

D’IPPOLITO, RODRÍGUEZ, & SARDINA

wk |= ϕ1. As usual, we write K |= φ to denote K, w |= φ for all w ∈ W . See Baier and Katoen’s
(2008) book for more details on these logics and their use in model checking.

2.3 Reactive Synthesis on Two-Player Games

First introduced by Church (1963), automatic synthesis of programs is one of the most ambitious
problems in Computer Science. Intuitively, it involves the automatic construction of an operational
model for a so-called controller that, deployed in a (model of the) environment results in a system
that is guaranteed to satisfy a given goal.

The problem was considered by Pnueli and Rosner (1989a, 1989b) in the context of synthesiz-
ing reactive modules from a specification given in LTL (Pnueli, 1977; Vardi, 1996). There, both
the environment and the system goal are specified by LTL formulas, and the task is to produce an
operational specification of a module that restricts the traces allowed by the environment to only
those satisfying the LTL system goal. Technically, the set of propositions describing the domain
of concern is partitioned into two disjoint sets X (the non controllable propositions) and Y (the
controllable propositions). The problem then is: can we control the values of Y such that for every
possible value of X for every behaviour of the module a certain LTL formula ϕ holds? More pre-
cisely, runs (c.f. Section 2.2) can be interpreted as of the form λ = (X0, Y0)(X1, Y1)(X2, Y2) · · · ,
where (Xi, Yi) is the propositional interpretation at the i-th position in λ, now partitioned in the
propositional interpretation Xi for X and Yi for Y . Let us denote by λX |i the run λ projected only
on X and truncated at the i-th element (included), i.e., λX |i = X0X1 · · ·Xi. The realizability prob-
lem checks the existence of a function f : (2X)∗ → 2Y such that for all λ with Yi = f(λX |i) we
have that λ satisfies the formula ϕ (i.e., λ |= ϕ). The (reactive) synthesis problem consists in actu-
ally computing such a function. Observe that in realizability/synthesis, there is no way to constrain
the value assumed by the propositions in X : the function we seek only acts on propositions in Y .

A popular approach to solving the synthesis problem is by visualizing it as the solution of a two-
player antagonistic game (D’Ippolito et al., 2013; Piterman, Pnueli, & Sa’ar, 2006; Pnueli, 1977;
Vardi, 1996) (originally introduced in von Neumann, Morgenstern, Kuhn, & Rubinstein, 1944), in
which controller and environment are considered adversarial players, and the winning condition
represents the LTL goal specification. For this paper, it is enough to consider simple games, that
is, non-terminating turn-based zero-sum perfect-information two-player games played over a finite
state graph (S,E, s0) between two players 2 and 3, who move a token by turns from state to state
along edges into the graph so that an infinite path is formed. Non-terminating zero-sum games
(with ω-regular winning conditions) are determined, which means that from each state one of the
two players wins and the other loses. In perfect-information games, all participants have all the
required information to make the decision to make the game move. We start by defining the space
where the game takes place.

Definition 2. A 2-player game graph is a tuple of the form G = 〈(S,E, s0), (S2, S3)〉, where
(S,E, s0) is a finite directed graph with state set S, edge set E, and initial state s0 ∈ S, and
(S2, S3) is a partition of the state set S, denoting the states in which players 2 and 3 chooses the
successor states, respectively. �

Plays A play ρ = s0s1s2 · · · over a game graph G is an infinite sequence of states in S starting
from G’s initial state s0 and such that (si, si+1) ∈ E, for all i ≥ 0. We write Ω for the set of all

598

FOND PLANNING AS ASSUMPTION-BASED REACTIVE SYNTHESIS

plays, Ωs for the set of all plays starting from the state s, and ∆G(s) for the set of all states s′ such
that (s, s′) ∈ E (i.e., all possible successors of s). We denote ρ[i] = si the ith state in a play ρ.

Strategies The choices of players are formalized in the form of a strategy, which is the policy
that the player applies to move along the game graph. Although in general the strategy that a player
“uses” or “follows” in the game may depend, or not, on the history of a play, in the context of this
work we focus only in memoryless strategies. Even more, we are interested in (pure) strategies in
which only one successor can be selected to pass the token to.

Formally, such a strategy for 2 is a function σ2 : S2 → S, whereas a strategy for 3 is a
function σ3 : S3 → S. Player 2 follows (or uses) a strategy σ2 if in each move, at a state s ∈ S2
she chooses a successor state according to σ2(s). A play ρ = s0, s1, . . . is consistent with a strategy
σ2 if for every i ≥ 0 such that si ∈ S2, σ2(si) = si+1. Consistency with respect to σ3 is defined
analogously. We write Σ2 and Σ3 for the set of all strategies for 2 and 3 respectively.

Once strategies σ2 ∈ Σ2 and σ3 ∈ Σ3 are fixed, a play starting in state s ∈ S is determined
by an infinite path (denoted ρσ2,σ3

s), consistent with σ2 and σ3. We define Gσ2,σ3 as the sub-graph
obtained by pruning G according to the decisions made by strategies σ2 and σ3.

Winning conditions Winning conditions of players in simple games are specified by a set of win-
ning playsW ⊆ Ω for a player. When the set of states S is modelled via a factored representations
(i.e., using propositional variables), the set of plays can be seen as LTL runs and the winning plays
as LTL formulas (e.g., all the runs where p is eventually true).

As we consider zero-sum 2-player games if the winning condition of a player is the setW , then
the winning condition for the other player is Ω\W . Given a game graph G and a winning condition
W , we write G(W) for the game played on G with winning condition W for 2. We say that a
strategy σ2 ∈ Σ2 is a sure winning strategy for 2 in the game G(W) if, for all σ3 ∈ Σ3 we have
ρσ2,σ3 ∈ W . In words, a sure winning strategy is one that guarantees to produce a winning play, no
matter how the other player happens to play. The set of states from which 2 (resp. 3) can surely
win (called winning set) is denoted asW2 (resp.,W3). A game G(W) is determined if for all state
in S, either 2 or 3 can surely win from such state.

In this work we will focus on a specific type of winning conditions called Büchi conditions.
Büchi conditions are given as LTL formulas of the form GFϕ (Buchi & Landweber, 1969). Thus,
traces satisfying a Büchi condition GFϕ are those that satisfy ϕ infinitely many times.

Finally, realizability and synthesis in the context of two-player games amount to checking the
existence of and computing, resp., a sure winning strategy for the player of interest.

3. Strong Cyclic Plans and Fair Environments

In this section, we revisit the semantics of FOND planning, with special focus on the “environment”
where plans are to be executed. In particular, whereas the notion of strong-cyclic plans have been
vastly studied and formally defined, the type of environments in which such plans will succeed are
often discussed at an informal level.

The first precise analysis of what a solution is for FOND planning was given by Daniele et al.
(2000) and Pistore and Traverso (2001). There, the authors formally defined strong-cyclic plans
through a CTL formula on their executions. To capture all executions of a policy, they defined what
is basically the projection of the underlying state model for a planning task onto the policy. For
the rest of the paper, we follow Daniele et al. and, wlog, restrict our attention to FOND planning

599

D’IPPOLITO, RODRÍGUEZ, & SARDINA

problems with no dead-end states (i.e., in every state there is always some executable operator), and
policies that are closed (i.e., those that always specify how to proceed for all the possible outcomes
of any action in the policy).7

Definition 3 ((P, π)-structure). Let P = 〈P,O, sI , φg〉 be a FOND planning problem over the
set of propositions P and π a policy over P . The induced structure of (P, π) is a Kripke structure
KπP = 〈W,R,P 〉, where:

• W = {〈s, o〉 | s ∈ 2P , o ∈ O}. Intuitively, 〈s, o〉 represents the execution of operator o in
state s; and

• R(〈s, o〉, 〈s′, o′〉) iff o ∈ π(s), o′ ∈ π(s′), and s′ ∈ next(o, s). �

Structure KπP represents all evolutions of policy π when executed in planning domain P . It is
straightforward to define a structure representing all possible executions of the planning domain, by
considering the universal policy.

Definition 4 (P-structure). The structure induced by a FOND planning problem P is defined as
the Kripke structure KP = Kπ̂P , where π̂ stands for the universal policy. �

So, Daniele et al. (2000) defined a policy π as a strong-cyclic solution for a planning problem P
iff KπP , 〈sI , oI〉 |= AGEFφgoal, for all oI ∈ π(sI). In words, starting from the initial state, whatever
actions we choose to execute (from the policy) and whatever their outcomes are, we always (AG)
have a way of reaching the goal (EFφgoal).

Because goals are achievement goals in planning, what happens after the goal is achieved is
irrelevant. Hence, Daniele et al.’s definition was then further refined as follows:

Definition 5 (Pistore & Traverso, 2001). A policy π is a strong-cyclic plan solution for a FOND
planning problem P iff KπP , 〈sI , oI〉 |= A(EFφgoalWφgoal), for all oI ∈ π(sI). �

In words, in all possible executions of the policy, the goal is always eventually reachable, at
least until the goal is indeed reached. In other words, wherever the policy may take us, the goal will
be (potentially) reachable from there. Observe that this definition precisely captures the notion of
closeness and goal-reachable (as in Definition 1).

The availability of a precise notion for strong-cyclic plans has facilitated the development of
various techniques capable of synthesising such type of plans. Planning approaches and tools such
as MBP (Cimatti et al., 2003), PRP (Muise et al., 2012), GRENDEL (Ramirez & Sardina, 2014),
myND (Ortlieb & Mattmüller, 2013), GAMER (Kissmann & Edelkamp, 2009), and FIP (Fu et al.,
2011) all search for policies that are closed and goal-reachable.

Nevertheless, besides understanding what a strong-cyclic plan amounts to, we argue here that
it is also important to understand and formalize the contexts under which these type of plans will
indeed achieve the objectives, namely, bringing about the goal. This has not received much attention
and has mostly been discussed informally.

Clearly, under non-determinism, there is in principle the possibility of never achieving the goal,
as “strong-cyclic solutions can produce executions that loop forever” (without ever reaching the

7. As customary in verification, these assumptions can be easily met by adding “no-op” actions in dead-end states. All
results in the paper apply also to planning problems with dead-ends and/or partial policies; one just needs to consider
finite execution traces as special cases.

600

FOND PLANNING AS ASSUMPTION-BASED REACTIVE SYNTHESIS

goal) (Cimatti et al., 2003). However, the common understanding in the literature is that strong-
cyclic plans are adequate solutions under the assumption that the underlying environment described
by the planning domain is “fair.” Unlike strong-cyclic plans, which have been formally character-
ized (see above), this fairness assumption is always stated at an informal level. We shall provide
a precise characterization of such fairness in LTL and show that strong-cyclic plans are sound and
complete plan types for fair domains.

A usual (informal) understanding is that fair domains are those for which “if an action is exe-
cuted infinitely many times, every non-deterministic outcome will occur infinitely often.” Formally,
this can be stated as the following strong-fairness LTL constraint (on the induced structure KP):

Φfair
P

def
=

∧
o∈O,e∈Eff o

(GFo→ GFe).

Note that while strong-cyclic plans have been characterized in CTL (Definition 5), formula Φfair
P

above is an LTL formula not expressible in CTL. While simple, D’Ippolito et al. (2011) argued, in
the context of reactive synthesis for Software Engineering, that such strong-fairness assumptions are
not enough to guarantee the success of controllers that are meant to “re-try.” Consider the following
counter example.8

Example 1. Consider the standard problem of obtaining two heads on the table by flipping two
(fair) coins. To flip a coin, the agent needs to be holding them; to that end, she has an action to pick
up all the coins on the table. Flipping a coin may yield, non-deterministically, the coin with heads
or tails (not heads) on the table. If in a trial, the agent did not obtain two heads, it needs to pick
them up and start all over again. Thus, consider planning problem Pcoin = 〈P,O, sI , φgoal〉, where:

• P = {heads1, heads2, holding1, holding2}.

• O includes the operators:

– PICK = 〈¬holding1 ∧ ¬holding2, holding1 ∧ holding2 ∧ ¬heads1 ∧ ¬heads2〉.
– FLIPi = 〈holdingi, (headsi ∧ ¬holdingi) | (¬headsi ∧ ¬holdingi)〉, for i ∈ {1, 2}.

• sI = {¬holding1,¬holding2,¬heads1,¬heads2}.

• φgoal = heads1 ∧ heads2 ∧ ¬holding1 ∧ ¬holding2.

Take the following (deterministic) policy:

π(s) =


PICK if s |= ¬holding1 ∧ ¬holding2

FLIP1 if s |= holding1 ∧ holding2

FLIP2 if s |= ¬holding1 ∧ holding2

It is not hard to see that π is a strong-cyclic solution: it continuously tries to get both heads, by
picking the coins and flipping them, until success is achieved. Observe that, in this example, it is
assumed that it is not possible to just pick one of the coins, they have to be picked together.

8. The car example provided by Sardina and D’Ippolito (2015) is significantly more involved.

601

D’IPPOLITO, RODRÍGUEZ, & SARDINA

Now, the formula Φfair
Pcoin

, as defined above, implies that if the agent tries to use the key infinitely
often, then she will succeed infinitely often. Similarly, if the agent keeps flipping the coin, then she
will keep succeeding in getting heads. It turns out, though, that:

KπPcoin
, 〈sI , PICK〉 6|= A[Φfair

Pcoin
→ F(heads1 ∧ heads2)].

That is, there is an execution of π in P in which all outcomes of, PICK, FLIP1, and FLIP2 arise
infinitely often, but never two heads are obtained on the table. In fact, consider the following states
of structure KπPcoin

:

• w0 = 〈sI , PICK〉;

• w1 = 〈{holding1, holding2,¬heads1,¬heads2}, FLIP1〉;

• w2 = 〈{¬holding1, holding2, heads1,¬heads2}, FLIP2〉;

• w3 = 〈{¬holding1, holding2,¬heads1,¬heads2}, FLIP2〉;

• w4 = 〈{¬holding1,¬holding2, heads1,¬heads2}, PICK〉; and

• w5 = 〈{¬holding1,¬holding2,¬heads1, heads2}, PICK〉.

w0PICK

w1FLIP1

w2FLIP2

w3

FLIP2

w4

PICK

w5

PICK

w∗PICK

Now consider run λ = w0(w1w2w4w1w3w5)ω. It is clear that λ does satisfy the assumption
formula Φfair

Pcoin
, but it never reaches the goal. The issue here is that the failure of the action FLIP2 is

not independent of failure of previous action FLIP1—their failures are “synchronized.” �

The example above shows that the failures and successes of two non-deterministic actions can
be “coordinated” in a way that will preclude goal achievement, despite the fact that all outcomes
of both actions ensue infinitely often. To rule out coordinated outcomes, D’Ippolito et al. (2011)
provided a stronger notion of fair environments, but their framework assumes that it is known which
action outcomes are “good” (and which ones are considered “failures”). Still, the draw from their
intuition to have action-outcome fairness in every state as follows.

Definition 6 (State Strong Fairness). Let P be a FOND planning problem and KP = 〈W,R,P 〉
its corresponding Kripke structure. The state-strong fair constraint is defined as the LTL formula

γsfair
P

def
=

∧
{〈s,o,e〉| 〈s,o〉∈W,e∈Eff o}

(GF(s ∧ o)→ GFJeKs).

A run of λ of KP is state-strong fair if λ |= γsfair
P . �

In words, γsfair
P says that if an operator is performed infinitely often in the same state, then all

its effects ought to arise infinitely often. This LTL constraint formalizes Cimatti et al.’s (2003) claim
that unfair executions are those where “some actions are executed infinitely often in given states,
but some of its outcomes never occur,” and corresponds to the semantically expressed requirement
used in various FOND planning works (e.g., Geffner & Bonet, 2013; Patrizi et al., 2013; Ramirez
& Sardina, 2014).

602

FOND PLANNING AS ASSUMPTION-BASED REACTIVE SYNTHESIS

Returning to Example 1, the run λ does not satisfy γsfair
Pcoin

(i.e., λ |= ¬γsfair
Pcoin

), and hence λ |=
γsfair
Pcoin
→ Fφgoal applies—run λ is unfair and shall not be taken into consideration. It is not difficult

to check that indeed KπP |= A[γsfair
Pcoin
→ Fφgoal] holds for such an example.

We now have all the machinery to state the main contributions of this section, namely, linking
state-strong fair with Pistore and Traverso’s (2001) account of strong-cyclic plans (see Definition 5).
The following two main results restrict, wlog, to deterministic policies; we will discuss the impact
of non-deterministic policies at the end of the paper (Section 6). First, we show that all such plans
do achieve the goal in state-strong fair environments.

Theorem 1. Let π be a deterministic strong-cyclic plan for a FOND planning problem P . Then,
KπP , 〈sI , oI〉 |= A[γsfair

P → Fφgoal], with oI = π(sI).

Proof. Consider a run λ = 〈s0, o0〉〈s1, o1〉 · · · of Kripke structure KπP where s0 = sI and o0 =

π(sI). Suppose further that λ |= γsfair
P . We aim to prove then that λ |= Fφgoal.

We first show the following intermediate claim: if there exists state 〈ŝ, ô〉 that is mentioned in
λ infinite many times (i.e., λ |= GF(ŝ ∧ ô)) and from where a state in which φgoal holds can be
reached in KπP (i.e., KπP , 〈ŝ, ô〉 |= EFφgoal), then λ |= Fφgoal. Because KπP , 〈ŝ, ô〉 |= EFφgoal, there
is a finite trace τ = 〈s0, o0〉 · · · 〈sn, on〉, with n ≥ 1, in structure KπP such that s0 = ŝ, o0 = ô, and
sn |= φgoal. We prove this by induction on the length n:

• If n = 0, then ŝ |= φgoal and λ |= Fφgoal follows trivially as 〈ŝ, ô〉 is mentioned in run λ.

• Now suppose that for all n ≤ k, with k ≥ 1, λ |= Fφgoal applies (induction hypothesis).
Suppose that n = k + 1 (which means that n ≥ 1):

– Due to KπP construction, s1 ∈ JeKŝ for some effect e ∈ Eff ô. Because λ |= γsfair
P , it is

the case that λ |= GF(ŝ ∧ ô) → GFs1. Since we assumed that λ |= GF(ŝ ∧ ô), then
we conclude λ |= GFs1. Intuitively, one of the effects e of operator ô brings about goal
state s1 when applied in planning state ŝ, and operator ô is indeed executed in planning
state sk during run λ infinitely often. Because λ is fair on all the effects of operator ô,
such effect e ought to ensue at some point in λ, bringing about state s1 infinite times.

– So, we have that λ |= GFs1 and since τ represents an execution of π, it is the case that
π(s1) = o1 and therefore λ |= GF(s1 ∧ o1), that is, 〈s1, o1〉 repeats infinitely often in
λ. In addition, there exists trace τ ′ = 〈s1, o1〉 · · · 〈sn, on〉 of length k in structure KπP
achieving φgoal; formally KπP , 〈s1, o1〉 |= EFφgoal. By induction hypothesis, we obtain
then that λ |= Fφgoal.

Due to Definition 5 and the fact that π is a strong-cyclic plan, we know that:

λ |= EFφgoalWφgoal. (1)

Suppose, by contradiction, that λ |= ¬Fφgoal. Then, due to 1, it follows that λ |= GEFφgoal,
that is, while λ never achieves φgoal, goal φgoal is potentially reachable from every step along λ.
Since structure KπP is finite, there must exist an i ≥ 0 such that 〈sk, ok〉 (with ok = π(sk)) is visited
infinitely often in λ, that is, λ |= GF(sk ∧ ok). Because λ |= GEFφgoal and 〈sk, ok〉 ∈ λ, it is the
case that KπP , 〈sk, ok〉 |= EFφgoal. Hence, we can apply the intermediate result we proved above to
conclude that λ |= Fφgoal. Observe that equation 1 above applies because λ |= EFφgoalUφgoal holds.

As λ is an run in KπP starting in 〈sI , oI〉, with oI = π(oI), then thesis follows. �

603

D’IPPOLITO, RODRÍGUEZ, & SARDINA

This theorem provides a “soundness” result for state-strong fair environments. The theorem is
related to one by Patrizi et al. (2013, Thm. 5), though ours crystallize the fairness assumption explic-
itly within Daniele et al.’s (2000) FOND planning logical foundational framework (see Section 5
for further discussion). The second, and less obvious, result states that if a plan guarantees the goal
in a state-strong fair environment (i.e., an environment in which every possible trace is state-strong
fair), then it has to be strong-cyclic.

Theorem 2. Let π be a deterministic policy and P a FOND problem such that KπP , 〈sI , oI〉 |=
A[γsfair
P → Fφgoal], for oI = π(sI). Then, π is a strong-cyclic plan.

Proof. From Definition 5 we ought to show that KπP , 〈sI , π(sI)〉 |= A(EFφgoalWφgoal). Take a run
λ in KπP of the form λ = 〈s0, o0〉〈s1, o1〉 · · · such that s0 = sI and o1 = π(sI). We want to prove
that λ |= EFφgoalWφgoal.

Take an arbitrary state 〈sk, ok〉 in λ, for some k ≥ 0, such that for all i ∈ {0, . . . , k}, it is the
case that sk |= ¬φgoal. That is, suppose that up to 〈sk, ok〉, λ has not yet achieved the goal. We are
to prove then that KπP , 〈sk, ok〉 |= EFφgoal, that is, the goal is reachable from 〈sk, ok〉.

Next, let λk = 〈sk, ok〉〈sk+1′, ok+1′〉〈sk+2′, ok+2′〉 · · · be a run in KπP from 〈sk, ok〉 that is fair,
that is, such that λk |= γsfair

P . It is easy to see that one such λk always exists and can easily be
constructed by traversing structure KπP in a way that every successor of a state that is mentioned
infinitely often, appears infinitely often.

Next, consider the run λ′ built from concatenating the first k steps of λ with λk, that is:

λ′ = 〈s0, o0〉〈s1, o1〉 · · · 〈sk, ok〉〈sk+1′, ok+1′〉〈sk+2′, ok+2′〉 · · ·

Since λk |= γsfair
P and λ′ is just λk modulo a finite prefix, it follows that λ′ |= γsfair

P , that is, run λ′

itself is fair. Now, given that λ′ is a run from 〈sI , π(sI)〉, then by the assumption in the theorem
statement, λ′ |= γsfair

P → Fφgoal follows, which together with λ′ |= γsfair
P , implies that λ′ |= Fφgoal.

From the fact that the first k + 1 steps in λ′ and λ are the same (i.e., from 〈s0, oo〉 to 〈sk, ok〉
included), and the fact that λ does not achieve the goal up to step k + 1 included (see above), it
follows that λ′ does not achieve the goal in the first k + 1 steps either. However, we have shown
that run λ′ does eventually achieve the goal, so it must be the case that λk achieves the goal. Hence,
λk |= Fφgoal applies. Finally, because λk is a run starting from 〈sk, ok〉, then KπP , 〈sk, ok〉 |=
EFφgoal, which is what we aimed to prove. �

The above two theorems say that state-strong fair is a complete characterization of the type
of environment for which strong-cyclic plans are successful. Having now a precise logical char-
acterization of what adequate environments are opens the door for applying (reactive) synthesis
techniques to solve FOND problems. That is the topic of the next section.

4. FOND Planning via Reactive Synthesis

The characterization (Theorems 1 and 2) in LTL of the fairness assumption (Definition 6) behind
strong-cyclic plans allows one to express the FOND planning problem as a reactive synthesis one
(see Section 2.3). Indeed, following (Bloem et al., 2012, Thm. 1) and given a FOND planning
problem, we first take the planning propositions as the non-controllable variables (i.e., X = P) and

604

FOND PLANNING AS ASSUMPTION-BASED REACTIVE SYNTHESIS

Y = O and the operators as the controllable ones. Then, if φgoal is the goal of the planning task, we
perform LTL synthesis for the following specification formula:

ϕP
def
= ϕeff

P ∧ (ϕpre
P → [γsfair

P → Fφgoal]), (2)

where, roughly speaking, ϕeff
P encodes the dynamics of the planning domain (i.e., the effects of

actions) and ϕpre
P encodes the preconditions of operators. Intuitively, specification ϕP asks for a

policy function such “for every possible generated run (under that policy) that adheres to the effects
of operators (ϕeff

P), if every controllable operator prescribed by the policy is legally executed along
the run, then provided that the run shows fairness on the operators’ effects (γsfair

P) the goal will
eventually be true (in the run).” Basically, ϕeff

P and ϕpre
P encode together the structure KP and the

initial state of the planning problem by means of safety formulas; (see Bloem et al., 2012).
Notably, synthesis of formula ϕP above provides a fully declarative approach to FOND plan-

ning. There are however significant practical problems with this specification. The fact is that con-
troller synthesis for general LTL specifications is 2EXPTIME-complete and known automata-based
techniques have resisted practical implementations due to automata complementation (Kupferman,
Piterman, & Vardi, 2006; Pnueli & Rosner, 1989b). This probably explains why the application of
controller synthesis as a mean for solving planning problems has been discouraged. Nonetheless,
recent advances in controller synthesis (e.g., Bloem et al., 2012; D’Ippolito et al., 2011; Piterman
et al., 2006) have shown that restricting the form of the specification system goal allows for more
effective solutions and implementable systems. Unfortunately, though, the above formula ϕP does
not fall into known efficient LTL fragments and, what is more, the fairness specification γsfair

P is
already exponential in size w.r.t. the planning domain! Consequently, performing LTL synthesis on
ϕP above would not yield an optimal technique w.r.t. computation complexity (recall that FOND
planning is EXPTIME; see Rintanen, 2004).

So, in what follows, we show how to actually solve FOND planning problems via reactive
synthesis by suitably encoding the fairness assumption without an increase in complexity.

4.1 Solving FOND Planning via Controller Synthesis in Büchi Games

We reduce here the problem of checking for a strong-cyclic plan to checking for existence of a
winning strategy in a particular, computationally amenable, type of two-player game. Further, we
show that an actual strong-cyclic plan can be extracted from such a strategy. Notably, the pro-
posed reduction (efficiently) compiles away the state-strong fairness condition, thus not requiring
fair realizability/synthesis (Vardi, 1995). The result is a sound and complete discrete controller
synthesis-based approach to FOND planning that is optimal w.r.t. computational complexity.9

More concretely, the game we shall use is that with a Büchi winning condition, which, infor-
mally, states that “something (good) happens infinitely often.” Technically, given a game graph with
state space S (c.f. Section 2.3), a Büchi winning condition is defined in terms of a subset F of S,
with the intended meaning that winning plays ought to visit some state in F infinitely many times.
Given a play ρ, we use inf (ρ) to denote the set of states that occur infinitely often in play ρ

Definition 7 (2-player Büchi Games). Given a game graph G = 〈(S,E, s0), (S2, S3)〉 and Büchi
acceptance condition F ⊆ S, the corresponding Büchi game is defined as G(WF) where WF =
{ρ | inf (ρ) ∩ F 6= ∅}. �

9. Analogous results can be obtained via synthesis of policies in probabilistic models with probability 1 goal suc-
cess (Forejt et al., 2011); our work keeps the formalism completely non-probabilistic.

605

D’IPPOLITO, RODRÍGUEZ, & SARDINA

It turns out that every 2-player game with Büchi winning condition for player 2 (2-player Büchi
game) is in fact determined (Martin, 1975). Hence, the set of states S in game graph G is partitioned
in those from which 2 has a sure winning strategy (W2) and those states from which 3 has a sure
winning strategy (W3). Also, pure memoryless strategies are enough for 2-player Büchi games: if
there is a winning strategy there is a pure memoryless one that is winning.

Let us now provide the main definition of this section, which basically specifies a distinguished
2-player Büchi game for a given FOND planning problem.

Definition 8 (FOND to Büchi Control Problem). Let P = 〈P,O, sI , φgoal〉 be a FOND planning
problem. The corresponding Büchi Control Problem (or Game) is a 2-player Büchi game GP(WF)
with game graph GP = 〈(S,E, s0), (S2, S3)〉 and Büchi acceptance condition F defined as fol-
lows:

• s0 = 〈sI ,#,2〉 as the initial state of the game.

• S = (2P × (O ∪ {#}) × {2,3}) ∪ {〈s∗, o〉 | s ∈ 2P , o ∈ O, ∗ ∈ {2,3}} as the set of
states of the game.

• S3 = {〈s3, o〉 ∈ S} ∪ {〈s, o#,3〉 ∈ S | o# ∈ O ∪ {#}} as the set of 3-turn states.

• S2 = {〈s2, o〉 ∈ S} ∪ {〈s, o#,2〉 ∈ S | o# ∈ O ∪ {#}} as the set of 2-turn states.

• The transition relation E is defined as follows (recall here that Eff o is the set of all possible
effects of operator O, more than one for non-deterministic operators):

E = {(〈s, o#,2〉, 〈s, o,3〉) | o# ∈ O ∪ {#}, o ∈ O, s |= Preo} ∪
{(〈s, o,3〉, 〈s∗, o〉) | o ∈ O, ∗ ∈ {2,3}} ∪
{(〈s∗, o〉, 〈s′, o,2〉) | o ∈ O, ∗ ∈ {2,3}, s′ ∈ next(o, s)} ∪
{(〈s, o#,2〉, 〈s,#,2〉) | o# ∈ O ∪ {#}, s |= φgoal}.

• F = F2 ∪F3 as the Büchi acceptance condition where F2 = {〈s, o#,2〉 | s |= φgoal, o# ∈
O ∪ {#}} and F3 = {〈s3, o〉 ∈ S}. �

Figure 1 depicts a part of the reduction for one step operator. From any 2-state 〈s, ∗,2〉, there
is a transition to 3-state 〈s, o,3〉 for every operator o that is executable at state s (i.e., s |= Preo).
From such 3-state the game can progress to either 3-state 〈s3, o〉 or 2-state 〈s2, o〉, from where
one of the possible effects of operator o will be applied, yielding corresponding transitions to states
〈s′i, o,2〉 such that s′i is the successor state of applying o’s possible effect ei ∈ Eff o in state s. We
note that game state 〈sI ,#,2〉 is the initial state, with # being a “dummy” fresh symbol. The
winning objective for player 2 in G is defined as all 2-states 〈s, ∗,2〉 in which the goal holds true
in its planning state s (i.e., s |= φgoal) together with all 3-states of the form 〈s3, ∗〉. The latter
will play a key role in the ability to capture a FOND planning task, and in particular, its “fairness”
assumption (see below).

In the construction above, informally, a one-step operator execution is modeled as a 3-step
process in the game: selection of the operator to be executed, selection of who decides its effects,
and realization of one of the possible operator effects. More concretely, the three-step process for
an operator execution goes as follows:

Step 1: 2’s turn. At state 〈s, ∗,2〉 in GP , player 2 chooses a successor state 〈s, o,3〉 for some
executable operator o ∈ O in s (i.e., one for which s |= Preo holds).

606

FOND PLANNING AS ASSUMPTION-BASED REACTIVE SYNTHESIS

〈sI ,#,2〉 〈s, o′,2〉 〈s, o,3〉
s |= Preo

〈s3, o〉

〈s2, o〉

〈s′1, o,2〉

s′1 ∈ Je1Ks

〈s′k, o,2〉

s′k ∈ JekKs

〈s′n, o,2〉

s′n ∈ JenKs

〈s′k,#,2〉

Figure 1: Example of a Reduction to a Buchi Control Game for the case when operator o is per-
formed in state s. Rectangular nodes are 2-moves while diamond nodes are 3-moves.
Effects e1, . . . , en, for some n ≥ 1, are all the possible effects of operator o and s′k is the
only state shown where the goal holds true (i.e., s′k |= φgoal). Red thicker borders denote
Büchi goal states.

Step 2: 3’s turn. At state 〈s, o,3〉 in GP , player 3 chooses a successor between 2 possibilities:
〈s2, o〉 or 〈s3, o〉. Basically, the decision that 3 makes at this step is which player will next
decide the effect of the operator, her or player 2.

Step 3: 2’s turn or 3’s turn. In states 〈s2, o〉 and 〈s3, o〉 players 2 and 3, respectively, choose a
successor of the form 〈s′, o,2〉 such that s′ is a possible successor state of state s in planning
problem P , that is, one for which there exists an effect e ∈ Eff o such that s′ ∈ JeKs.

The three-step game GP(WF) abstracts away the non-determinism of actions while balancing
the power of each player in the game. Possibly the most interesting step in the reduction is the
second, in which 3 decides which player will select the actual operator’s effect that should ensue,
among the ones possible. Importantly, since 〈s3, o〉 is part of the acceptance Büchi set F , the
objective for player 2 is satisfied—2 “wins”—if game state 〈s3, o〉 is visited infinitely often. So,
player 3 pays the price of choosing the planning successor state, when executing operator o in
planning state s, by adding a goal state to the play. Put differently, player 2 wins, if player 3
(chooses to) select the operator’s effect, in a state, infinitely often. As a consequence, for 3 to have
a chance to win, it cannot decide an operator’s effect in a state forever: eventually it has to yield
control to player 2 for the selection of the operator’s effect. This means that for 3 to win, it needs to
bring the game—through a finite number of effect choices—to a state where 2 cannot win anymore
even if it is given control of effect selection.

Example 2. In Figure 2 the reduction to the BCP for the planning problem Pcoin of Example 1 is
shown. It depicts how the three-step game abstracts away the non-determinism of certain actions
(like FLIP1 and FLIP2) by balancing the power of each player.

For instance, if player 3 would be so malicious to synchronize failures (“mimicking” the unfair
run λ = w0(w1w2w4w1w3w5)ω), the resulting trace would indeed be winning for 2 in the game.�

607

D’IPPOLITO, RODRÍGUEZ, & SARDINA

〈sI ,#,2〉
sI |= ¬holding1 ∧ ¬holding2

∧¬heads1 ∧ ¬heads2

〈s1, PICK,3〉

〈s3
1 , PICK〉

〈s2
1 , PICK〉

〈sw1 , PICK,2〉
sw1 |= holding1 ∧ holding2

∧¬heads1 ∧ ¬heads2

〈s2, FLIP2,3〉

〈s2, FLIP1,3〉

〈s3
2 , FLIP1〉

〈s2
2 , FLIP1〉

〈sw3 , FLIP1,2〉
sw3 |= ¬holding1 ∧ holding2

∧¬heads1 ∧ ¬heads2

〈sw2 , FLIP1,2〉
sw2 |= ¬holding1 ∧ holding2

∧heads1 ∧ ¬heads2

〈s3, FLIP2,3〉

〈s3
3 , FLIP2〉

〈s2
3 , FLIP2〉

〈sG, FLIP2,2〉
sG |= ¬holding1 ∧ ¬holding2

∧¬heads1 ∧ heads2

〈sG,#,2〉

〈sw4 , FLIP2,2〉
sw4 |= ¬holding1 ∧ ¬holding2

∧heads1 ∧ ¬heads2

〈s4, FLIP2,3〉

〈s3
4 , FLIP2〉

〈s2
4 , FLIP2〉

〈s5, FLIP2,2〉
s5 |= ¬holding1 ∧ ¬holding2

∧¬heads1 ∧ ¬heads2

〈sw5 , FLIP2,2〉
sw5 |= ¬holding1 ∧ ¬holding2

∧¬heads1 ∧ heads2

Figure 2: Büchi Control Game GPcoin(WF) for the planning problem Pcoin from Example 1. States
swk in the game represent the first component of those wk belonging to KπPcoin

in the
“unfair” run λ (refer to Example 1).

As expected, it is possible to extract a planning policy from a player 2’s strategy: operator o is
an adequate action to take in planning state s if player 2 happens to choose o in some game state
having s as the planing state.

Definition 9 (Strategies to Policy). Let P = 〈P,O, sI , φgoal〉 be a FOND planning problem and
GP(WF) the BCP instance obtained from P as per Definition 8 above. Let σ2 be a strategy for
player 2 in game GP . Then, the associated FOND policy πσ2 is defined as follows, for all s ∈ 2P :

πσ2(s) = {o | o ∈ O, i ∈ N, σ3 ∈ Σ3, ρ
σ2,σ3 [i] = 〈s, ∗,2〉, σ2(〈s, ∗,2〉) = 〈s, o,3〉}. �

Observe that the associated policy πσ2 may be non-deterministic, as σ2 may prescribe different
operators for two different game states of GP sharing the same first component.

The following result makes the connection between runs in P-structure KP (Definition 4) and
the game graph GP with respect to a planning task P .

Lemma 1. Let P be a FOND planning problems. Then (here s0 = sI , the initial state of P):

〈s0, o0〉〈s1, o1〉 · · · 〈sk−1, ok−1〉〈sk, ok〉, with k ≥ 0, is a (finite) prefix of a run in KP
iff

608

FOND PLANNING AS ASSUMPTION-BASED REACTIVE SYNTHESIS

〈sI ,#,2〉〈s0, o0,3〉〈x0, o0〉〈s1, o0,2〉〈s1, o1,3〉〈x1, o1〉〈s2, o1,2〉〈s2, o2,3〉 · · ·
· · · 〈sk−1, ok−1,3〉〈xk−1, ok−1〉〈sk, ok−1,2〉〈sk, ok,3〉, with xi ∈ {si2, si3} and oi ∈ O, for all

i ∈ {0, . . . , k − 1}, is a (finite) prefix of a play in game graph GP .

Proof. We prove this by induction on the length n of prefix of a run in KP :

• If n = 0, then we aim to prove that 〈s0, o0〉 is a (finite) prefix of a run in KP iff it is the case
that 〈sI ,#,2〉〈s0, o0,3〉 is a prefix of a play in game graph GP = 〈(S,E, s0), (S2, S3)〉.
This follows trivially from Definition 8 and the fact that 〈s0, o0〉 belongs to the run as:

– s0 = 〈sI ,#,2〉 is the initial state of the game and s0 = sI is P’s initial state; and

– s0 |= Preo0 iff (〈sI ,#,2〉, 〈s0, o0,3〉) ∈ E.

• Assume that the thesis holds for any n = k, with k ≥ 1 (induction hypothesis), and consider
now n = k + 1 (which implies that n ≥ 1).

ONLY-IF. First, suppose that χ = 〈s0, o0〉〈s1, o1〉 · · · 〈sk, ok〉〈sk+1, ok+1〉 is a (finite) prefix
of a run in KP = 〈W,R,P 〉. By the induction hypothesis we have that

ρk = 〈sI ,#,2〉〈s0, o0,3〉 · · · · · · 〈sk−1, ok−1,3〉〈xk−1, ok−1〉〈sk, ok−1,2〉〈sk, ok,3〉, with
xi ∈ {si2, si3} and oi ∈ O, for all i ∈ {0, . . . , k − 1}, is a (finite) prefix of a play in game

graph GP .

Now, it follows from χ that R(〈sk, ok〉〈sk+1, ok+1〉) in KP . Then, using Definitions 3 and
4 for KP and the notion of policies, we know that sk |= Preok and sk+1 |= Preok+1 (as
ok ∈ ˆπ(sk) and ok+1 ∈ ˆπ(sk+1)), and sk+1 ∈ next(ok, sk).

With this, we conclude the existence of the following three pairs in GP ’s relation E as per
Definition 8:

– Because sk |= Preok , it follows that (〈sk, ok,3〉, 〈xk, ok〉) ∈ E, with xk ∈ {sk2
, sk

3}.
– Because sk+1 ∈ next(ok, sk), it follows that (〈xk, ok〉, 〈sk+1, ok,2〉) ∈ E.

– Finally, (〈sk+1, ok,2〉, 〈sk+1, ok+1,3〉) ∈ E applies directly.

Putting all together, we conclude that ρk〈xk, ok〉〈sk+1, ok,2〉〈sk+1, ok+1,3〉) is also a (fi-
nite) prefix of a play in game graph GP .

(IF.) Suppose that

ρk+1 = 〈sI ,#,2〉〈s0, o0,3〉 · · · · · · 〈sk, ok,3〉〈xk, ok〉〈sk+1, ok,2〉〈sk+1, ok+1,3〉,

with xi ∈ {si2, si3} and oi ∈ O, is a (finite) prefix of a play in game graph GP .
By induction hypothesis, χk = 〈s0, o0〉〈s1, o1〉 · · · 〈sk, ok〉〈sk, ok〉 is a (finite) prefix of a run in

KP = 〈W,R,P 〉. We are to prove that R(〈sk, ok〉, 〈sk+1, ok+1〉).
Due to ρk+1, we have (〈sk+1, ok,2〉〈sk+1, ok+1,3〉) ∈ E and thus sk+1 |= Preok+1 . By def-

inition of the universal policy π̂, it follows that ok+1 ∈ π̂(sk+1). In addition, from ρk+1 again,
we know that (〈xk, ok〉, 〈sk+1, ok,2〉) ∈ E, which implies that sk+1 ∈ next(ok, sk). Putting
both together, and following Definition 4, it follows that R(〈sk, ok〉, 〈sk+1, ok+1〉) is true and that
ρk+1〈sk+1, ok+1〉 is a (finite) prefix of a run in KP . �

609

D’IPPOLITO, RODRÍGUEZ, & SARDINA

The next main result shows that the induced FOND policy obtained from a solution to the
corresponding Büchi Control Problem (i.e., a winning strategy for player 2) is indeed a strong-
cyclic solution for the planning task of concern.

Theorem 3 (Correctness). Let P be a FOND planning problem and GP its associated Büchi Con-
trol Problem as per reduction in Definition 8. Then, 〈sI ,#,2〉 ∈ W2 (i.e., there exists a sure
winning strategy for 2 from the initial state 〈sI ,#,2〉 in GP(WF)) iff there exists a strong-cyclic
policy π for P .

Proof. (ONLY-IF) Let σ2 ∈ Σ2 be a sure winning strategy for 2 from 〈sI ,#,2〉 in GP . Wlog, we
assume that σ2 is uniform, in that it always makes the same operator choices in the states sharing
the same planning state. Formally, for all 〈s, o1,2〉, 〈s, o2,2〉 ∈ S2 with o1, o2 ∈ O, it is the case
that σ2(〈s, o1,2〉) = σ2(〈s, o2,2〉).

Let π be its associated FOND policy as per Definition 9. We shall prove next that π is a strong-
cyclic solution plan for P , that is, as per Definition 5, we are to prove

KπP , 〈sI , π(sI)〉 |= A(EFφgoalWφgoal).

To that end, consider an arbitrary maximal run λ = 〈s0, π(s0)〉〈s1, π(s1)〉 · · · of KπP from state
s0 = sI , and a state 〈s`, π(s`)〉 in λ for some ` ≥ 0 such that for all i ≤ `, KπP , 〈si, π(si)〉 |=
¬φgoal (i.e., si |= ¬φgoal). Due to the semantics of the weak-until quantifier, we must prove
KπP , 〈s`, π(s`)〉 |= EFφgoal, that is, the goal is reachable from 〈s`, π(s`)〉 in (P, π)-structure KπP .

Next consider the finite prefix run λ` = 〈s0, π(s0)〉 · · · 〈s`, π(s`)〉 of λ. Due to Lemma 1, there
exists a prefix play in the game graph GP “mimicking” run λ` of the form:

ρλ` = 〈sI ,#,2〉〈s0, π(s0),3〉〈s03
, π(s0)〉〈s1, π(s0),2〉〈s1, π(s1),3〉 · · ·

· · · 〈s`−1, π(s`−1),3〉〈s`−13
, π(s`−1)〉〈s`, π(s`−1),2〉.

That is, ρλ` is the play in the game corresponding to finite trace λ` in which each operator effect is
decided by player 3 (the “opponent”).

Next, we extend prefix play ρλ` to an infinite play ρ+
λ`

compatible with σ2 for 2 and a strategy
for 3 that lets player 2 decide (from then on) the effect of each operator in the game:

ρ+
λ`

= ρλ`〈s`
2
, π(s`)〉〈q1, π(s`),2〉〈q1, o1,3〉〈q12

, o1〉〈q2, o1,2〉〈q2, o2,3〉〈q22
, o2〉 · · ·

So, ρ+
λ`

is a play in GP that is compatible with σ2 for 2 (because of the way π was extracted from
σ2 and the uniformity assumption on σ2) and a strategy σ3 ∈ Σ3 for player 3 that decides the
effect for the first `-th operators—play prefix ρλ`—and then always lets player 2 decide the effect
of all subsequent operators. Formally, strategy σ3 is such that:

• σ3(〈si, π(si),3〉) = 〈si3, π(si)〉 and σ3(〈si3, π(si)〉) = 〈si+1, π(si),2〉, for all i =
{0, . . . , `− 1};

• σ3(〈s`, π(s`),3〉) = 〈s`2, π(s`)〉; and

• σ3(〈oi, oi,3〉) = 〈si2, oi〉 and σ3(〈oi2, oi〉) = 〈oi+1, oi),2〉, for all i ≥ 1.

610

FOND PLANNING AS ASSUMPTION-BASED REACTIVE SYNTHESIS

Since σ2 is a winning strategy for player 2 it has to be the case that inf (ρ+
λ`

)∩F 6= ∅. Moreover,
as the selected σ3 selects a state of the form 〈s3, o〉 only a finite number of times (namely, the first
` steps), it follows that inf (ρ+

λ`
) ∩ F3 = ∅. Since F = F3 ∪ F2, it has to be the case that

inf (ρ+
λ`

) ∩ F2 6= ∅. This implies that there exists k ≥ 1 such that game state 〈qk, ok,2〉 appears an
infinite number of times in play ρ+

λ`
and qk |= φgoal, that is, the play does reach a state where the

planning goal holds. Wlog, assume k to be the minimum one, that is, qk is the first state in play ρ+
λ`

where the planning goal is true (i.e., qi 6|= φgoal, for all i < k).
The remaining of the proof involves building back, from play ρ+

λ`
and via Lemma 1, a run inKπP

showing that the goal is reachable from state 〈s`, π(s`)〉. First consider the following prefix of ρ+
λ`

:

ρ+
k = ρλ`〈s`

2
, π(s`)〉〈q1, π(s`),2〉〈q1, o1,3〉〈q12

, o1〉〈q2, o1,2〉〈q2, o2,3〉 · · ·
· · · 〈qk−1, ok−2,2〉〈qk−1, ok−1,3〉〈qk−12

, ok−1〉〈qk, ok−1,2〉.

Because qk is the first game state where the planning goal φgoal holds true, it follows from the
structure of the game graph that oi 6= # and hence oi ∈ O, for all i ∈ {1, . . . , k − 1}. Moreover,
since ρ+

λ`
is compatible with winning strategy σ2, from which uniform policy π was extracted, it is

the case that oi = π(qi), for all i ∈ {1, . . . , k − 1}, and we can re-write ρ+
k as follows:

ρ+
k = ρλ`〈s`

2
, π(s`)〉〈q1, π(s`),2〉〈q1, π(q1),3〉〈q12

, π(q1)〉〈q2, π(q1),2〉〈q2, π(q2),3〉 · · ·
· · · 〈qk−1, π(qk−2),2〉〈qk−1, π(qk−1),3〉〈qk−12

, π(qk−1)〉〈qk, π(qk−1),2〉.

Now, due to Lemma 1, there exists a prefix of a maximal run in structure KP of the form:

λ+
k = λ`〈q1, π(q1)〉〈q2, π(q2)〉 · · · 〈qk−1, π(qk−1)〉〈qk, o〉.

Since a prefix of a maximal run, the last state in λ` is 〈s`, π(s`)〉, and all operators are those pre-
scribed by policy π, there is a run in KπP from state 〈s`, π(s`)〉 of the form:

〈s`, π(s`)〉〈q1, π(q1)〉〈q2, π(q2)〉 · · · 〈qk−1, π(qk−1)〉〈qk, o〉 · · ·

Finally, since qk |= φgoal, it follows from this run that KπP , 〈s`, π(s`)〉 |= EFφgoal applies.

(IF) Assume then that π is a strong-cyclic solution plan for P and let us prove that there exists
a sure winning strategy σ2 for player 2. We extract such strategy σ2 from the strong-cyclic plan π
as follows:

σ2(x) =


〈s, π(s),3〉 for x = 〈s, o,2〉, o ∈ O, s |= ¬φgoal
〈s,#,2〉 for x = 〈s, o#,2〉, o# ∈ O ∪ {#}, s |= φgoal

〈s′, π(s),2〉 for x = 〈s2, π(s)〉, s′ = nextint(s, o, φgoal)

where nextint(s, o, φgoal) is a function returning a successor state s′ of state s after execution of
operator o which is “closest” to goal φgoal as per policy π (that is, a state s′ among set next(s, o)
with the shortest path to a goal state in structureKπP). It is important to point out that, while function
strategy σ2 will be, in general, partial (e.g., it is undefined for game states 〈s2, o〉 with o 6= π(s)),
it will indeed be defined in all game states reachable from the initial one, the relevant ones. In
particular, σ2 is defined for every game state 〈s2, π(s)〉 if s is reachable from sI in structure KπP ,
as π is strong-cyclic and hence closed.

611

D’IPPOLITO, RODRÍGUEZ, & SARDINA

Next, we shall prove that the strategy σ2 is indeed a sure winning strategy for player 2. Intu-
itively, if player 3 eventually allows 2 to select the effects of operators, 2 will select those leading
closer to the goal (a per strong-cyclic policy π). So, consider any arbitrary strategy σ3 for 3 and a
play ρ compatible with both with σ2 and σ3

ρ = 〈sI ,#,2〉〈s0, π(s0),3〉〈ω0, π(s0)〉〈s1, π(s0),2〉〈s1, π(s1),3〉
〈ω1, π(s1)〉〈s2, π(s1),2〉〈s2, π(s2),3〉〈ω2, π(s2)〉〈s3, π(s1),2〉 · · · ,

where ωi ∈ {si3, si2}, for all i ≥ 0. We want to show that ρ is a winning play for 2, that is,
inf (ρ)∩F 6= ∅. To that end, suppose that inf (ρ)∩F3 = ∅ (otherwise ρ is winning already for 2 as
player 3 is not being fair in selecting the effect of actions), and let us prove that inf (ρ) ∩ F2 6= ∅.
We point out that this is exactly where the fact that a Büchi game, rather than a reachability one, is
important so as to capture fair/unfair runs. So, technically, we are to show that there exists a game
state 〈s, o#,2〉, with s |= φgoal, that is mentioned an infinite number of times in play ρ.

From inf (ρ) ∩ F3 = ∅, together with the fact that the set of game states is finite, it follows that
there exists ` ≥ 0 such that ωi = si

2, for all i ≥ `. That is, from step ` onwards, player 3 always
allows player 2 to pick operators’ effects, that is, σ3(〈si, π(si),3〉) = 〈si2, π(si)〉, for all i ≥ `.

Now, observe that from step ` in ρ, strategy σ2, by definition, selects the effect of each executed
operator that will bring the goal in the shortest path. Remember also that σ2 follows strong-cyclic
solution π, and hence σ2 is always able to select an operator leading eventually to the goal. So,
suppose that the shortest path to a goal state from planning state s` is k ≥ 0. Then, play ρ above is
of the form:

ρ = 〈sI ,#,2〉 · · · 〈s`, π(s`−1),2〉〈s`, π(s`),3〉〈s`2, π(s`)〉〈s`+1, π(s`),2〉 · · ·
· · · 〈s`+k−1, π(s`+k−1),3〉〈s`+k−12

, π(s`+k−1)〉〈s`+k, π(s`+k−1),2〉θ1θ2 · · · ,

such that s`+k |= φgoal, as each operator executed yields an effect following the shortest path to the
goal in KπP . Then, due to the way that σ2 was defined, it follows that θi = 〈s`+k,#,2〉, for all
i ≥ 1—that is, a goal game state has been reached, so σ2 forces the game to remain in 〈s`+k,#,2〉
forever. This means that 〈s`+k,#,2〉 ∈ inf (ρ) ∩ F2, play ρ is a winning play for 2, and, since ρ
was arbitrary chose, σ2 is a sure winning strategy for player 2 (hence, there could be no winning
strategy for player 3 and the thesis follows). �

Correctness states that the problem of finding a sure winning strategy for player 2 in the corre-
sponding game G is equivalent to the problem of finding a strong-cyclic policy π for P . Definition
9 states how to construct such a policy based on the sure winning strategy for player 2 that can be
found in polynomial-time. Thus, the complexity of solving the problem of finding a strong-cyclic
policy π for P is in PTIME.

In turn, if there is no strong-cyclic solution for the planning task, then player 3 ought to have a
winning strategy, and vice-versa. This follows almost directly from Theorem 3 and the fact that the
game GP(WF) is determined.

Corollary 1 (Completeness). Let P be a FOND planning problem and GP its associated Büchi
Control Problem as per reduction in Definition 8. Then, there is no strong-cyclic policy π for P iff
3 has a sure winning strategy from the initial state 〈sI ,#,2〉 in GP .

612

FOND PLANNING AS ASSUMPTION-BASED REACTIVE SYNTHESIS

Proof. Suppose that there is no strong-cyclic policy for P . Then, due to Theorem 3, there is no sure
winning strategy for 2 from the initial state 〈sI ,#,2〉. Since GP(WF) is determined—every Büchi
game is—it follows that there exists a sure winning strategy for player 3. The second part follows
in analogous way: if there is no sure winning strategy for 2 from game state 〈sI ,#,2〉, then there
ought to be a sure winning strategy for player 3 (determinacy of GP(WF)) and hence there is no
strong-cyclic solution for P due to Theorem 3. �

The results above demonstrate that FOND planning can be solved via reactive synthesis. In fact,
the two-player game interpretation of controller synthesis allows to compactly and explicitly encode
planning problems as Büchi games. Clearly, the specific Büchi game GP we obtain is exponential
on the succinct representation P of the planning problem (Definition 4). Thus, since solving Büchi
games is known to require polynomial time on the size of the game (Maler, Pnueli, & Sifakis, 1995),
we obtain the following complexity lower-bound for our realizability/synthesis based approach to
FOND planning.

Theorem 4 (Complexity). Let P = 〈P,O, sI , φgoal〉 be a FOND planning problem and GP its
associated Büchi Control Problem as per Definition 8. Deciding whether GP is winning and com-
puting a winning strategy for 2 can be done in O((4× |2P | × |O|)2).

Proof. Deciding whether a winning strategy for two-player games with deterministic Büchi condi-
tions exist, and computing one, is known to be quadratic in the size of the game’s state space (Maler
et al., 1995), in our case, set S of GP . Since S is 4 × |O| times larger than KP ’s state space, we
have that |S| ∈ O(4× (|2P | × |O|)), and the thesis follows. �

This is, up to our knowledge, the first realizability/synthesis approach to FOND planning that is
optimal w.r.t. computational complexity, in that it solves the problem in quadratic time w.r.t. the size
of the input (which is exponential) and thus remains EXPTIME-complete (instead of 2EXPTIME-
complete via general LTL controller synthesis). Now, we remind the reader that one can encode a
transition system such as GP as LTL safety-based formulas (Bloem et al., 2012; Clarke, Grumberg,
& Peled, 1999), as done in Equation 2. In addition, one can do that succinctly, by directly translating
the factored planning descriptionP into LTL safety formulas. Similarly, the Büchi winning condition
of game GP(WF) can be specified succinctly in a polynomially large weak fairness LTL formula of
the form GFφF . Putting it all together, we get the following summarizing result:

Corollary 2. Let P be a FOND planning problem with goal φgoal. The following statements are
equivalent:

1. There exists a strong-cyclic policy solution for P .

2. LTL formula ϕeff
P ∧ (ϕpre

P → [γsfair
P → Fφgoal]), as per Equation 2, is realizable.

3. There is a sure winning strategy for 2 from the initial state 〈sI ,#,2〉 in GP .

4. LTL formula ϕ3
GP ∧ (ϕ2

GP → GFφF) is realizable, where ϕ3
GP and ϕ2

GP are factorized safety
formulas encoding game graph GP and φF is the factorized formula encoding the Büchi
winning condition.

Proof. Equivalence between (1) and (2) follows from Theorems 1 and 2, together with Equation (2).
Equivalence among (1), (3), and (4) follows from Theorem 3, and the fact that one can encode Büchi
games with safety and weak fairness formulas, as explained above. �

613

D’IPPOLITO, RODRÍGUEZ, & SARDINA

We close by observing that the reduction developed leverages on the fact that the strong fairness
assumption present in FOND planning is of restricted (local) form (see discussion in Section 5).

5. Related Work

The foundations of non-deterministic planning under full observability has been first given by
Daniele et al. (2000) and then slightly revised by Pistore and Traverso (2001) to account for ar-
bitrary behavior after the goal has been achieved. There, the notion of strong-cyclic plans as an ade-
quate solution concept for FOND planning was introduced and characterized logically in CTL. The
characterization basically states that strong-cyclic plans are those that yield a “live” and “closed”
execution graph, that is, one in which the goal is reachable in every state along any possible execu-
tion. In other words, regardless of the effects ensuing, the goal is never “lost.” Interestingly, such
characterization does not refer to the fairness assumption on the environment commonly used in
the literature (e.g., Cimatti et al., 2003; Geffner & Bonet, 2013; Kuter et al., 2008; Muise, Belle,
& McIlraith, 2014; Ramirez & Sardina, 2014) to frame strong-cyclic policies as those such that
“provided the environment is fair w.r.t. operators’ effects, the goal will be achieved.” While most
works discuss this at an informal level, Geffner and Bonet (2013) define strong-cyclic policies in
those terms formally, albeit in semantic terms by defining what “fair” runs are at the meta-level.
Our work provides a logical characterization in CTL of this common understanding of strong-cyclic
policies, thus complementing the original characterization of Daniele et al. and Pistore and Traverso.

As a result of the growing interest beyond classical planning, there are today notable FOND
planning techniques and technologies, such as PRP (Muise, McIlraith, & Beck, 2012) (arguably,
the state-of-the-art today), NDP (Kuter et al., 2008), FIP (Fu et al., 2011), MBP (Cimatti et al.,
2003), and GAMER (Kissmann & Edelkamp, 2009). The first three are built on top of classical
planners, whereas the last two perform (nested) fix-point reasoning via model-checking type tech-
niques. By implementing different clever techniques, they all seek structures that are closed and
“live,” thus aiming to meet Daniele et al.’s logical specification of strong-cyclic policies. Our ac-
count in Section 3, instead, provides the formal justification for applying reactive synthesis directly
against a declarative specification of strong-cyclic solutions, based on the achievement of the goal
under fair environments. While in Section 4 we demonstrated that the FOND complexity can be
matched, by a succinct encoding of the effect fairness assumption, we recognize that further work is
required to understand which approaches and techniques are more appropriate for different domains
and contexts (e.g., whether we are after one solution plan or “universal” type of plans), as well as to
integrate diverse approaches into “hybrid” versions (e.g., Ramirez & Sardina, 2014).

When seen as a controller synthesis problem, it follows from Equation 2 that FOND planning
amounts to synthesis under fairness assumptions (Vardi, 1995). In particular, the fairness assump-
tion used is a strong fairness condition of the form “executing an action (in a state) infinitely often,
yields, immediately, all its effects infinitely often.” While feasible, synthesis under fairness assump-
tions is computationally very demanding (Vardi, 1995 has proved it to be complete for 2EXPTIME).
However, the specific fairness condition needed for capturing FOND planning is restricted to a (lo-
cal) reactivity condition of the form (GFp→ GFq) where q is an immediate consequence of p. Our
translation (Definition 8) exploits this and transfers the reactivity required in each state in FOND
to the three-step Büchi game. More precisely, the three-step interaction of the players “simulates”
the (limited) strong fairness condition. We note that our game is inspired by the reduction from
stochastic to non-stochastic games with parity conditions developed by Chatterjee et al. (2004).

614

FOND PLANNING AS ASSUMPTION-BASED REACTIVE SYNTHESIS

Given the above, one may wonder whether one could resort to Generalized Reactivity(1), com-
monly1 referred as GR(1), synthesis for FOND planning. GR(1) is a well-known fragment of LTL
that is both highly expressive and significantly better behaved computationally for realizability and
synthesis than full LTL (Bloem et al., 2012; Piterman et al., 2006). A GR(1) specification has
the form (GFφ1 ∧ · · · ∧ GFφn) → (GFψ1 ∧ · · · ∧ GFψm), thus allowing to specify fairly general
assumption-requirement specifications. However, one can see that such type of formula will account
directly for only one state-strong fair constraint, as per Definition 6. To account for all required con-
straints in a domain, we would need a GR(n) specification. The work of De Giacomo, Patrizi, and
Sardina (2010) tries to achieve a GR(1) formula via a natural encoding of strong fairness into weak
fairness, as proposed by Kesten, Piterman, and Pnueli (2005). Unfortunately, such encoding only
works in the context of model checking, but not synthesis. Said so, GR(1) specifications (and syn-
thesis) is strictly more expressive than Büchi conditions, and it is easy to see that our above encoding
could be represented as a GR(1) specification of the shape (GF true → GFψ). The point then is
that, when it comes to capturing the special strong-fairness type used in FOND planning, one does
not need to resort to even GR(1), and is enough to consider a less expressive type of specification.

Interestingly, the work by D’Ippolito et al. (2011, 2013) leverages on GR(1) specifications
within a Software Engineering (SE) context to perform “synthesis of live controllers for fallible
domains.” This is indeed very related to our work and in fact inspired (Sardina & D’Ippolito, 2015),
a preliminary version of this paper. There, operational live event-based models are automatically
synthesized from Generalized Reactivity(1) (GR(1)) specifications of intended system behavior.
GR(1) is a fragment of LTL that is both very expressive and significantly better behaved compu-
tationally for realizability and synthesis than full LTL (Bloem et al., 2012). So, the authors take
GR(1) and, instead of assuming an idealized domain, as standard in the literature, explicitly model
failures of controlled actions. They then identify a realistic fairness condition—Strong Independent
Fairness—which allows for a polynomial treatment of such failures. Their SE insights and results
can be imported to AI FOND planning, as we have previously done (Sardina & D’Ippolito, 2015),
though only under the additional assumption that one can discriminate, at the outset, the intended
effects from the failure effects of actions. This is an adequate assumption in those scenarios in which
the intended effects are clear and always the same (e.g., the intended effect of a robot gripping an
object is to be holding the object; a failure may involve the object slipping or even breaking). What
we proposed here, in Section 4, is therefore more general and captures full FOND planning, which
allows the same effect of an action to be an “intended” one in some cases and as “failure” in others.

We close by noting that there has been substantial work in understanding how automated plan-
ning relates to formal methods. The relation with theorem proving, for example, goes back to the
work of Green (1969), and has more recently been explored by Rintanen (1999) for contingent plan-
ning in the context of more mature theorem provers (as it deals with contingent planning, fairness
assumptions are not relevant). More recently, substantial interest has been shown exploring the re-
lationship with model checking and synthesis (e.g., Camacho et al., 2016; Cimatti et al., 2003; De
Giacomo, Patrizi, Felli, & Sardina, 2010; Kerjean, Kabanza, St.-Denis, & Thiébaux, 2006; Kiss-
mann & Edelkamp, 2009; Patrizi et al., 2011, 2013; Pistore & Traverso, 2001; Pistore & Vardi,
2007; Ramirez & Sardina, 2014; Torres & Baier, 2015). Like us, Pistore and Vardi (2007) formal-
izes planning in LTL, but to explore variations of LTL-based goals. As in other work, their account
remains at the structural properties of strong-cyclic plans, without explicit reference to the interplay
between the fairness assumption and the goal, which is our focus. Their computational technique
is based on tree automata with a 2EXPTIME complexity; we use Büchi games, which are arguably

615

D’IPPOLITO, RODRÍGUEZ, & SARDINA

much simpler. In turn, De Giacomo, Patrizi, Felli, and Sardina (2010) reduces the planning task
to an equivalent efficient (in terms of computational complexity) controller synthesis one, albeit
for “standard” conditional planning (i.e., planning for strong solutions); hence, as with the work
of Rintanen, the issue of fair effects does not arise.

The work of Patrizi et al. (2011; 2013), and several others, can be seen as complementary
to ours. There, the authors are interested in using available planning technology to solve a limited
form of LTL temporally extended goals requiring infinite plans (Patrizi et al., 2011 assumes classical
deterministic domains, whereas Patrizi et al., 2013 accounts for FOND domains). They do so by
encoding the deterministic Büchi automaton corresponding to the LTL goal into PDDL. The work of
Camacho et al. (2016) extends that of Patrizi et al. by dropping the restriction on the LTL goals and
attaining greater efficiency. While both are concerned with realizing goals beyond reachability ones
using planning techniques, we are instead interested in showing how standard FOND planning (with
just achievement goals) can be recast as a CTL/LTL synthesis task; so the work is complementary
in some sense. Also, in essence, we are concerned with the conceptual link between planning
and reactive synthesis, while Camacho et al.’s (2016) and Patrizi et al.’s (2011) link with reactive
synthesis is only present as technical support for the actual solution to the problem. In addition, in
our work, the fairness assumption is central and is not assumed built-in into the synthesis problem,
but logically specified to capture the intended meaning of well-behave FOND environments. Even
more, we show how to compile away such fairness requirement and perform “vanilla” synthesis on a
Büchi control problem (Section 4). On the other hand, the work of Patrizi et al., as well as the recent
work of Torres and Baier (2015), aim at handling LTL goals beyond standard achievement ones, but
by appealing to classical (FOND) planning. This suggests that the framework we developed in this
paper could be generalized too.

6. Conclusions

The overarching objective of this paper was to formally study and logically identify the kind of en-
vironments in which strong-cyclic planning is adequate, thus further completing the existing formal
characterization of such type of planning in CTL (Cimatti et al., 2003; Daniele et al., 2000; Pistore
& Traverso, 2001) and contributing to bridging the gap between automated planning (Ghallab, Nau,
& Traverso, 2004) and reactive synthesis (Pnueli & Rosner, 1989b). To that end, in this paper, we
provided three technical contributions. First, we demonstrated that an adequate fairness assumption
ought to encode the independence of different non-deterministic steps, and developed a characteri-
zation of such environments in CTL*/LTL that does so. Secondly, and more importantly, we proved
that strong-cyclic policies, as defined in the literature are sound and complete solution concepts for
such type of environments. Whereas this has always been given as granted in the field, this is, to
our knowledge, the first work that crystallizes it formally and in the same foundational framework
as that of Daniele et al.. We then argued that the logical characterization obtained, allows, in princi-
ple, for direct specification of the FOND planning task into a reactive synthesis one, albeit one that
appears not amenable for efficient computation. Lastly, we demonstrated that the particular type
of (strong) fairness required can be carefully encoded into a Büchi game fairness type in an effi-
cient manner, thus achieving the EXPTIME lower bound complexity of non-deterministic planning.
This generalizes our preliminary result (Sardina & D’Ippolito, 2015) that showed that, for the spe-
cial case of FOND problems with explicit “intended effects” for actions, low complexity synthesis
techniques were applicable.

616

FOND PLANNING AS ASSUMPTION-BASED REACTIVE SYNTHESIS

It is important to stress that, with these results, we do not intend to claim that controller syn-
thesis is, today, as effective in practice as existing optimized FOND system, such as the efficient
PRP (Muise et al., 2012) planner. For one, standard out-of-the-box reactive synthesis approaches
will generally perform full exploration of the state space and yield sort of universal solution poli-
cies, whereas state-of-the-art FOND planners often aim (and succeed) at avoiding full exploration
of the state space (though outputting one single solution policy). Regardless, experimental evalua-
tion is out of the scope of the current paper. What the results do intend is to further crystallize what
FOND planning is and support cross-fertilization between the two synthesis areas. We believe that
making the connection between planning and controller synthesis more evident can benefit both ar-
eas. Automated planning can exploit recent powerful techniques—like synthesis of GR(1) or safety
specifications—and open for more general planning settings. As pointed out by De Giacomo, Pa-
trizi, and Sardina (2010), one could be interested in planning under “selective” and/or “conditional”
fairness assumptions (e.g., the dice is fair unless an action has “loaded” it), or planning under ac-
tions with “intended” and “failure” effects (D’Ippolito et al., 2011). The recent work by Camacho
and McIlraith (2016) explores FOND planning in the context of more refined description of action
transitions under which the fairness assumption may not necessarily hold. For reactive synthesis,
planning settings can provide concrete applications and inform what types of system goal specifi-
cations are meaningful and worth studying. Also, several promising techniques and systems have
emerged for solving FOND planning problems, which, as we have noted in the previous section
may inform alternative computational approaches for controller synthesis.

In this article, we have restricted our main results, such as Theorem 3 and Corollary 1, to
deterministic policies. It turns out that, for non-deterministic policies—those prescribing more than
one action in a state—the assumption on state-strong fair on the environment (Definition 6), is
not sufficient. To see that, consider a state s and π(s) = {a, b} (in state s, policy π prescribes
the execution of a or b). Suppose that action a has no effects and hence it behaves like a no-op
action in s (i.e., when executed in s the unique successor state is s itself). In turn, action b is non-
deterministic and may transition s to either s itself or to goal state sg. It is not hard to see that π
does meet Definition 5 and is hence strong-cyclic: the goal is always reachable from s. However, it
is not enough for the environment to behave in a fair manner if the executor of π actually chooses
to execute action a always! Indeed, there are executions of policy π from state s in state-strong fair
environments that never achieve the goal. To recover the technical results presented in this work,
one also needs to require the policy to be carried out by a fair executor, that is, one that chooses
every prescribed action in each state infinitely often (this can be captured with a similar version
of Definition 6). Also, we note that it is not the case that any deterministic (naive) projection of
a non-deterministic strong-cyclic policy is also a strong-cyclic. In the example above, projection
π′(s) = {a} is not strong-cyclic anymore. Nonetheless, it is not difficult to see that the strong-
cyclic deterministic policies encoded inside a non-deterministic one can be checked or extracted in
efficiently—in polynomial time—using a backward (from the goal) type of algorithm.

From the work presented in this article, there are many interesting possible research lines to
pursue. We plan, for example, to investigate other solution concepts for non-deterministic planning.
In particular, we are interested in fault-tolerant planning (Domshlak, 2013) and seek solution plans
that may accept failures in certain circumstances. Going one step beyond, it would be interesting to
develop a framework for FOND planning with hybrid type of solution concepts, integrating standard
strong-cyclic with strong, fault-tolerant, and even weak sub-plans, and under conditional fairness

617

D’IPPOLITO, RODRÍGUEZ, & SARDINA

assumptions. This poses both representation as well as computational challenges that, we believe,
are worth exploring at this stage.

Acknowledgments

We thank the anonymous reviewers (of this article and our previous version at IJCAI’15), for their
comments and acknowledge the support of the Australian Research Council under a Discovery
Project (DP120100332), and projects ANPCYT PICT 2012-0724/2011-1774/2013-2341, UBACYT
036/0384, CONICET PIP 11220110100596CO, and MEALS 295261.

References

Abadi, M., Lamport, L., & Wolper, P. (1989). Realizable and unrealizable specifications of reac-
tive systems. In Proceedings of the international colloquium on automata, languages and
programming (ICALP) (pp. 1–17).

Baier, C., & Katoen, J. (2008). Principles of model checking. The MIT Press.
Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., & Sa’ar, Y. (2012). Synthesis of reactive(1)

designs. Journal of Computer and System Sciences, 78(3), 911–938.
Bryce, D., & Buffet, O. (2008). The 6th international planning competition: Uncertainty track. In

Proceedings of international planning competition (IPC).
Buchi, J., & Landweber, L. (1969). Solving sequential conditions by finite-state strategies. Trans-

actions of the American Mathematical Society, 295–311.
Bylander, T. (1994). The computational complexity of propositional strips planning. Artificial

Intelligence, 69, 165–204.
Camacho, A., & McIlraith, S. A. (2016). Strong-cyclic planning when fairness is not a valid

assumption. In Proceedings of the workshop on knowledge-based techniques for problem
solving and reasoning. (http://ktiml.mff.cuni.cz/ bartak/KnowProS2016)

Camacho, A., Triantafillou, E., Muise, C. J., Baier, J. A., & McIlraith, S. A. (2016). Non-
deterministic planning with temporally extended goals: Completing the story for finite and
infinite LTL. In Proceedings of the workshop on knowledge-based techniques for problem
solving and reasoning. (http://ktiml.mff.cuni.cz/ bartak/KnowProS2016)

Chatterjee, K., Jurdzinski, M., & Henzinger, T. A. (2004). Quantitative stochastic parity games.
In Proceedings of the annual ACM-SIAM symposium on discrete algorithms (SODA) (pp.
121–130).

Church, A. (1963). Logic, arithmetic, and automata. In Proceedings of the international congress
of mathematicians (pp. 23–35).

Cimatti, A., Pistore, M., Roveri, M., & Traverso, P. (2003). Weak, strong, and strong cyclic planning
via symbolic model checking. Artificial Intelligence, 147(1-2), 35–84.

Ciolek, D., Braberman, V. A., D’Ippolito, N., & Uchitel, S. (2016). Directed controller synthesis
of discrete event systems: Taming composition with heuristics. In Proeedings of the IEEE
conference on decision and control (CDC) (pp. 4764–4769).

Clarke, E., & Emerson, E. (1982). Design and synthesis of synchronization skeletons using branch-
ing time temporal logic. In D. Kozen (Ed.), Logics of programs (Vol. 131, pp. 52–71).

618

FOND PLANNING AS ASSUMPTION-BASED REACTIVE SYNTHESIS

Springer.
Clarke, E., Grumberg, O., & Peled, D. (1999). Model checking. Springer.
Daniele, M., Traverso, P., & Vardi, M. (2000). Strong cyclic planning revisited. Recent Advances

in AI Planning, 35–48.
De Giacomo, G., Patrizi, F., Felli, P., & Sardina, S. (2010). Two-player game structures for general-

ized planning and agent composition. In Proceedings of the national conference on artificial
intelligence (AAAI) (pp. 297–302).

De Giacomo, G., Patrizi, F., & Sardina, S. (2010). Generalized planning with loops under strong
fairness constraints. In Proceedings of the international conference on principles of knowl-
edge representation and reasoning (KR) (pp. 351–361).

De Giacomo, G., & Vardi, M. Y. (2015). Synthesis for LTL and LDL on finite traces. In Proceedings
of the international joint conference on artificial intelligence (IJCAI) (pp. 1558–1564).

D’Ippolito, N., Braberman, V. A., Piterman, N., & Uchitel, S. (2011). Synthesis of live behaviour
models for fallible domains. In Proceedings of the international conference on software
engineering (ICSE) (pp. 211–220).

D’Ippolito, N., Braberman, V. A., Piterman, N., & Uchitel, S. (2013). Synthesizing non-anomalous
event-based controllers for liveness goals. ACM Transactions on Software Engineering and
Methodology (TOSEM), 22(1), 9:1–9:36.

Domshlak, C. (2013). Fault tolerant planning: Complexity and compilation. In Proceedings of the
international conference on automated planning and scheduling (ICAPS) (pp. 64–72).

Emerson, E. A. (1990). Temporal and modal logic. In Handbook of theoretical computer science,
volume B: Formal models and sematics (Vol. B, pp. 995–1072). The MIT Press.

Emerson, E. A., & Halpern, J. Y. (1986). “Sometimes” and “not never” revisited: On branching
versus linear time temporal logic. Journal of the ACM, 33(1), 151–178.

Forejt, V., Kwiatkowska, M. Z., Norman, G., & Parker, D. (2011). Automated verification tech-
niques for probabilistic systems. In Proceedings of the international school on formal meth-
ods for the design of computer (SFM) (pp. 53–113).

Fu, J., Ng, V., Bastani, F., & Yen, I.-L. (2011). Simple and fast strong cyclic planning for fully-
observable non-deterministic planning problems. In Proceedings of the international joint
conference on artificial intelligence (IJCAI) (pp. 1949–1954).

Geffner, H., & Bonet, B. (2013). A concise introduction to models and methods for automated
planning. Morgan & Claypool Publishers.

Gerevini, A., Bonet, B., & Givan, B. (Eds.). (2006). Booklet of 4th international planning compe-
tition. Retrieved from http://www.ldc.usb.ve/˜bonet/ipc5/

Ghallab, M., Nau, D. S., & Traverso, P. (2004). Automated planning: Theory and practice. Morgan
Kaufmann Publishers Inc.

Green, C. (1969). Application of theorem-proving to problem solving. In Proceedings of the
international joint conference on artificial intelligence (IJCAI) (pp. 219–239).

Kerjean, S., Kabanza, F., St.-Denis, R., & Thiébaux, S. (2006). Analyzing LTL model checking
techniques for plan synthesis and controller synthesis (work in progress). Electronic Notes in
Theoretical Computer Science (ENTCS), 149(2), 91-104.

Kesten, Y., Piterman, N., & Pnueli, A. (2005, July). Bridging the gap between fair simulation and

619

http://www.ldc.usb.ve/~bonet/ipc5/

D’IPPOLITO, RODRÍGUEZ, & SARDINA

trace inclusion. Journal Information and Computation, 200, 35–61.
Kissmann, P., & Edelkamp, S. (2009). Solving fully-observable non-deterministic planning prob-

lems via translation into a general game. In Proceedings of the annual german conference on
AI (pp. 1–8).

Kupferman, O., Piterman, N., & Vardi, M. Y. (2006). Safraless compositional synthesis. In Pro-
ceedings of the international conference on computer aided verification (CAV) (pp. 31–44).

Kuter, U., Nau, S., D., Reisner, E., & Goldman, P., R. (2008). Using classical planners to solve
nondeterministic planning problems. In Proceedings of the international conference on auto-
mated planning and scheduling (ICAPS) (pp. 190–197).

Maler, O., Pnueli, A., & Sifakis, J. (1995). On the synthesis of discrete controllers for timed
systems. In Stacs 95 (pp. 229–242).

Manna, Z., & Waldinger, R. (1987). How to clear a block: A theory of plans. Journal of Automed
Reasoning, 4(3), 343–377.

Martin, D. (1975). Borel determinacy. Annals of Mathematics, 363–371.
Muise, C., Belle, V., & McIlraith, S. A. (2014). Computing contingent plans via fully observable

non-deterministic planning. In Proceedings of the national conference on artificial intelli-
gence (AAAI) (pp. 2322–2329).

Muise, C., McIlraith, S. A., & Beck, J. C. (2012). Improved non-deterministic planning by exploit-
ing state relevance. In Proceedings of the international conference on automated planning
and scheduling (ICAPS) (pp. 172–180).

Muise, C., McIlraith, S. A., & Belle, V. (2014). Non-deterministic planning with conditional
effects. In Proceedings of the international conference on automated planning and scheduling
(ICAPS) (pp. 370–374).

Ortlieb, M., & Mattmüller, R. (2013). Pattern-database heuristics for partially observable nonde-
terministic planning. In Proceedings of the annual german conference on AI (pp. 140–151).
doi: 10.1007/978-3-642-40942-4 13

Patrizi, F., Lipovetzky, N., De Giacomo, G., & Geffner, H. (2011). Computing infinite plans for
LTL goals using a classical planner. In Proceedings of the international joint conference on
artificial intelligence (IJCAI) (pp. 2003–2008).

Patrizi, F., Lipovetzky, N., & Geffner, H. (2013). Fair LTL synthesis for non-deterministic systems
using strong cyclic planners. In Proceedings of the international joint conference on artificial
intelligence (IJCAI).

Pistore, M., & Traverso, P. (2001). Planning as model checking for extended goals in non-
deterministic domains. In Proceedings of the international joint conference on artificial in-
telligence (IJCAI) (pp. 479–486).

Pistore, M., & Vardi, M. Y. (2007). The planning spectrum - one, two, three, infinity. Journal of
Artificial Intelligence Research (JAIR), 30, 101–132.

Piterman, N., Pnueli, A., & Sa’ar, Y. (2006). Synthesis of reactive(1) designs. In Proceedings
of the international conference on verification, model checking, and abstract interpretation
(VMCAI) (pp. 364–380).

Pnueli, A. (1977). The temporal logic of programs. In Proceedings of the annual symposium on
foundations of computer science (SFCS) (pp. 46–57).

620

FOND PLANNING AS ASSUMPTION-BASED REACTIVE SYNTHESIS

Pnueli, A., & Rosner, R. (1989a). On the synthesis of an asynchronous reactive module. In Pro-
ceedings of the international colloquium on automata, languages and programming (ICALP)
(pp. 652–671).

Pnueli, A., & Rosner, R. (1989b). On the synthesis of a reactive module. In Proceedings of the
ACM SIGPLAN-SIGACT symposium on principles of programming languages (POPL) (pp.
179–190).

Ramirez, M., & Sardina, S. (2014). Directed fixed-point regression-based planning for non-
deterministic domains. In Proceedings of the international conference on automated planning
and scheduling (ICAPS) (pp. 235–243).

Rintanen, J. (1999). Constructing conditional plans by a theorem-prover. Journal of Artificial
Intelligence Research (JAIR), 10, 323–352.

Rintanen, J. (2003). Expressive equivalence of formalisms for planning with sensing. In Pro-
ceedings of the international conference on automated planning and scheduling (ICAPS) (pp.
185–194).

Rintanen, J. (2004). Complexity of planning with partial observability. In Proceedings of the
international conference on automated planning and scheduling (ICAPS) (pp. 345–354).

Rintanen, J. (2008). Regression for classical and nondeterministic planning. In Proceedings of the
european conference in artificial intelligence (ECAI) (pp. 568–572).

Rosner, R. (1992). Modular synthesis of reactive systems (Unpublished doctoral dissertation).
Weizmann Institute of Science.

Sardina, S., & D’Ippolito, N. (2015). Towards fully observable non-deterministic planning as
assumption-based reactive synthesis. In Proceedings of the international joint conference on
artificial intelligence (IJCAI) (pp. 3200–3206).

Torres, J., & Baier, J. A. (2015). Polynomial-time reformulations of LTL temporally extended
goals into final-state goals. In Proceedings of the international joint conference on artificial
intelligence (IJCAI) (pp. 1696–1703).

Vardi, M. Y. (1995). An automata-theoretic approach to fair realizability and synthesis. In Proceed-
ings of the international conference on computer aided verification (CAV) (pp. 267–278).

Vardi, M. Y. (1996). An automata-theoretic approach to linear temporal logic. In Logics for
concurrency: Structure versus automata (Vol. 1043, p. 238-266). Springer.

von Neumann, J., Morgenstern, O., Kuhn, H., & Rubinstein, A. (1944). Theory of games and
economic behavior (60th anniversary commemorative edition). Princeton University Press.

621

	Introduction
	Preliminaries
	Fully Observable Non–Deterministic Planning
	Temporal Logics
	Synthesis on Games

	Strong Cyclic Plans and Fair Environments
	FOND Planning via Reactive Synthesis
	FOND Planning via Synthesis

	Related Work
	Conclusions

