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Abstract

Let λ ∈ (0, 1) and let T be a r × r complex matrix with polar decomposition T = U |T |.
Then, the λ- Aluthge transform is defined by

∆λ (T ) = |T |λU |T |1−λ.

Let ∆n
λ(T ) denote the n-times iterated Aluthge transform of T , n ∈ N. We prove that

the sequence {∆n
λ(T )}n∈N converges for every r × r diagonalizable matrix T . We show

regularity results for the two parameter map (λ, T ) 7→ ∆∞

λ (T ), and we study for which
matrices the map (0, 1) ∋ λ 7→ ∆∞

λ (T ) is constant.
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1 Introduction.

Let H be a complex Hilbert space, and let L(H) be the algebra of bounded linear operators
on H. Given T ∈ L(H), consider its (left) polar decomposition T = U |T |. In order to study
the relationship among p-hyponormal operators, Aluthge introduced in [1] the transformation
∆1/2 (·) : L(H) → L(H) defined by

∆1/2 (T ) = |T |1/2U |T |1/2.

Later on, this transformation, now called Aluthge transform, was also studied in other contexts
by several authors, such as Jung, Ko and Pearcy [14] and [15], Ando [2], Ando and Yamazaki
[3], Yamazaki [20], Okubo [16] and Wu [19] among others.

In this paper, given λ ∈ (0, 1) and T ∈ L(H), we study the so-called λ-Aluthge transform of T
defined by

∆λ (T ) = |T |λ U |T |1−λ .

This notion has already been considered by Okubo in [16] (see also [4] and [13]). We denote by
∆n

λ (T ) the n-times iterated λ-Aluthge transform of T , i.e.

∆0
λ (T ) = T ; and ∆n

λ (T ) = ∆λ

(

∆n−1
λ (T )

)

n ∈ N. (1.1)

In a previous paper [5], we show that the iterates of usual Aluthge transform ∆n
1/2 (T ) converge

to a normal matrix ∆∞
1/2 (T ) for every diagonalizable matrix T ∈ Mr(C) (of any size). We also

proved in [5] the smoothness of the map T 7→ ∆∞
1/2 (T ) when it is restricted to a similarity orbit,

or to the (open and dense) set D∗
r (C) of invertible r×r matrices with r different eigenvalues. The

key idea was to use a dynamical systems approach to the Aluthge transform, thought as acting
on the similarity orbit of a diagonal invertible matrix. Recently, Huajun Huang and Tin-Yau
Tam [13] showed, with other approach, that the iterates of every λ-Aluthge transform ∆n

λ (T )
converge, for every matrix T ∈ Mr(C) with all its eigenvalues of different moduli.

In this paper, we study the general case of λ-Aluthge transforms by means of a dynamical
systems approach. This allows us to generalize Huajun Huang and Tin-Yau Tam result for every
diagonalizable matrix T ∈ Mr(C), as well as to show regularity results for the two parameter
map (λ, T ) 7→ ∆∞

λ (T ) = limn∈N∆n
λ (T ).

Now we briefly describe the dynamical point of view of the problem: For every λ ∈ (0, 1)
and any invertible matrix T , it holds that ∆λ (T ) = |T |λ T |T |−λ. So the λ-Aluthge transform of
T belongs to the similarity orbit of T . This suggests that we can study the Aluthge transform
restricted to the similarity orbit of some invertible operator. From that point of view, the
diagonalizable case has a better dynamical behavior, as detailed in [5]. If T is diagonalizable,
the similarity orbit of T coincides with the similarity orbit of some diagonal operator D, which
we denote S (D). The unitary orbit of D, denoted by U (D), is a compact submanifold of S (D)
that consists of all normal matrices in S (D). Hence U (D) is fixed by the Aluthge transform
and, as it was shown in [4], all the limit points of the sequence {∆n

λ (T )}n∈N belong to U (D).
As it was shown in [5] for λ = 1/2, we show that for any N ∈ U (D) there is a local

submanifold Ws
λ,N transversal to U (D) characterized as the set the matrices (near N) that

converges with a exponential rate to N by the iteration of the λ-Aluthge transform. Moreover,
the union of these submanifolds form an open neighborhood of U (D) (see Corollary 3.2.2). Thus,
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since the sequence {∆n
λ (T )}n∈N goes toward U (D), for some n0 large enough the sequence of

iterated Aluthge transforms gets into this open neighborhood and converge exponentially.
These results follow from the classical arguments of stable manifolds (first introduced inde-

pendently by Hadamard and Perron, see Theorem 2.1.3; for details and general results about
the stable manifold theorem, see [11] or the Appendix of [5]). In order to use the stable manifold
theorem, we show previously that the derivative of the λ-Aluthge transform in any N ∈ U (D)
has two invariant complementary directions, one tangent to U (D), and other one transversal to
it where the derivative is a contraction (see Theorem 3.2.1). Using these techniques we prove
that ∆n

λ (T ) −−−→n→∞
∆∞

λ (T ) ∈ U(r), for every r × r diagonalizable matrix T . We also prove that

the two parameter map ∆∞(λ, T ) = ∆∞
λ (T ) is of class C∞, when restricted to (0, 1) × D∗

r (C)
and to (0, 1) × S (D) for a diagonal matrix D ∈ Mr(C).

We also study for which matrices T the map (0, 1) ∋ λ 7→ RT (λ) = ∆∞
λ (T ) is constant.

Some partial results are obtained, in particular that RT is not constant for most diagonalizable
matrices T . We also show that RT is constant for every T in the similarity orbit of a diagonal
matrix D if σ(D) = {d1 , d2} with |d1| = |d2|. We state and discuss the following conjecture:
this is the unique case where RT is constant for every T in the similarity orbit of D.

The paper has a structure very similar to [5] because, at any step of the dynamical systems
argument, we need to state results which differ slightly of those results of [5]. The proofs of these
results are omitted or just sketched. The paper is organized as follows: in section 2, we collect
several preliminary definitions and results about the the stable manifold theorem, about the
geometry of similarity and unitary orbits, and about known results on λ-Aluthge transforms.
In section 3, we prove the convergence results. In section 4 we study the smoothness of the
two parameter map (λ, T ) 7→ ∆∞

λ (T ) and we study the behavior of the limit function ∆∞
λ (T )

with respect to the parameter λ. The basic tool for these results, in order to apply the stable
manifold theorem to the similarity orbit of a diagonal matrix, is the mentioned Theorem 3.2.1,
whose proof, somewhat technical, is done in section 5.

2 Preliminaries.

In this paper Mr(C) denotes the algebra of complex r × r matrices, Gl r(C) the group of all
invertible elements of Mr(C), U(r) the group of unitary operators, and Mh

r (C) (resp. M
ah
r (C) )

denotes the real algebra of Hermitian (resp. anti Hermitian) matrices. Given T ∈ Mr(C),
R(T ) denotes the range or image of T , ker T the null space of T , σ(T ) the spectrum of T ,
rk T = dimR(T ) the rank of T , tr(T ) the trace of T , and T ∗ the adjoint of T . If v ∈ C

r, we
denote by diag(v) ∈ Mr(C) the diagonal matrix with v in its diagonal. We shall consider the
space of matrices Mr(C) as a real Hilbert space with the inner product defined by

〈A, B〉 = Re
(

tr(B∗A)
)

.

The norm induced by this inner product is the so-called Frobenius norm, denoted by ‖ · ‖2 .

On the other hand, let M be a manifold. By means of TM we denote the tangent bundle of
M and by means of TxM we denote the tangent space at the point x ∈ M . Given a function
f ∈ Cr(M), where r = 1, . . . ,∞, Txf (v) denotes the derivative of f at the point x applied to
the vector v.
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2.1 Stable manifold theorem

In this section we state the stable manifold theorem for an invariant set of a smooth endo-
morphism (see 2.1.3 below). We refer to [5] for a detailed description of these type of results.
Let M be a smooth Riemann manifold and N ⊆ M a submanifold (not necessarily compact).
Throughout this subsection T

N
M denotes the tangent bundle of M restricted to N .

Definition 2.1.1. A Cr pre-lamination indexed by N is a continuous choice of a Cr embedded
disc Bx through each x ∈ N . Continuity means that N is covered by open sets U in which
x → Bx is given by

Bx = σ(x)((−ε, ε)k)

where σ : U ∩ N → Embr((−ε, ε)k ,M) is a continuous section. Note that Embr((−ε, ε)k ,M)
is a Cr fiber bundle over M whose projection is β → β(0). Thus σ(x)(0) = x. If the sections
mentioned above are Cs, 1 ≤ s ≤ r, we say that the Cr pre-lamination is of class Cs. N

Definition 2.1.2. Let f be a smooth endomorphism of M , ρ > 0, and suppose that f |N is a
homeomorphism. Then, N is ρ-pseudo hyperbolic for f if there exist two smooth subbundles of
T

N
M , denoted by Es and F , such that

1. T
N
M = Es ⊕F ;

2. TN = F ;

3. Both, Es and F , are Tf -invariant;

4. T f restricted to F is an automorphism, which expand it by a factor greater than ρ.

5. Txf : Es
x → Es

f(x) has norm lower than ρ. N

In this case, the stable manifold theorem assures that for any point x ∈ N it is possible to
find an f−invariant submanifold transversal to N tangent to Es and characterized as the set of
points with trajectories asymptotic to the trajectory of x. We shall state the following particular
version of this theorem. For a proof, see Theorem 2.1.4, Corollary 2.1.5 and Remark 2.1.6 of [5].

Theorem 2.1.3 (Stable manifold theorem for a submanifold of fixed points). Let f be a Cr

endomorphism of M with a ρ-pseudo hyperbolic submanifold N with ρ < 1. Assume that any
point p in N is a fixed point. Then, there is a f -invariant Cr-pre-lamination Ws : N →
Embr((−1, 1)k ,M) of class Cr such that, for every x ∈ N ,

1. Ws(x)(0) = x,

2. Ws
x = Ws(x)((−1, 1)k) is tangent to Es

x at every x ∈ N ,

3. There exists an open neighborhood U of x (open relative to M) such that

Ws
x ∩ U =

{

y ∈ U : dist(x, fn(y)) < dist(x, y) ρn
}

. (2.1)

4. If y ∈ N , x 6= y, then Ws
x ∩Ws

y = ∅.
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5. There exists γ > 0 such that

B(x, γ) ⊂
⋃

x∈N

Ws
x .

This implies that
⋃

x∈N

Ws
x contains an open neighborhood W(N) of N in M .

6. The map
p : W(N) → N given by p(a) = x if a ∈ Ws

x(x) , (2.2)

is well defined and it is of class Cr. �

2.2 Similarity orbit of a diagonal matrix

In this subsection we recall some facts about the similarity orbit of a diagonal matrix.

Definition 2.2.1. Let D ∈ Mr(C) be diagonal. The similarity orbit of D is the set

S (D) = { SDS−1 : S ∈ Gl r(C) } .

On the other hand, U (D) = { UDU∗ : U ∈ U(r) } denotes the unitary orbit of D. We donote
by π

D
: Gl r(C) → S (D) ⊆ Mr(C) the C∞ map defined by π

D
(S) = SDS−1. With the same

name we note its restriction to the unitary group: π
D
: U(r) → U (D). N

Proposition 2.2.2. The similarity orbit S (D) is a C∞ submanifold of Mr(C), and the projec-
tion π

D
: Gl r(C) → S (D) becomes a submersion. Moreover, U (D) is a compact submanifold of

S (D), which consists of the normal elements of S (D), and π
D
: U(r) → U (D) is a submersion.

In particular, the maps π
D
have C∞ (similarity and unitary) local cross sections. �

For every N = UDU∗ ∈ U (D), it is well known (and easy to see) that

T
N
S (D) = T

I
(πN )(Mr(C) ) = {[A,N ] = AN −NA : A ∈ Mr(C)}.

In particular

T
D
S (D) = {AD −DA : A ∈ Mr(C)}

= {X ∈ Mr(C) : Xij = 0 for every (i, j) such that di = dj}. (2.3)

Note that,

T
N
S (D) = {[A,N ] = AN −NA : A ∈ Mr(C)}

= {(UBU∗)UDU∗ − UDU∗(UBU∗) : B ∈ Mr(C)}

= {U [B,D]U∗ = BD −DB : B ∈ Mr(C)} = U
(

T
D
S (D)

)

U∗ . (2.4)

On the other hand, since T
I
U(r) = Mah

r (C) = {A ∈ Mr(C) : A
∗ = −A} , we obtain

T
D
U (D) = T

I
(πD)(M

ah
r (C) ) = {[A,D] = AD −DA : A ∈ Mah

r (C)} and ,

T
N
U (D) = {[A,N ] = AN −NA : A ∈ Mah

r (C)} = U
(

T
D
U (D)

)

U∗ . (2.5)
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Finally, along this paper we shall consider on S (D) (and in U (D)) the Riemannian structure
inherited fromMr(C) (using the usual inner product on their tangent spaces). For S, T ∈ S (D),
we denote by dist(S, T ) the Riemannian distance between S and T (in S (D) ). Observe that,
for every U ∈ U(r), one has that US (D)U∗ = S (D) and the map T 7→ UTU∗ is isometric,
on S (D), with respect to the Riemannian metric as well as with respect to the ‖ · ‖2 metric of
Mr(C).

2.3 λ-Aluthge transforms

Definition 2.3.1. Let T ∈ Mr(C), and suppose that T = U |T | is the polar decomposition of
T . Let λ ∈ (0, 1). Then, we define the λ-Aluthge transform of T in the following way:

∆λ (T ) = |T |λ U |T |1−λ

We denote by ∆n
λ (T ) the n-times iterated λ-Aluthge transform of T , i.e.

∆0
λ (T ) = T ; and ∆n

λ (T ) = ∆λ

(

∆n−1
λ (T )

)

n ∈ N.

The following proposition contains some properties of λ-Aluthge transforms which follows easily
from its definition.

Proposition 2.3.2. Let T ∈ Mr(C) and λ ∈ (0, 1). Then:

1. ∆λ (cT ) = c∆λ (T ) for every c ∈ C.

2. ∆λ (V TV ∗) = V∆λ (T )V
∗ for every V ∈ U(r).

3. If T = T1 ⊕ T2 then ∆λ (T ) = ∆λ (T1)⊕∆λ (T2).

4. ‖∆λ (T ) ‖2 6 ‖T‖2 .

5. T and ∆λ (T ) have the same characteristic polynomial.

6. In particular, σ (∆λ (T )) = σ (T ).

The following theorem states the regularity properties of λ-Aluthge transforms.

Theorem 2.3.3. The λ-Aluthge transform is continuous in Mr(C). Moreover, the map (0, 1)×
Gl r(C) ∋ (λ, T ) 7→ ∆λ (T ) is of class C∞.

Proof. The continuity part was proved in [4] (see also [10]). If T ∈ Gl r(C), then

∆λ (T ) = |T |λ T |T |−λ , λ ∈ (0, 1) .

This clearly implies regularity, since the map

(0, 1) × Gl r(C) ∋ (λ, T ) 7−→ |T |λ = (T ∗T )λ/2 = exp(λ/2 log T ∗T )

is of class C∞ . �

The following result is proved in [4]:
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Proposition 2.3.4. Given T ∈ Mr(C) and λ ∈ (0, 1), the limit points of the sequence
{∆n

λ (T )}n∈N are normal. Moreover, if L is a limit point, then σ (L) = σ (T ) with the same
algebraic multiplicity. In particular, for each λ ∈ (0, 1), one has that ∆λ (T ) = T if and only if
T is normal.

Finally, we mention a result concerning the Jordan structure of Aluthge transforms proved in
[4]. We need the following definitions.

Definition 2.3.5. Let T ∈ Mr(C) and µ ∈ C. We denote

1. m(T, µ) the algebraic multiplicity of µ for T , i.e. the maximum n ∈ N such that (x−µ)n

divides the characteristic polynomial of T .

2. m0(T, µ) = dimker(T − µI), the geometric multiplicity of µ. N

Observe that Proposition 2.3.2 says that m(T, µ) = m(∆λ (T ) , µ) for every µ ∈ C.

Proposition 2.3.6. Let T ∈ Mr(C).

1. If 0 ∈ σ (T ), then, there exists n ∈ N such that

m(T, 0) = m0(∆
n
λ (T ) , 0) = dimker(∆n

λ (T )).

2. For every µ ∈ σ(T ), m0(T, µ)6m0(∆λ (T ) , µ).

Observe that this implies that, if T is diagonalizable (i.e. m0(T, µ) = m(T, µ) for every µ), then
also ∆λ (T ) is diagonalizable.

Remark 2.3.7. Let T ∈ Gl r(C) with polar decomposition T = U |T |. The Duggal or 1-Aluthge
transform of T is ∆1(T ) = |T |U . It is easy to see that the map ∆1 : Gl r(C) → Gl r(C) is
continuous and that ∆1(T ) = T if and only if T is normal. Observe that U ∈ U(r), so that
∆1(T ) = UTU∗, and the distance of ∆1(T ) to the normal matrices is the same as the distance
of T to the normal matrices. All these facts imply the iterated Duggal transforms ∆n

1 (T ) can
not converge, unless T is normal. N

3 Convergence

In this section, we prove the convergence of iterated λ- Aluthge transforms for every diago-
nalizable matrix and λ ∈ (0, 1). Throughout the next subsections, a diagonal matrix D =
diag(d1, . . . , dn) ∈ Gl r(C) is fixed. For every j ∈ {1, . . . , n}, let dj = e iθj |dj | be the polar
decomposition of dj , where θj ∈ [0, 2π].

3.1 Reduction to the invertible case

We claim that the proof of the convergence of iterated λ- Aluthge transforms can be reduced to
the invertible case. Indeed, let T ∈ Mr(C) be a a diagonalizable matrix with polar decomposition
T = U |T |. As R(T ) is a (oblique) complement of ker T = ker |T |λ and R(U |T |1−λ) = R(T ), it
holds that

R(∆λ (T )) = R(|T |λ U |T |1−λ) = R(|T |).
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On the other hand, it is easy to see that ker∆λ (T ) = ker |T |1−λ = ker |T |, which is orthogonal
to R(|T |). By Proposition 2.3.6, after one iteration we get that

∆λ (T ) =

(

T1 0
0 0

)

ker T⊥

ker T
, (3.1)

where T1 is invertible and diagonalizable on ker T⊥. By Proposition 2.3.6 again,

∆n
λ (T ) =

(

∆n−1
λ (T1) 0

0 0

)

ker T⊥

ker T
, for every n ∈ N .

Hence, the convergence of {∆n
λ (T )}n∈N is equivalent to the convergence of {∆n

λ (T1)}n∈N .

3.2 Main Theorem

Reduced the problem to the invertible case, the key tool, which allows to use the stable manifold
theorem 2.1.3, is Theorem 3.2.1 below. The proof of this theorem is rather long and technical, for
this reason, we postpone it until section 5, and we continue in this section with its consequences.

Theorem 3.2.1. Let λ ∈ (0, 1). The λ-Aluthge transform ∆λ (·) : S (D) → S (D) is a C∞ map,
and for every N ∈ U (D), there exists a subspace Es

N,λ
in the tangent space T

N
S (D) such that

1. T
N
S (D) = Es

N,λ
⊕ T

N
U (D);

2. Both, Es
N,λ

and T
N
U (D), are TN ∆λ-invariant;

3.

∥

∥

∥

∥

TN ∆λ|Es
N,λ

∥

∥

∥

∥

≤ k
D,λ

< 1, where

k
D,λ

= max

{

max
|di|6=|dj |

|dj |
1−λ|di|

λ + |di|
1−λ|dj |

λ

|di|+ |dj |
,max
θi 6=θj

|λ
(

ei(θj−θi) − 1
)

+ 1|

}

< 1.

4. If U ∈ U(r) satisfies N = UDU∗, then Es
N,λ

= U(Es
D,λ

)U∗.

In particular, the map U (D) ∋ N 7→ Es
N,λ

is smooth. This fact can be formulated in terms of
the projections P

N,λ
onto Es

N,λ
parallel to T

N
U (D), N ∈ U (D).

Proof. See Section 5. �

Corollary 3.2.2. Let D = diag(d1, . . . , dr) ∈ Mr(C) be an invertible diagonal matrix and

λ ∈ (0, 1). Let Es
N,λ

and kD as in Theorem 3.2.1. Then, in S (D) there exists a ∆λ-invariant

C∞-pre-lamination {WN,λ}N∈U(D) of class C∞ such that, for every N ∈ U (D),

1. WN,λ is a C∞ submanifold of S (D).

2. T
N
WN,λ = Es

N,λ
.

3. If kD < ρ < 1, then dist(∆n
λ (T )−N) ≤ dist(T,N)ρn, for every T ∈ WN,λ .

4. If N1 6= N2 then WN1 ,λ ∩WN2 ,λ = ∅.

5. There exists an open subset W(D) of S (D) such that

8



a. U (D) ⊆ W(D) ⊆
⋃

N∈U(D)

WN,λ, and

b. The map p : W(D) → U (D), defined by p(T ) = N if T ∈ WN,λ, is of class C∞.

Proof. By Theorem 3.2.1, for every kD < ρ < 1, U (D) is ρ-pseudo hyperbolic for ∆λ (see
Definition 2.1.2), and it consists of fixed points. Thus, by Theorem 2.1.3, we get a C∞ and
∆λ-invariant pre-lamination of class C∞, {WN,λ}N∈U(D) which satisfies all the properties of our
statement. �

3.3 Convergence for fixed λ.

Using the previous results, we can apply exactly the same techniques as in our previous work
[5], and to obtain for every λ ∈ (0, 1) the same results about ∆λ (·) as those obtained for the
classical Aluthge transform ∆1/2 (·). We state these properties in the following Theorem. The
basic idea is to apply Proposition 2.3.4 in order to assure that the iterations go into the open
set W(D), where the smooth projection p can be used. Although the proof of this theorem is
omitted to avoid repetitions, Proposition 4.1.2 below gives a detailed proof.

Theorem 3.3.1. Let λ ∈ (0, 1):

1. Given a diagonalizable matrix T ∈ Mr(C), the sequence {∆n
λ (T )}n∈N converges and its

limit will be denoted by ∆∞
λ (T ).

2. Let D ∈ Mr(C) be diagonal. Then the sequence {∆n
λ}n∈N, restricted to the similarity

orbit S (D), converges uniformly on compact sets to the map ∆∞
λ : S (D) → U (D), which

is of class C∞. In particular, ∆∞
λ is a C∞ retraction from S (D) onto U (D).

Remark 3.3.2. Let D ∈ Mr(C) be diagonal. For every N ∈ U (D) and λ ∈ (0, 1), denote

W+
N,λ =

{

T ∈ S (D) : ∆∞
λ (T ) = N

}

.

Since T 7→ ∆∞
λ (T ) is a C∞ retraction from S (D) onto U (D), each W+

N,λ is a C∞ submanifold
of S (D); and S (D) stands as the (disjoint) union of these sheets. On the other hand, the
submanifolds W+

N,λ are prolongations of the sheets WN,λ of Corollary 3.2.2. Indeed, for every
N ∈ U (D) and λ ∈ (0, 1),

WN,λ ⊆ W+
N,λ and W(D) ∩WN,λ = W(D) ∩W+

N,λ ,

by Corollary 3.2.2. Then T
N
W+

N,λ = T
N
WN,λ = Es

N,λ
. N

4 Regularity properties of ∆∞
λ (T )

As in section 3, we fix D = diag(d1, . . . , dr) ∈ Gl r(C). Observe that, using the continuity of
∆λ (·) with respect to λ (Thm. 2.3.3), and the fact that the convergence of its iterations to the
limit map ∆∞

λ (·) is uniform on compact subsets of S (D) (for each λ), one can show that the
map

(0, 1) × S (D) ∋ (λ, T ) 7−→ ∆∞
λ (T )

is continuous. The purpose of this section is to prove that this map is smooth. Firstly we shall
analyze the invertible case. Then, in subsection 4.2 we shall see that the invertibility hypothesis
on D can be dropped.
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4.1 On the orbit S (D).

Denote by SL (D) = (0, 1) × S (D) and UL (D) = (0, 1) × U (D). Consider the map

∆ : SL (D) → SL (D) given by ∆(λ, T ) = (λ,∆λ (T ) ) , (λ, T ) ∈ SL (D) . (4.1)

Remark 4.1.1. Using Theorems 2.3.3, 3.2.1 and 3.3.1 and Proposition 2.3.4, one can deduce
easily the following properties:

1. SL (D) is a C∞ manifold, and UL (D) is a submanifold of SL (D).

2. The map ∆ is of class C∞.

3. The submanifold UL (D) coincides with the set of all fixed points of ∆.

4. For every (λ, T ) ∈ SL (D), it holds that

∆n(λ, T ) = (λ,∆n
λ (T ) ) −−−→n→∞

(λ,∆∞
λ (T ) ) . (4.2)

5. For every N ∈ U (D) and λ ∈ (0, 1), one can describe the tangent spaces as

T
(λ,N)

UL (D) = T
N
U (D)⊕ R , and

T
(λ,N)

SL (D) = T
N
S (D)⊕ R = Es

N,λ
⊕ T

N
U (D)⊕ R = Es

N,λ
⊕ T

(λ,N)
UL (D) ,

where the spaces Es
N,λ

are those of Theorem 3.2.1.

6. By Remark 5.2.2, the projections Q
N,λ

= P
N,λ

+ PR onto Es
N,λ

parallel to T
(λ,N)

UL (D) ,
given by the above decomposition, satisfy that the map

(0, 1) × U (D) ∋ (λ,N) 7−→ Q
N,λ

is of class C∞. N

Proposition 4.1.2. The iterates ∆n of the map ∆ : SL (D) → SL (D) defined in Eq. (4.1)
satisfy

∆n(λ, T ) −−−→
n→∞

∆∞(λ, T ) for every (λ, T ) ∈ SL (D) ,

where ∆∞ : SL (D) → UL (D) is a C∞ retraction.

Proof. Fix (λ0, T0) ∈ SL (D). Let 0 < λ1 < λ0 < λ2 < 1, and consider the submaniflods

So (D) = (λ1 , λ2)× S (D) ⊆ SL (D) and Uo (D) = (λ1 , λ2)× U (D) .

Observe that So (D) is open in SL (D), it is ∆ invariant, and its fixed points coincide with
Uo (D), which is also open in UL (D). Fix ρ ∈ (0, 1) such that the constants (of Theorem 3.2.1)
k
D,λ

< ρ for every λ ∈ (λ1 , λ2). Observe that, for every (λ,N) ∈ Uo (D),

T(λ,N) ∆
∣

∣

∣

Es
N,λ

= TN ∆λ

∣

∣

∣

Es
N,λ

⊆ Es
N,λ

⊆ T
(λ,N)

SL (D) .

Using this fact, and items 5 and 6 of Remark 4.1.1, one can assure that Uo (D) is ρ-pseudo
hyperbolic for ∆ : So (D) → So (D) (see Definition 2.1.2) consisting of fixed points. Thus, by
Theorem 2.1.3, we get a C∞ and ∆-invariant pre-lamination {W(λ,N)}(λ,N)∈Uo(D) of class C∞

such that, for every (λ,N) ∈ Uo (D),
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1. W(λ,N) is a C∞ submanifold of So (D).

2. T
(λ,N)

W(λ,N) = Es
(λ,N)

.

3. dist(∆n (µ, T )−(λ,N) ) ≤ ρn dist( (µ, T ), (λ,N) ), for every (µ, T ) ∈ W(λ,N) . Observe that
this implies that,

if (µ, T ) ∈ W(λ,N) , then µ = λ . (4.3)

4. If (µ1, N1) 6= (µ2, N2) then W(µ1,N1) ∩W(µ2,N2) = ∅.

5. There exists an open subset W(D) of So (D) such that

a. Uo (D) ⊆ W(D) ⊆
⋃

(λ,N)∈U(D)

W(λ,N) .

b. The map p : W(D) → Uo (D), defined by

p(λ, T ) = (λ,N) if (λ, T ) ∈ W(λ,N) ,

is well defined and of class C∞.

By item 2 of Remark 4.1.1, the map ∆ and its iterations are C∞ functions. Hence, there exist
an open set U ⊆ So (D) and k ∈ N such that (λ0, T0) ∈ U and ∆k(U) ⊆ W(D). By the regularity
the projection p, one can deduce that the map So (D) ∋ (λ, T ) 7−→ p(∆k(λ, T ) ) is of class C∞

on U . Now, if ∆k(λ, T ) ∈ W(λ,N) then

p(∆k(λ, T ) ) = N = lim
n→∞

∆n(λ, T ) ,

by item 3. Hence ∆∞ is well defined and of class C∞. �

Theorem 4.1.3. Let D ∈ Dr(C) be invertible. Then the map

∆∞ : (0, 1) × S (D) → U (D) given by ∆∞(λ, T ) = ∆∞
λ (T ) , (λ, T ) ∈ SL (D)

is of class C∞.

Proof. Let ∆∞ : SL (D) → UL (D) be the C∞ retraction of Proposition 4.1.2. By Eq. (4.2),

∆∞(λ, T ) = (λ,∆∞(λ, T ) ) for every (λ, T ) ∈ So (D) .

This implies that also the map ∆∞ is of class C∞. �

Remark 4.1.4. Observe that Proposition 4.1.2 and Eq. (4.2), before taking the limit, also
show Theorem 3.3.1, whose proof was omitted. On the other hand, they also shows that the
map ∆∞ : SL (D) → UL (D) given by ∆∞(λ, T ) = (λ,∆∞

λ (T )) is a C∞ retraction from SL (D)
onto UL (D). Therefore, for every (λ,N) ∈ UL (D), the set W+

(λ,N) = (∆∞)−1(λ,N) is a smooth

submanifold of SL (D). Observe that, by Remark 3.3.2, Eq. (4.2) and (4.3), we have that
W+

(λ,N)
= {λ} ×W+

λ,N and

W(λ,N) = W(D) ∩W+
(λ,N) = W(D) ∩

(

{λ} ×W+
λ,N

)

= {λ} ×Wλ,N ,

whereW+
λ,N are the sheets described in Remark 3.3.2, andWλ,N are those sheets which appear in

Corollary 3.2.2. This can be described as the fact that “the submanifolds Wλ,N move smoothly
with λ”. N
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4.2 The not invertible case

As in section 3, all the results of this section still hold if the diagonal matrix D ∈ Mr(C) is not
invertible. Indeed, suppose that rk D = s < r, and fix T ∈ S (D) and λ ∈ (0, 1). By Eq. (3.1),

∆λ (T ) =

(

T1 0
0 0

)

ker T⊥

ker T
,

where T1 is invertible and diagonalizable on ker T⊥ . The same happens for every matrix
S ∈ S (D). Denote by P = Pker T and U (P ) = {UPU∗ : U ∈ U(r)} its unitary orbit. Consider
the map

Q : S (D) → U (P ) given by Q(S) = PkerS = Pker∆λ(S) , S ∈ S (D) .

This map takes values in U (P ) because rk Q(S) = rk P = s for every S ∈ S (D). Also,
Q is of class C∞, since S 7→ ∆λ (S) is smooth, and ∆λ (S) 7→ Pker ∆λ(S) is polynomial. By
Proposition 2.2.2, there exist an open set W ⊆ U (P ) which contains P , and a C∞ local cross
section σ : W → U(r), in the sense that σ(R)Pσ(R)∗ = R for every R ∈ W. Let V ⊆ S (D) be
an open set such that T ∈ V and Q(V) ⊆ W. Denote by η = σ ◦Q : V → U(r). Then η is also
of class C∞. So, for every λ ∈ (0, 1) and S ∈ V, there exists γ(S, λ) ∈ L(kerT⊥) such that

η(S)∗ ∆λ (S) η(S) =

(

γ(S, λ) 0
0 0

)

ker T⊥

ker T
and γ(S, λ) ∈ S (T1) ⊆ L(ker T⊥) .

Therefore, using that ∆λ (UTU∗) = U∆λ (T )U
∗ for every U ∈ U(r), we obtain

∆∞
λ (S) = Ad

η(S)
◦

(

∆∞
λ (γ(S, λ) ) 0

0 0

)

ker T⊥

ker T
, for every S ∈ W .

Then the regularity of (λ, S) 7→ ∆∞
λ (S) can be deduced from the regularity of the maps (0, 1)×

V ∋ (λ, S) 7→ γ(S, λ) and (0, 1) × S (T1) ∋ (λ,A) 7→ ∆∞
λ (A). Hence, the reduction to the

invertible case is proved.

4.3 Different eigenvalues.

Let D∗
r(C) be the set of diagonalizable and invertible matrices in Mr(C) with r different eigen-

values (i.e. every eigenvalue has algebraic multiplicity equal to one). Observe that D∗
r(C) is an

open dense subset of Mr(C) and it is invariant by the Aluthge transform.

Theorem 4.3.1. The map ∆∞ : (0, 1) ×D∗
r(C) → U (D) given by

∆∞(λ, T ) = ∆∞
λ (T ) , (λ, T ) ∈ (0, 1) ×D∗

r(C)

is of class C∞.

Proof. It follows from a straightforward combination of the techniques of section 3.2 of [5] and
those of the previous sections. We omit the details. �
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4.4 The map λ 7→ ∆∞
λ (T ) for fixed T .

Definition 4.4.1. Let T ∈ Mr(C) be a diagonalizable. We call RT : (0, 1) → Mr(C) the map
given by RT (λ) = ∆∞

λ (T ), for λ ∈ (0, 1).

The following question arises naturally: Is the map RT constant for every diagonalizable matrix
T ∈ Mr(C)?. Numerical examples shows that the question has a negative answer in general.

Indeed, taking the 2× 2 matrix T =

(

3 0
−2 1

)

, numerical computations show that

RT (0.3) ∼=

(

2.2273 0.97380
0.97380 1.7726

)

and RT (0.7) ∼=

(

1.37162 −0.77790
−0.77790 2.62838

)

.

Nevertheless, it was proved in [4, Thm. 4.9] that, if D = diag(d1, d2) ∈ M2(C) and |d1| = |d2|,
then RT is constant for every T ∈ S (D). Our next result shows that, for a diagonal matrix
D = diag(d1, . . . , dr) ∈ Mr(C), this may happen only if |d1| = . . . = |dr|.

Proposition 4.4.2. Let D ∈ Mr(C) be diagonal and invertible. If D has two eigenvalues with

distinct moduli, then there exists T ∈ S (D) such that the map RT is not constant.

The proof of Proposition 4.4.2 follows directly from the next two Lemmas. But let us make first
some comments about this problem:

Remark 4.4.3. Despite Proposition 4.4.2, given D = diag (d1 , . . . , dr) ∈ Mr(C) with |di| 6= |dj |
for some i, j ∈ {1, . . . , r}, the similarity orbit S (D) may contain (non normal) matrices T for
which the map RT is constant. In fact, consider the following example: let D = diag (1,−1, 2) ∈

M3(C), take D1 = diag (1,−1), T1 ∈ S (D1) and T =

(

T1 0
0 2

)

∈ S (D), then

RT (λ) = ∆∞
λ (T ) =

(

∆∞
λ (T1) 0
0 2

)

=

(

RT1(λ) 0
0 2

)

, for every λ ∈ (0, 1) .

But the map RT1 is constant by [4, Thm 4.9] (see also Proposition 4.4.6 below). Observe that
this example includes several cases where T /∈ U (D) (otherwise, the map would be trivially
constant). On the other hand, Proposition 4.4.2 is not longer true if D is not invertible. This
fact can be immediately tested by taking D with σ (D) = {0, 1} (i.e., if D is a projection). N

Lemma 4.4.4. Let D ∈ Mr(C) be diagonal and invertible. If the map RT is constant for every

T ∈ S (D), then the distribution of subspaces

(0, 1) ∋ λ 7−→ Es
N,λ

given by Theorem 3.2.1 must be constant for every N ∈ U (D).

Proof. Using the notations of Remark 3.3.2 and Corollary 3.2.2, each submanifold W+
N,λ consist

of those matrices T such that RT (λ) = ∆∞
λ (T ) = N . But if all the maps ∆∞

λ (·) are the same on
S (D), then the submanifolds W+

N,λ must agree for different lambdas. Finally observe that, by

Remark 3.3.2 and Corollary 3.2.2, Es
N,λ

is the tangent space of W+
N,λ at N , for every N ∈ U (D)

and every λ ∈ (0, 1). �

Lemma 4.4.5. Let D = diag (d1 , . . . , dn) ∈ Mr(C) be diagonal and invertible. Then the

following conditions are equivalent:
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1. The distribution of subspaces (0, 1) ∋ λ 7−→ Es
N,λ

given by Theorem 3.2.1 is constant for

every N ∈ U (D).

2. |di| = |dj | for every 1 ≤ i, j ≤ r.

Moreover, in this case, Es
N,λ

=
[

T
D
U (D)

]⊥
for every λ ∈ (0, 1).

Proof. Since the proof uses several results and notation from section 5, we postpone it until that
section. See Remark 5.2.1. �

Now, the natural question is, what happens if D has all its eigenvalues of the same modulus?.
We first study a particular case:

Proposition 4.4.6. Let D ∈ Mr(C) be diagonal such that σ(D) = {d1 , d2} with |d1| = |d2| .
Then the map RT is constant for every T ∈ S (D).

Proof. Let T ∈ S (D). Denote Si = ker(T − diI) for i = 1, 2, and by Q the oblique projection
onto S1 given by the decomposition C

r = S1 ⊕ S2 . Then T = d1Q + d2(I − Q). Assume that
k = dimS2 ≥ n = dimS1 . In matrix terms, there exists A ∈ L(S⊥

1 , S1) such that

Q =

(

I A
0 0

)

S1

S⊥
1

and T =

(

d1 I (d1 − d2)A
0 d2I

)

S1

S⊥
1

.

We can assume that S1 = {x ∈ C
r : xi = 0 for i > n}, by a unitary conjugation, which

commutes with ∆∞
λ . In this case, A ∈ Mn,k(C). By the decomposition in singular values

of B = (d1 − d2)A, there exist U ∈ U(n) and V ∈ U(k) such that UBV ∗ = Σ(B), where
Σ(B) = (Σ0(B), 0) ∈ Mn,k(R) with Σ0(B) = diag (s1(B), . . . , sn(B) ) ∈ Mn(R), and we add a
n× (k − n) block of zeros on the right. If W = U ⊕ V ∈ U(r), then

WTW ∗ =

(

d1 I Σ(B)
0 d2I

)

C
n

C
k =





d1 In Σ0(B) 0
0 d2 In 0
0 0 d2 Ik−n





C
n

C
n

C
k−n

.

Moreover, there exists a permutation matrix S ∈ U(r) which rearranges the entries of WTW ∗

in such a way that

M = SWTW ∗S∗ =
n

⊕

i=1

(

d1 si(B)
0 d2

)

⊕ d2 Ik−n .

As before, it suffices to show that the map RM is constant. But now Proposition 2.3.6 assures
that

RM (λ) = ∆∞
λ (M) =

n
⊕

i=1

∆∞
λ

(

d1 si(B)
0 d2

)

⊕ d2 Ik−n for every λ ∈ (0, 1) .

Finally, it was proved in [4, Thm. 4.9] that each map λ 7→ ∆∞
λ

(

d1 si(B)
0 d2

)

is constant. �
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Remark 4.4.7. The case D = D∗ in Proposition 4.4.6, is particularly interesting, because in
this case all iterated λ-Alutge transforms (and the limit) can be explicitly computed for every
E ∈ S (D), even in the infinite dimensional case: Let H be a Hilbert space and D ∈ Lsa(H)
such that σ(D) = {1,−1}. Observe that if E ∈ S (D), then E2 = E. The geometry of S (D)
has been widely studied (see [17], [6] and [7]). Given E ∈ S (D), observe that, if L = |E|,
then |E∗| = L−1. Therefore, if E = RL is the polar decomposition of E, with R ∈ U(r), then
RL = E = E−1 = L−1R∗. But the right polar decomposition is E = |E∗|R (with the same R),
so that R = R−1 = R∗ is a unitary reflection and RL = L−1R. Moreover, R ∈ U (D), because
E = RL = L−1/2RL1/2.

The map E 7→ R is the retraction p : S (D) → U (D) deeply studied in [18]. We claim that
p = ∆1/2 (·) = ∆∞

λ (·) for every λ ∈ (0, 1). Indeed, observe that

∆1/2 (E) = L1/2RL1/2 = L1/2L−1/2R = R

and, for every λ ∈ (0, 1), ∆λ (E) = LλRL1−λ = RL1−2λ, so that ∆2
λ (E) = RL(1−2λ)2 , since

∆λ (E) = RL1−2λ is the polar decomposition of ∆λ (E). Inductively, for every n ∈ N,

∆n
λ (E) = RL(1−2λ)n −−−→

n→∞
R = ∆∞

λ (E) ,

since |1−2λ| < 1. Then the map λ 7→ RE(λ) = ∆∞
λ (E) is constant, but the rate of convergence

is very different for each λ, being slower when λ tends to 0 or 1. On the other hand, the sheets
W+

R,λ of Remark 3.3.2 can be characterized as

W+
R,λ = { RM : M ∈ Gl (H)+ and RM = M−1R } .

The geometry of these hyperbolic manifolds is also deeply studied in [7]. N

If D has all its eigenvalues of the same modulus and σ (D) has more than two elements, we do
not have an answer to the above question, but we have made several computational experiments.
In all the tested examples, the map RT fails to be constant for some T in the orbit, even if D
satisfies some algebraic condition such as D3 = I. This suggests the following conjecture :

Conjecture. Let D ∈ Mr(C) be diagonal and invertible. Then the map RT is constant for
every T ∈ S (D) if and only if σ(D) = {d1 , d2} with |d1| = |d2| . N

Remark 4.4.8. Observe that it would be sufficient to consider the 3× 3 case, because we can
use a similar reduction to the one used in Remark 4.4.3. N

Example 4.4.9. Let a, b, c ∈ R
+ such that abc = 1, and let T be the 3× 3 matrix defined by

T =





0 0 1
1 0 0
0 1 0



 ·





a 0 0
0 b 0
0 0 c



 = U |T | .

Computing its spectrum, one shows that T ∈ S (U). On the other hand, since U is a permutation
matrix, for every diagonal matrixD ∈ M3(C) both UDU∗ and U∗DU are also diagonal matrices.
In particular, |T ∗| = U |T |U∗ is diagonal and commutes with |T |. Let λ ∈ (0, 1). Then

∆λ (T ) = |T |λ U |T |1−λ = U
(

U∗(|T |λ|T ∗|1−λ)U
)

= U
∣

∣∆λ (T )
∣

∣ ,
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where the last equality holds by the uniqueness of the polar decomposition. Note that
∣

∣∆λ (T )
∣

∣

is diagonal with det
∣

∣∆λ (T )
∣

∣ = 1. An inductive argument shows that ∆n
λ (T ) = UDn for every

n ∈ N, where each Dn is a positive diagonal matrix. As T ∈ S (U), then ∆∞
λ (T ) ∈ U (U) ⊆ U(r).

Hence Dn −−−→
n→∞

I and ∆∞
λ (T ) = U . The same happens for any λ ∈ (0, 1), therefore, the

function RT (λ) is constant. This example does not contradicts the Conjecture, because all the
matrices studied satisfy that |T | and |T ∗| commute, so that they are not dense in S (U). N

5 The proof of Theorem 3.2.1.

As in Section 3, in this section we fix an invertible diagonal matrix D ∈ Mr(C) whose diagonal
entries are denoted by (d1, . . . , dn). For every j ∈ {1, . . . , n}, let dj = e iθj |dj | be the polar
decomposition of dj , where θj ∈ [0, 2π].

5.1 Matricial characterization of TN∆λ

Definition 5.1.1. Given A,B ∈ Mr(C), A ◦ B denotes their Hadamard product, that is, if
A = (Aij) and B = (Bij), then (A ◦ B)ij = AijBij . With respect to this product, each matrix
A ∈ Mr(C) induces an operator ΨA on Mr(C) defined by ΨA(B) = A ◦B, B ∈ Mr(C).

Remark 5.1.2. In what follows, we shall state several definitions and results taken from Section
4 of our previous work [5]:

1. By Eq. (2.3), the tangent space T
D
S (D) consists on those matrices X ∈ Mr(C) such that

Xij = 0 if di = dj . Then T
D
S (D) reduces the operator ΨA , for every A ∈ Mr(C). This is

the reason why, from now on, we shall consider all these operators as acting on T
D
S (D).

Restricted in this way, it holds that

‖ΨA‖ = sup{‖A ◦B‖2 : B ∈ T
D
S (D) and ‖B‖2 = 1} = max

di 6=dj
|Aij | ,

since ΨA is a diagonal operator on the Hilbert space (T
D
S (D) , ‖ · ‖2).

2. Let P
Re

and P
Im

be the projections defined on T
D
S (D) by

P
Re
(B) =

B +B∗

2
and P

Im
(B) =

B −B∗

2
, B ∈ T

D
S (D) .

That is, P
Re

(resp. P
Im
) is the restriction to T

D
S (D) of the orthogonal projection onto

the subspace of hermitian (resp. anti-hermitian) matrices.

3. Observe that, for every K ∈ Mah
r (C) (i.e., such that K∗ = −K) and B ∈ Mr(C) it holds

that
K ◦ P

Re
(B) = P

Im
(K ◦B) and K ◦ P

Im
(B) = P

Re
(K ◦B) . (5.1)

4. Denote by Q
D

the orthogonal projection from T
D
S (D) onto (T

D
U (D))⊥.

5. Let J,K ∈ Mr(C) be the matrices defined by

Kij =

{

|dj − di| sgn(j − i) if di 6= dj

0 if di = dj
and
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Jij =

{

(dj − di)K
−1
ij if di 6= dj

1 if di = dj
,

for 1 ≤ i, j ≤ r. Then

(a) For every A ∈ Mr(C), AD −DA = J ◦K ◦ A.

(b) It holds that Q
D

= ΨJPIm
Ψ−1

J .

(c) If H ∈ Mh
r (C) (i.e., if H

∗ = H), then Q
D
ΨH = ΨHQ

D
.

6. Let λ ∈ (0, 1) and N ∈ U (D) and let Q
N
be the orthogonal projection from T

N
S (D) onto

(

T
N
U (D)

)⊥
. Then T

N
∆λ has the following 2× 2 matrix decomposition

T
N
∆λ =

(

A
1N

(λ) 0
A2N (λ) I

)

Q
N

I −Q
N

, (5.2)

because T
N
∆λ acts as the identity on T

N
U (D).

7. Let A ∈ Mr(C) and let γ : R → L(H)+ be the curve defined by

γ(t) =
(

etADe−tA
)∗(

etADe−tA
)

= e−tA∗

D∗etA
∗

etADe−tA.

If R, T+ and T− ∈ Mr(C) are defined by Rij = 2d̄idj , T
+
ij = |di|

2 + |dj |
2 and T−

ij =

|dj |
2 − |di|

2, i, j ∈ Ir , then

γ′(0) = (R − T+) ◦ P
Re
(A) + T− ◦ P

Im
(A). (5.3)

The following classical result, proved by Dalekĭıi and Krĕın in 1951 ([8] and [9]) will be useful
in the sequel (see also the book [12]).

Theorem 5.1.3. Let I, J ⊆ R be open intervals and let γ : I → Mh
r (C) be a C1 curve such that

σ(γ(t) ) ⊆ J for every t ∈ I. Let f : J → R be a C1 map. Suppose that γ(t0) = diag (a1, . . . , ar)
for some t0 ∈ I. Then

(f ◦ γ)′(t0) = Mf ◦ γ
′(t0) ,

where Mf ∈ Mn(R) is defined by

(Mf )ij =















f(aj)− f(ai)
aj − ai

if ai 6= aj

f ′(ai) if ai = aj

, for i , j ∈ Ir .

Corollary 5.1.4. Let A and γ be as in 7 of Remark 5.1.2, and let λ ∈ (0, 1). Then (γλ/2)′(0) =
Mλ/2 ◦ γ

′(0), where Mλ/2 ∈ Mr(C) is the matrix given by

(Mλ/2)ij =



















|dj |
λ − |di|

λ

|dj |
2 − |di|

2 if |di| 6= |dj |

λ
2 |di|

λ−2 if |di| = |dj |

, i , j ∈ Ir . (5.4)
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Proof. Apply Theorem 5.1.3 to f(t) = t
λ
2 . Use that γ(0) = diag

(

|d1|
2, . . . , |dr|

2
)

. �

Recall that Q
D
denotes the orthogonal projection from T

D
S (D) onto

(

T
D
U (D)

)⊥
.

Proposition 5.1.5. Fix λ ∈ (0, 1). Then there exists a matrix H(λ) ∈ Mr(C) such that

Q
D

(

T
D
∆λ

)

Q
D
= Q

D
ΨP

Re
H(λ) QD

and

(I −Q
D
)
(

T
D
∆λ

)

Q
D
= (I −Q

D
) ΨP

Im
H(λ) QD

.

The entries of H1(λ) = P
Re
H(λ) are the following: for every 1 ≤ i, j ≤ r, denote by Aij =

|dj |
2−λ|di|

λ − |di|
2−λ|dj |

λ and Bij = |dj |
1+λ|di|

1−λ − |di|
1+λ|dj |

1−λ. Then

H1(λ)ij =



















Aij + ei(θj−θi)Bij

|dj |
2 − |di|

2 if |di| 6= |dj |

λ
(

ei(θj−θi) − 1
)

+ 1 if |di| = |dj |

. (5.5)

The proof of this proposition follows the same steps as the proof of of [5, Prop. 4.1.5], but using
now Corollary 5.1.4, and items 5 and 7 of Remark 5.1.2. For this reason we shall give only
and sketched version, pointed out the main differences and the technical difficulties that appear
when we loose the symmetry of the case λ = 1/2.

Sketch of proof. Fix X = AD −DA ∈ TDS (D), for some A ∈ Mr(C). Then

T
D
∆λ (X) =

d

dt
∆λ

(

etADe−tA
)

∣

∣

∣

∣

t=0

.

Let γ(t) =
(

etADe−tA
)∗(

etADe−tA
)

= e−tA∗
D∗etA

∗
etADe−tA. In terms of γ, we can write the

curve ∆λ

(

etADe−tA
)

in the following way

∆λ

(

etADe−tA
)

= γλ/2(t)(etADe−tA)γ−λ/2(t).

Since γλ/2γ−λ/2 = I, then (γ−λ/2)′(0) = −γ−λ/2(0) (γλ/2)′(0) γ−λ/2(0). Using this identity, easy
computations show that

T
D
∆λ (X) =

(

(γλ/2)′(0) D −D (γλ/2)′(0)
)

|D|−λ + |D|λ(AD −DA)|D|−λ.

If we define the matrices L,N ∈ Mr(C) by Nij = |dj |
−λ and Lij = |di|

λ|dj |
−λ and take

J,K ∈ Mr(C) as in 5 of Remark 5.1.2. Then

T
D
∆λ (X) = N ◦ (J ◦K ◦ (γλ/2)′(0)) + L ◦ (J ◦K ◦ A).

Using Corollary 5.1.4 and 7 of Remark 5.1.2, we get

T
D
∆λ (AD −DA) = N ◦ J ◦K ◦Mλ/2 ◦

[

(R− T+) ◦ P
Re
(A) + T− ◦ P

Im
(A)

]

+ L ◦ J ◦K ◦ A.

where R, T+ and T− are the matrices defined in 7 of Remark 5.1.2, and Mλ/2 is the matrix
defined in Eq. (5.4) of Corollary 5.1.4.
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Now, we shall express T
D
∆λ (AD −DA) in terms of AD−DA = J ◦K ◦A. Following the same

steps as in Proposition 4.1.5 of [5], we arrive to the formula

T
D
∆λ (AD −DA) =

(

ΨH(λ) QD
+ (I −Q

D
)
)

(AD −DA) ,

where H(λ) = Mλ/2 ◦N ◦ (R− T+) + L. Given X ∈ R(Q
D
), then Ψ−1

J (X) ∈ Mah
r (C) and

Q
D

(

T
D
∆λ

)

Q
D
(X) = Q

D
(H(λ) ◦X) = (ΨJPIm

Ψ−1
J )(H(λ) ◦X)

= J ◦
(

P
Im
(H(λ) ◦Ψ−1

J X)
)

=
1

2
J ◦

(

H(λ) ◦Ψ−1
J (X) + H(λ)∗ ◦Ψ−1

J (X)
)

= J ◦ P
Re
H(λ) ◦Ψ−1

J (X) = P
Re
H(λ) ◦X = Q

D
ΨP

Re
H(λ)(X) .

Analogously, one shows that (I −Q
D
)
(

T
D
∆
)

Q
D
(X) = (I −Q

D
)ΨP

Im
H(λ)(X). In order to prove

Eq. (5.5), recall that H(λ) = Mλ/2 ◦N ◦(R−T+)+L. Hence, H(λ)ij = (Mλ/2)ij

(

|dj |
−λ

(

2d̄idj−

(|di|
2 + |dj |

2)
)

)

+ |di|
λ|dj |

−λ . Suppose that |di| 6= |dj |. Straightforward computations, using

Corollary 5.1.4, show that

P
Re
H(λ)ij =

1

2

(

2|dj |
2−λ|di|

λ + 2d̄idj − 2d̄idj |di|
λ|dj |

−λ − |di|
2 − |dj |

2

|dj |2 − |di|2

)

+

1

2

(

2|di|
2−λ|dj |

λ + 2d̄idj − 2d̄idj |dj |
λ|di|

−λ − |dj |
2 − |di|

2

|di|2 − |dj |2

)

=
Aij + ei(θj−θi)Bij

|dj |2 − |di|2
,

where Aij and Bij are those of the statement. If |di| = |dj |, then

H(λ)ij =
λ

2
|di|

λ−2
(

|di|
2−λ2

(

ei(θj−θi) − 1
)

)

+ 1 = λ
(

ei(θj−θi) − 1
)

+ 1 .

So that H(λ)ij = H(λ)ji = P
Re
H(λ)ij = H1(λ)ij = λ

(

ei(θj−θi) − 1
)

+ 1.

Remark 5.1.6. Using the notations of Proposition 5.1.5, let H2(λ) = P
Im
H(λ).

1. If |di| = |dj |, as we observed at the end of the proof of Proposition 5.1.5, H(λ)ij = H(λ)ji.
Hence, H2(λ)ij = 0.

2. If |di| 6= |dj |, denote a =
|dj |
|di|

6= 1 and α = ei(θj−θi). Then one can show that

H2(λ)ij = (a− a−1)−1
[

a1−λ + aλ−1 + α ( 2− a1−λ − aλ−1)− a− a−1
]

while H1(λ)ij = (a− a−1)−1
[

a1−λ − aλ−1 + α(aλ − a−λ)
]

. N
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Corollary 5.1.7. Given N ∈ U (D), consider the matrix decomposition

T
N
∆λ =

(

A1N (λ) 0
A

2N
(λ) I

)

Q
N

I −Q
N

,

as in Eq. (5.2). Then ‖A
1N

(λ)‖ ≤ k
D,λ

, where

k
D,λ

= max

{

max
|di|6=|dj |

|dj |
1−λ|di|

λ + |di|
1−λ|dj |

λ

|di|+ |dj |
,max
θi 6=θj

|λei(θj−θi) + 1− λ|

}

< 1.

Proof. As in the proof of Corollary 4.1.6 of [5], it holds that ‖A
1N

(λ)‖ = ‖A
1D

(λ)‖ for every
N ∈ U (D). On the other hand, by Proposition 5.1.5 and its notations, we get that

‖A
1D

(λ)‖ ≤ ‖ΨH1(λ)‖ = max
di 6=dj

|H1(λ)ij | .

If |di| 6= |dj |, denote a =
|dj |
|di|

6= 1. As in Proposition 5.1.5, we denote

Aij = |dj |
2−λ|di|

λ − |di|
2−λ|dj |

λ = |dj | |di| (a
1−λ − aλ−1) and

Bij = |dj |
1+λ|di|

1−λ − |di|
1+λ|dj |

1−λ = |dj | |di| (a
λ − a−λ) .

Observe that Aij and Bij have the same sign. So |Aij +Bij | = ±(Aij +Bij) and

|H1(λ)ij | =

∣

∣

∣

∣

∣

Aij − ei(θj−θi)Bij

|dj |2 − |di|2

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

Aij + Bij

|dj |2 − |di|2

∣

∣

∣

∣

=
|dj | − |di|

|dj |2 − |di|2

(

|dj |
1−λ|di|

λ + |di|
1−λ|dj |

λ
)

=
|dj |

1−λ|di|
λ + |di|

1−λ|dj |
λ

|dj |+ |di|
.

This quantity is strictly lower that one (as observed in [13]) because

(

|dj |+ |di|
)

−
(∣

∣dj |
1−λ|di|

λ + |di|
1−λ|dj |

λ
)

=
(

|dj |
λ − |di|

λ
)(

|dj |
1−λ − |di|

1−λ
)

> 0.

On the other hand, if |di| = |dj | but θi 6= θj , using the triangle inequality we obtain that

|H1(λ)ij | =
∣

∣

∣
λ
(

ei(θj−θi) − 1
)

+ 1
∣

∣

∣
=

∣

∣

∣
λ ei(θj−θi) + (1− λ)

∣

∣

∣
< 1.

In consequence, the bound for ‖A
1N

(λ)‖ is proved. �

5.2 The proof

Now, we shall restate and prove Theorem 3.2.1:

Theorem. The λ-Aluthge transform ∆λ (·) : S (D) → S (D) is a C∞ map, and for every
N ∈ U (D), there exists a subspace Es

N,λ
in the tangent space T

N
S (D) such that

1. T
N
S (D) = Es

N,λ
⊕ T

N
U (D);
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2. Both, Es
N,λ

and T
N
U (D), are TN ∆λ-invariant;

3.
∥

∥TN ∆λ

∣

∣

Es
N,λ

∥

∥ ≤ k
D,λ

< 1, where k
D,λ

is the constant of Corollary 5.1.7.

4. If U ∈ U(r) satisfies N = UDU∗, then Es
N,λ

= U(Es
D,λ

)U∗.

In particular, the map U (D) ∋ N 7→ Es
N,λ

is smooth. This fact can be formulated in terms of
the projections P

N,λ
onto Es

N,λ
parallel to T

N
U (D), N ∈ U (D). �

The proof of this theorem follows exactly the same steps as the proof of Theorem 3.1.1 of [5],
but now using Corollary 5.1.7, item 5 of Remark 5.1.2, and Proposition 5.1.5 of this work. For
this reason, we shall only give a sketch of the proof.

Sketch of proof. Fix N = UDU∗ ∈ U (D). By the statement and the notations of Corollary
5.1.7, ‖A

1N
(λ)‖ < 1. So the operator I −A

1N
(λ) acting on R(Q

N
) is invertible. Let Es

N,λ be the
subspace defined by

Es
N,λ =

{(

y
−A2N (λ)(I −A1N (λ) )

−1y

)

: y ∈ R(Q
N
)

}

,

Now, following the same steps as in the proof of Theorem 3.1.1 of [5] (with minor changes in
order to adapts it to our case) we can see that the following properties hold:

• The operator P
N,λ

∈ L(T
N
S (D) ) given by the matrix

P
N,λ

=

(

I 0
−A

2N
(λ)(I −A

1N
(λ) )−1 0

)

Q
N

I −Q
N

(5.6)

is the projection onto Es
N,λ parallel to T

N
U (D). Therefore we have the identity T

N
U (D) =

Es
N,λ ⊕ T

N
U (D) .

• Since TN ∆λ = Ad
U
(TD ∆λ)Ad

−1
U

, then

P
N,λ

= Ad
U
(P

D,λ
)Ad−1

U
and P

N,λ
(T

N
∆λ) = (T

N
∆λ)PN,λ

. (5.7)

• Es
N,λ

= U(Es
D,λ

)U∗ and both, Es
N,λ and T

N
U (D), are invariant for T

N
∆λ .

•
∥

∥

(

T
N
∆λ

)∣

∣

Es
N,λ

∥

∥ =
∥

∥

(

T
D
∆λ

)∣

∣

Es
D,λ

∥

∥. So it suffices to show item 3 for N = D.

• Let Y =

(

y
−A

2D
(λ)(I −A

1D
(λ) )−1y

)

∈ Es
D,λ , for some y ∈ R(QD). Then

‖(T
D
∆λ)Y ‖2

2
= ‖A

1D
(λ)y‖2

2
+

∥

∥A
2D

(λ)y −A
2D
(λ)(I −A

1D
(λ) )−1y

∥

∥

2

2

≤ k2
D,λ

‖y‖2
2
+
∥

∥−A
2D
(λ)A

1D
(λ)(I −A

1D
(λ) )−1y

∥

∥

2

2
.

where the inequality holds because ‖A
1D

(λ)‖ ≤ k
D,λ

, by Corollary 5.1.7.

• By item 5 of Remark 5.1.2 and Proposition 5.1.5, we obtain that

∥

∥−A2D(λ)A1D (λ)(I −A1D (λ) )
−1y

∥

∥

2

2
≤ k2

D,λ

∥

∥−A2D(λ)(I −A1D(λ) )
−1y

∥

∥

2

2
.
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• ‖(T
D
∆λ)Y ‖2

2
≤ k2

D,λ
‖y‖2

2
+k2

D,λ

∥

∥−A2D(λ)(I −A1D (λ) )
−1y

∥

∥

2

2
= k2

D,λ
‖Y ‖2

2
. Therefore we

have that
(

T
N
∆λ

)∣

∣

Es
N,λ

has norm lower or equal to k
D,λ

.

The smoothness of the map U (D) ∋ N 7→ Es
N,λ

follows from the existence of C∞ local cross
sections for the map πD : U(r) → U (D), stated in Proposition 2.2.2. For example, if σD : V →
U(r) is such a section near D, then by Eq. (5.7),

P
N,λ

= Ad
σD(N)

P
D,λ

Ad
σD(N)∗

, N ∈ V . (5.8)

This completes the proof. �

Remark 5.2.1. Using the notations and the proof of the Theorem, one can see that the signi-
ficative parts of the projections P

N,λ
are

(I −Q
N
)P

N,λ
Q

N
= −A

2N
(λ)(I −A

1N
(λ) )−1

= −(I −Q
N
)T

N
∆λQN

(

Q
N
−Q

N
T

N
∆λQN

)−1
.

When N = D, by 5 of Remark 5.1.2 and Proposition 5.1.5, and using that the matrices {1 −

H1(λ)ij}ij and {
(

1−H1(λ)ij
)−1

}ij are selfadjoint, we have that

(I −Q
D
)P

D,λ
Q

D
= −(I −Q

D
)ΨH2(λ)QD

(

Q
D
−Q

D
ΨH1(λ)QD

)−1

= −(I −Q
D
)ΨH2(λ)

(

I −ΨH1(λ)

)−1
Q

D
(5.9)

= (I −Q
D
)ΨG(λ) QD

,

where G(λ) ∈ Mah
r (C) has entries G(λ)ij = −H2(λ)ij (1 − H1(λ)ij)

−1. Now, using Remark
5.1.6, we have the following properties, which have been announced in Proposition 4.4.5:

1. If |di| = |dj |, then G(λ)ij = 0.

2. Suppose that all the eigenvalues of D have the same moduli. Then, using Eq. (5.6) and

Eq. (5.7), we get that P
N,λ

= Q
N
(i.e., Es

N,λ
=

[

T
N
U (D)

]⊥
) for every λ ∈ (0, 1) and every

N ∈ U (D).

3. If |di| 6= |dj |, a =
|dj |
|di|

6= 1 and β = ei(θj−θi), then

−Gij(λ) =
a1−λ + aλ−1 + β ( 2− a1−λ − aλ−1)− a− a−1

a− a−1 − (a1−λ − aλ−1)− β(aλ − a−λ)
=

−z(λ)

b(λ)
. (5.10)

Observe that b(λ) −−−→
λ→0

0, while z(λ) −−−→
λ→0

β(a + a−1 − 2) 6= 0. Therefore, we have that

G(λ)ij −−−→
λ→0

∞.

4. Suppose that D has at least two eigenvalues di and dj such that |di| 6= |dj |. Then, by the
description QD = ΨJPIm

Ψ−1
J given in 5 of Remark 5.1.2, and the fact that G(λ) ∈ Mah

r (C)
(which implies that P

Re
ΨG(λ) = ΨG(λ)PIm

), we have that

(I −Q
D
)ΨG(λ) QD

= ΨJPRe
ΨG(λ)PIm

Ψ−1
J = ΨJΨG(λ)PIm

Ψ−1
J .
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Since G ∈ Mah
r (C) , then ‖ΨG(λ)‖ = ‖ΨG(λ)PIm

‖. Hence

‖P
D,λ

‖ ≥ ‖(I −Q
D
)P

D,λ
Q

D
‖ = ‖ΨG(λ)‖ ≥ |G(λ)ij | −−−→

λ→0
∞ .

Then the map λ 7→ P
D,λ

can not be constant. N

Remark 5.2.2. Note that, using Eq. (5.8), Remark 5.2.1 (particularly Eqs. (5.9) and (5.10) ),
and the notations of the Theorem, we can conclude that the map

(0, 1) × U (D) ∋ (λ,N) 7−→ Ad
σD(N)

P
D,λ

Ad
σD(N)∗

= P
N,λ

is of class C∞. Another way to prove it is using that the map (λ,N) 7→ T
N
∆λ is smooth, and

then to apply Eqs. (5.2) and (5.6). N
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[8] J. L. Daleckĭı, S. G. Krĕın, Formulas of differentiation according to a parameter of functions of
Hermitian operators. (Russian) Doklady Akad. Nauk SSSR (N.S.) 76, (1951). 13–16.
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